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Gauge theories appear broadly in physics, ranging from the standard model of particle physics to long-
wavelength descriptions of topological systems in condensed matter. However, systems with sign problems
are largely inaccessible to classical computations and also beyond the current limitations of digital quantum
hardware. In this work, we develop an analog approach to simulating gauge theories with an experimental setup
that employs dipolar spins (molecules or Rydberg atoms). We consider molecules fixed in space and interacting
through dipole-dipole interactions, avoiding the need for itinerant degrees of freedom. Each molecule represents
either a site or gauge degree of freedom, and Gauss’s law is preserved by a direct and programmatic tuning of
positions and internal state energies. This approach can be regarded as a form of analog systems programming
and charts a path forward for near-term quantum simulation. As a first step, we numerically validate this scheme
in a small-system study of U(1) quantum link models in (1 + 1) dimensions with link spin S = 1/2 and S = 1
and illustrate how dynamical phenomena such as string inversion and string breaking could be observed in
near-term experiments. Our work brings together methods from atomic and molecular physics, condensed matter
physics, high-energy physics, and quantum information science for the study of nonperturbative processes in
gauge theories.
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I. INTRODUCTION

Gauge theories are fundamental to descriptions of a wide
range of phenomena in many areas of physics. Euclidean
lattice field theory [1] has been developed into a general
quantitative tool for the study of nonperturbative phenomena
of gauge theories using Monte Carlo simulations on classi-
cal computers. In particular, the use of lattice gauge theory
(LGT) to study quantum chromodynamics (QCD) has yielded
profound insights into its nonperturbative dynamics and hence
our understanding of particle and nuclear physics [2–8]. How-
ever, problems involving nonequilibrium dynamics or systems
described by complex actions suffer from the sign problem
and are not easily amenable to Euclidean LGT simulations.
Recent approaches based on tensor networks have been useful
for investigating low-dimensional LGTs [9], but their exten-
sion to higher dimensions may not be straightforward, due to
the entanglement constraint.

The possibility of using quantum computations or sim-
ulations for these problems has led to renewed interest
in Hamiltonian formulations [10]. Quantum link models
(QLMs) [11–13], an alternative formulation of LGTs, are well
suited to studies of real-time dynamics on both classical and
quantum devices. They use quantum spins in finite integer and
half-integer representations of S to replace the infinite gauge
degrees of freedom.

*These authors contributed equally to this work.

Digital quantum computers, typically based on qubits and
quantum circuits, are still in the noisy intermediate-scale
quantum (NISQ) era and are limited by both qubit number
and gate depth due to noise and decoherence [14]. Still, for
small systems [15] and with the aid of variational techniques
[16], digital approaches to the quantum simulation of gauge
theory dynamics have shown recent success. Alternatively,
analog quantum simulators—special-purpose quantum sys-
tems designed to implement the real-time evolution of model
Hamiltonians—may be more suitable for near-term investiga-
tions of LGT dynamics on moderate to large systems [9,17–
25]. While some problems are emulated naturally on physical
platforms, such as realizing the Hubbard model with cold
atoms in optical lattices [26,27] or realizing Heisenberg spin
models with arrays of polar molecules or Rydberg atoms
[28–32], matter-gauge dynamics is not. Here, we show that
the physics of matter coupled to dynamical gauge fields can
arise naturally in dipolar spin systems [33,34] if the elemen-
tary dipolar processes are restricted in a way that effectively
imposes gauge invariance. Specifically, our approach relies
on encoding the LGT Hamiltonian into a set of physically
realizable degrees of freedom, for example, in the internal
states of polar molecules. This type of analog systems pro-
gramming or hardware-specific encoding is an intermediate
approach between pure analog emulators, whose microscopic
degrees of freedom closely match the emulated model, and
fully digital simulations.

The encoding of matter-gauge dynamics into a pure spin
model with nonitinerant particles addresses one of the main
challenges facing the simulation of gauge theories based on
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atomic Hubbard models [35,36]: the challenge of removing
motional entropy and mitigating sources of heating [37]. Such
issues that plague itinerant systems are further compounded
in schemes based upon spin- or species-dependent optical lat-
tices [35], due to off-resonant light scattering [38,39]. These
issues are avoided in pure spin systems, as motional entropy
can be divorced from the dynamics of internal degrees of
freedom [40] initialized with near-zero entropy.

Recent theory work has shown that in experiments with
Rydberg atom arrays [41], LGT dynamics arises from Ising
spin models by integrating out fermion fields [42,43]. The
phenomenology of field theories, such as confinement, has
also been demonstrated [44,45] in other Ising spin systems.
The reduction of the required degrees of freedom by inte-
gration over fermion fields is a powerful approach, but it
typically introduces projectors onto certain gauge field states
that impose Gauss’s law. For general link spin S, this can
require unphysical forms of long-range interactions, and thus
would be difficult to implement in analog simulations. In our
proposed approach we explicitly represent both the matter and
gauge degrees of freedom with the matter-gauge dynamics
arising due to dipole-mediated hopping of spin excitations
in an array of nonitinerant dipolar spins. Gauge invariance,
namely, Gauss’s law, is imposed in this construction by the
application of local, state-dependent energy shifts that serve to
constrain the dynamics of the spin excitations. As a first step,
we specifically consider how a platform of trapped dipolar
molecules with control of internal state energies can realize
the analog simulation of a U(1) quantum link model in (1 + 1)
dimensions with spin S = 1/2 and S = 1. This approach relies
on the dipolar nature of the spin-spin interactions, and could
alternatively be realized in arrays of Rydberg atoms [32,46] or
other dipolar systems [47]. We describe the detailed mapping
between the states and parameters of the base molecular spin
Hamiltonian and the target QLMs. Our numerical simulations
show that this scheme can allow for high-fidelity analog simu-
lations of dynamical phenomena fundamental to LGTs under
realistic experimental conditions.

II. QUANTUM LINK MODELS

The local interaction terms of a gauge theory between
matter and gauge-boson fields are imposed by the underlying
gauge symmetry. In lattice gauge theory, the interaction terms
involve matter fields at neighboring lattice sites. In order
to preserve gauge invariance even at finite lattice spacing,
the gauge bosons are usually represented by so-called link
fields [1], which take continuous values being elements of a
continuous gauge group. In the quantum link model version
of LGTs, the link variables are instead represented by non-
commuting, finite-dimensional operators that are analogous
to quantum spin operators, a feature that makes QLMs more
directly accessible to quantum simulation. Here, we consider
QLMs of a U(1) LGT in 1 + 1 dimensions in the Hamiltonian
formulation with staggered fermions [10], which take the form

HQLM = −w
∑

x

[ψ†
x Ux,x+1ψx+1 + ψ

†
x+1U

†
x,x+1ψx]
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FIG. 1. Emulating quantum link models (QLMs) with arrays of
dipolar molecules. (a) Mapping between the rotational levels of
molecules in an array and the sites and links of the QLM for spin
S = 1/2. The designation of particular molecules as sites or links
(Sx , Lx , Sx+1, Lx+1 for a given unit cell) is enforced through local
laser control of level-dependent light shifts. (b) Low-lying molecular
rotational levels |N, mN 〉 and their redefinition in terms of states |a〉,
|b〉, |c〉, and |d〉. (c) The hopping of “fermions” between sites and the
associated spin operations on the links are realized by a second-order
dipolar exchange of rotational excitations.

where x labels the spatial lattice sites, ψx is the fermion op-
erator with the staggered mass m(−1)x, w > 0 is the hopping
parameter, Ux,x+1 is the link variable, Ex,x+1 is the electric flux
for the U(1) gauge field on the link between x and x + 1, and
g is the gauge coupling [10,13]. In this paper we focus on
QLMs with S = 1/2 and S = 1 representations for the link
variables, but this may be generalized to larger S. Note that
the continuous gauge symmetry is recovered in the S → ∞
limit [35]. The physical Hilbert space of the QLM is con-
strained by the gauge symmetry through Gauss’s law and the
gauge transformations are generated by the Gauss-law opera-
tor G̃x = ψ†

x ψx − Ex,x+1 + Ex−1,x + 1
2 [(−1)x − 1], where the

last term stems from using staggered fermions.

III. DIPOLAR MOLECULES

A dipolar molecule is effectively a quantum rotor with
angular momentum and projection eigenstates |Nα, mNα

〉. We
restrict our consideration to electronic, vibrational, and hy-
perfine ground states in the absence of large dc electric fields.
Furthermore, we only consider rotational angular momentum
states with Nα ∈ {0, 1}, hereafter using the notation |a〉 ≡
|0, 0〉, |b〉 ≡ |1,−1〉, |c〉 ≡ |1, 0〉, and |d〉 ≡ |1, 1〉 for the
states we consider (see Fig. 1). The Hamiltonian for a system
of fixed dipolar molecules (DMH) is

HDMH =
∑
i,α

(2hBrotNα (Nα + 1) + εi,α )b†
i,αbi,α

+ 1

2

∑
i, j

∑
α,β,γ ,η

V α,β;γ ,η
i, j b†

i,γ b†
j,ηb j,βbi,α, (2)
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TABLE I. Mapping from molecule levels to QLM states.

S = 1/2 S = 1

Molecular levels QLM states Molecular levels QLM states

|a〉S Occupied |a〉S Occupied
|b〉S Unoccupied |c〉S Unoccupied
|b〉L S3 = −1/2 |d〉L S3 = −1
|d〉L S3 = 1/2 |b〉L S3 = 0

|c〉L S3 = 1

where b† and b are hard-core bosonic creation and annihi-
lation operators, Brot is the molecule’s rotational constant,
i, j label molecular positions, and α, β, γ , η label angular
momentum states. The εi,α are the additional position- and/or
state-dependent contributions to the single-molecule energies,
which include both spatially uniform but state-dependent
terms arising from weak electric fields or nuclear-rotational
coupling [30], as well as position-dependent and state-
dependent energy shifts, which can be engineered through
local differential ac Stark shifts owing to the anisotropic
polarizability of molecules [48]. In particular, local control
over molecular light shifts could be naturally incorporated
in molecule arrays with individual laser addressing [49]. The
second line of Eq. (2) represents the dipole-dipole interaction
V α,β;γ ,η

i, j , where α, β; γ , η label pairs of initial and final an-
gular momentum states. The forms of the interaction terms
are naturally restricted by the dipole selection rules �N =
±1 and �mN = 0,±1, but importantly their dipolar nature
allows for the populations of the various molecular levels
to be nonconserved (i.e., dipolar interactions allow for the
interconversion of rotational and orbital angular momentum
[50]). Experimentally, one can use laser power and polariza-
tion to tune the relative εi,α terms, and we consider control
of the V α,β;γ ,δ

i, j magnitudes through control of intermolecular
distances.

IV. EFFECTIVE HAMILTONIAN

We now generate a map between the parameters of the
QLM and the physical parameters of the DMH. In our map-
ping, every site and link in the QLM maps to a different
individual molecule; the Hilbert spaces are mapped as in Ta-
ble I. In this construction, the rotational levels on the “site”
molecules are used to represent the “fermions” (which are
hard-core bosons in one dimension) while rotational levels
on the “link” molecules represent the link gauge fields. For
a QLM with staggered fermions, each unit cell corresponds
to two sites (odd x and even x) and two links, with the link
between sites Sx and Sx+1 labeled as Lx.

Letting H0 be the one-body terms in the first line of Eq. (2),
we tune the energies εi,α so that Gauss’s law is satisfied in
the QLM and so that all of the dipolar configurations satis-
fying Gauss’s law are nearly degenerate in H0 while all of
the other configurations are separated from the Gauss-law
configurations by an energy scale � � V . While we keep
m, g2 � V � � to preserve this condition, this still allows for
the tuning of m and g2/2 on scales comparable to the hopping
w. If the molecular system is prepared in an initial state that

satisfies Gauss’s law, energy constraints will ensure that the
time-evolved state will remain in the physical Hilbert space.

The hopping term −w
∑

x[ψ†
x Ux,x+1ψx+1 + H.c.] of the

QLM involves two sites and one link, and implies changes
in the states of three molecules, Sx, Lx, and Sx+1. Because the
DMH [Eq. (2)] contains only two-body interactions, match-
ing to the QLM hopping term proceeds by constructing the
quasidegenerate effective Hamiltonian to second order [51]
and includes a combination of exchange terms Vi, j and state-
dependent energies εi,α . In the following two sections we
describe the details of this mapping for S = 1/2 and S = 1.

V. REALIZATION AND TESTS OF S = 1/2 QLM

Here we describe details specific to the mapping for the
case S = 1/2 and we numerically validate this mapping. In
this mapping, the molecular state |c〉 is kept energetically
decoupled from gauge-invariant initial states, which can be
achieved by means of a small dc electric field. Furthermore,
local light shifts can be used to decouple the molecular state
|d〉 from dynamics at the site positions. On the links, while
the molecular state |a〉 does not map directly to anything
in the QLM Hilbert space, it is utilized to help mediate the
second-order process needed to describe the fermion hopping
interaction in the QLM.

A three-body hopping process is illustrated in Fig. 1
for the example: |a〉Sx |d〉Lx |b〉Sx+1 → |b〉Sx |b〉Lx |a〉Sx+1 . In the
dipole system this is a second-order process, which

can proceed via |a〉Sx |d〉Lx |b〉Sx+1

virtual−−−→ |b〉Sx |a〉Lx |b〉Sx+1

virtual−−−→
|b〉Sx |b〉Lx |a〉Sx+1 , where |b〉Sx |a〉Lx |b〉Sx+1 is an intermediate
state outside the physical Hilbert space with an energy dif-
ference � � V .

The second-order hopping process has a term given by

−w = 1

2
V b,a;a,d

Sx,Lx
V b,a;a,b

Lx,Sx+1

[
1

�ε1,x
+ 1

�ε2,x

]
, (3)

with �ε1,x = εSx,a + εLx,d − εSx,b − εLx,a and �ε2,x = εLx,b +
εSx+1,a − εLx,a − εSx+1,b. This yields one equation for every x.
While the QLM has a two-site unit cell that repeats, the
microscopic parameters of the underlying DMH can be varied
slightly between x and x + 2, e.g., to allow for the mitigation
of undesired processes resulting from the long-ranged dipolar
interactions. Given a target w value, we can then simultane-
ously solve for all these equations up to corrections of order
greater than O(V 2/�), which generates relationships between
the various V and ε values. These parameters are chosen so
as to preserve Gauss’s law, and furthermore so that they are
physically reasonable. Finally, in addition to the kinetic terms
that appear in the second-order effective model, second-order
self-interaction terms appear as well. These small diagonal
terms can be fully compensated by a slight renormalization
of the DMH energy terms εi,α (see Tables IV and V).

We numerically confirm the mapping for S = 1/2 by sim-
ulating the QLM on three unit cells with open boundary
conditions, and comparing to the full simulation of the DMH.
Figures 2(a)–2(c) show the DMH dynamics of the sites and
links, for an initial product state configuration with staggered
site occupations and polarized electric fields. Note that the
electric flux energy is always a constant in the S = 1/2 QLM,
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FIG. 2. Real-time evolution of densities of sites and links in the
dipolar molecular system to simulate the S = 1/2 QLM on three unit
cells. The dynamics for initialized strings of right-pointing electric
fields are shown for the cases of small mass, (a) m = 0.1w, and large
mass, (b) m = 2.0w. Time is in units of the inverse hopping, w−1. For
small mass (a), the electric field of the string undergoes large-scale
oscillations. For large mass (b), the string stays roughly fixed, with
only small fluctuations of the charge densities and link spins. To note
for both (a) and (b), the outermost sites and links are fixed because
of the open boundary conditions. (c) Electric fluxes summed over all
dynamical links for m = 0.1w (blue) and m = 2.0w (orange). Solid
and dashed lines relate to the DMH and QLM dynamics, respectively.
(d) Top: Fidelity of the dipolar molecular wave function versus the
QLM wave function. Bottom: The effective gauge invariance param-
eter G ≡ ∑

x |〈G̃x〉|/L [35] at the two mass values shown in (a) and
(b).

and therefore g2 is irrelevant. For a small mass, m = 0.1w, the
dynamics of the DMH reveal a string inversion of the electric
fluxes [Figs. 2(a) and 2(c)]. For a large mass, m = 2.0w (more
than three times the reported critical mass mc = 0.655w [52]),
the system shows little dynamics, as there is almost a static
flux string with small fluctuations [Figs. 2(b) and 2(c)].

We additionally compute the wave-function fidelity and
violation of Gauss’s law, shown in Fig. 2(d). The fidelity is
defined as |〈ψQLM|ψDMH〉|2, where ψDMH is the wave function
from the DMH and ψQLM is the wave function mapped from
the QLM into the DMH space. The fidelity of our scheme is
greater than 0.9 out to t = 20w−1, and Gauss’s law is pre-
served over this time range at the 10−6 level. For the molecule
NaRb (body-frame dipole moment of 3.3 D) and a minimum
separation of 0.5 μm, these calculations relate to a hopping
rate of w/h = 41.3 Hz (with h Planck’s constant). This ro-
bust energy scale should be compatible with long molecule
trapping times [53] and coherence times [33,34]. In addition,
larger values of the hopping can be achieved by reducing the
scale of imposed energy penalties �, albeit with fidelities
lower than those shown in Fig. 2(d).

VI. REALIZATION AND TESTS OF S = 1 QLM

The S = 1 case is realized similarly to S = 1/2; how-
ever, more internal levels are used to represent the larger
number of link spin values. The link states are represented

by the various N = 1 rotational sublevels as in Table I.
For the sites, the |b〉 and |d〉 levels are decoupled from
the dynamics by large local light shifts. Unlike for S =
1/2, in the S = 1 case second-order self-interaction pro-

cesses, such as |c〉Sx |b〉Lx |a〉Sx+1

virtual−−−→ |c〉Sx |a〉Lx |c〉Sx+1

virtual−−−→
|c〉Sx |b〉Lx |a〉Sx+1 , cannot be entirely removed through coor-
dination of the εi,α terms. This comes from the fact that
they are not simply renormalized one-body terms. For ex-
ample, the above process generates an O(V 2/�) term of the
form b†

Lx,b
bLx,bb†

Sx+1,a
bSx+1,a that is not in the QLM. Never-

theless, these additional terms are diagonal in the molecular
{|N, mN 〉} basis and still preserve Gauss’s law, but cannot be
removed because the simultaneous constraints for w and set-
ting these “extra” terms to zero results in an overdetermined
system of equations. To overcome this, we introduce a new
length scale.

For every x, we set the distances between molecules rep-
resenting Sx and Lx to be small and denote the characteristic
scale of the dipole-dipole interaction between them as Vshort.
Meanwhile, the distances between molecules representing Lx

and Sx+1 are chosen to be larger with a characteristic scale
for the dipole-dipole interaction between them of Vlong, and
Vlong � Vshort. The hopping parameter w is O(VshortVlong/�).
The second-order self-interaction term for Sx and Lx is
O(V 2

short/�) and that for Lx and Sx+1 is O(V 2
long/�), which

can be safely neglected. Therefore, we only need to con-
sider the equations between Sx and Lx, which decrease the
total number of equations and leave them underdetermined.
A nonunique solution to these equations can then be found,
and we can obtain experimental parameters such that these
second-order terms are made small or can be removed from
the effective Hamiltonian. To note, for larger Vshort/Vlong ra-
tios, higher-order terms eventually limit this minimization
of the extra terms. We set the intermolecular distances as
rS2n+1,L2n+1 = rS1,L1 , rL2n+1,S2n+2 = γ rS1,L1 , rS2n+2,L2n+2 = βrS1,L1 ,
and rL2n+2;S2n+3 = βγ rS1,L1 for every n, where n labels the unit
cell. γ is defined as a variable long-short distance ratio greater
than or equal to one. β is fixed by energy conditions and
independent of γ .

To benchmark our scheme for S = 1, we perform ex-
act diagonalization on three unit cells with open boundary
conditions. The initial configuration is chosen as shown in
Fig. 3, relating to a flux string connecting static charges. String
breaking is a key dynamical phenomenon in high-energy
physics, found in QCD [54] as well as the simpler Schwinger
model [55]. Depending on the parameters of the S = 1 QLM,
the initial configuration as a string may break into approxi-
mate vacuum in the middle region, resulting in the production
of two mesons on the edge. To verify that our scheme reflects
the physical dynamics properly, we investigate both a small-
mass scenario [Fig. 3(a), {m = 0.25 × √

2w, g2 = √
2w}]

and a large-mass scenario [Fig. 3(b), {m = 2.0 × √
2w, g2 =√

2w}], which should result in string breaking and a stabilized
string, respectively. Figure 3 shows that the dynamics of the
dipolar molecular system (solid lines) reflects this behavior.
We find good agreement with the expected dynamics of the
target QLM (dashed line). Specifically, for large mass, the
string stays approximately in its initial configuration up to
small fluctuations, while the string of the small-mass case
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FIG. 3. Real-time evolution of fermions and links in the dipolar
molecular system to simulate the S = 1 QLM on three unit cells with
g2 = √

2w starting from a string of right-pointing electric fields at
(a) m = 0.25 × √

2w and (b) m = 2.0 × √
2w. Time is in units of

(
√

2w)−1. With a small mass (a), the string breaks (modulo finite size
effects [56]), reaching values close to zero on the hopping timescale,
resulting in two approximate mesons on the edges and approximate
vacuum in between. With a large mass (b), the string approximately
remains, with small fluctuations in densities. In (a) and (b), the
densities of the two sites and two links on the edges are fixed due to
the open boundary condition. (c) Electric fluxes summed over all dy-
namical links for both m = 0.25 × √

2w (blue) and m = 2.0 × √
2w

(orange). Solid and dashed lines relate to the DMH and QLM dy-
namics, respectively. (d) Top: Fidelity of the dipolar molecular wave
function versus the QLM wave function. Bottom: The effective gauge
invariance parameter G ≡ ∑

x |〈G̃x〉|/L [35] at two values of masses
in (a) and (b).

breaks on the hopping timescale. These results are consistent
with the estimated critical length Lc = 4m/g2 + 3 [35].

Gauss’s law is preserved to high accuracy [see Fig. 3(d)];
however, the fidelity of the DMH “simulator” drops from 1.0
to roughly 0.5 over 10–20 time units [in terms of (

√
2w)−1].

This infidelity comes almost entirely from the additional
gauge-invariant self-interaction terms that do not appear in
the QLM. These terms slightly modify the frequencies of
oscillations in the DMH and QLM dynamics, and thus have a
large influence on the fidelity at long times, but otherwise do
not alter the expected QLM phenomenology [see Fig. 3(c)].

While one approach to improving this fidelity is simply
adding the additional gauge-invariant terms to the target QLM
(as is done in Ref. [35]), we can suppress the additional
gauge-invariant terms and improve the fidelity by adjusting
the “long-short” distance ratios. In this work we use the value
of Vshort/Vlong = 1.53 ≈ 3.4 (see Fig. 3), which represents a
nonoptimal but more experimentally realistic compromise;
the parameters used in Fig. 3 already relate to hopping en-
ergies of

√
2w/h = 3.2 Hz for NaRb (3.3 D) and an assumed

minimum spacing of 0.5 μm.
We have investigated the effect of the long-short distance

ratio γ on fidelity. Figures 4 and 5 demonstrate the average
fidelity up to time t = 20(

√
2w)−1 at various long-short dis-

tance ratios for m = 0.25 × √
2w and m = 2.0 × √

2w. It is

FIG. 4. Average fidelity of the calculated DMH dynamics based
on the mapping to the S = 1 QLM, plotted versus the “long-short”
distance ratio γ used to mitigate the influence of “extra” gauge-
invariant terms. The plotted curves are for mass values of m =
0.25 × √

2w and m = 2.0 × √
2w. These represent the fidelity when

starting from the initial product state as in Fig. 3, comparing the
DMH-evolved state to the evolution under the ideal QLM, with
averaging over the time period 0 � t � 20 [with time in units of
(
√

2w)−1]. An initial rise in fidelity is seen for moderate ratios as
the “extra” gauge-invariant terms are suppressed, but it decreases for
larger ratios as higher-order terms become important.

shown that the fidelity is low for both small and large γ ,
while the optimal value is achieved at an intermediate ratio
between 2 and 3. For small long-short distance ratios, certain
second-order self-interactions at the order O(V 2

long/�) are not

FIG. 5. Effect of additional gauge-invariant terms generated by
the dipolar molecular system for simulation of the S = 1 QLM. This
figure considers the influence of these terms on the fidelity (when
comparing the DMH simulations to the ideal QLM) and the dynam-
ics of key physical observables. Fidelity versus time for (a) m =
0.25 × √

2w and (b) m = 2.0 × √
2w with various long-short dis-

tance ratios. The sum of electric fields for (c) m = 0.25 × √
2w and

(d) m = 2.0 × √
2w with various long-short distance ratios. For all

panels, time is in units of (
√

2w)−1. While the fidelity (as compared
to the ideal QLM) is strongly dependent on the ratio value, the
physical observations of string breaking in (c) and a fixed string with
small fluctuations in (d) are robust over a very large range of ratio
values.
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sufficiently suppressed, which results in a low fidelity. For
large long-short distance ratios, higher-order self-interaction
terms [such as fourth-order self-interactions, i.e., at the order
O(V 4

short/�
3), for the pair of molecules Sx and Lx sepa-

rated by a short distance] may become comparable to the
hopping parameter w ∼ O(VshortVlong/�) and are thus not
negligible. Therefore, the optimal choice of γ for fidelity
should balance the trade-off between suppressing second-
order self-interaction terms at the order O(V 2

long/�) and
avoiding high-order self-interactions, which is attained in the
intermediate ratio. The effect of long-short distance ratios is
further presented in Figs. 5(a) and 5(b) for real-time fidelity
changes.

The long-short distance ratios that provide the highest fi-
delity (as compared to the target QLM) may be less ideal from
a practical perspective, as they result in lower hopping pa-
rameters w for a fixed minimum separation of the molecules.
However, the reduction of the fidelity due to the extra gauge-
invariant terms in the S = 1 case does not necessarily preclude
the DMH dynamics from displaying the physical processes of
interest. In our case, at a suboptimal long-short distance ratio,
even though the fidelity may not be very high, the observed
phenomenology is not significantly altered by the extra gauge-
invariant terms. In Figs. 5(c) and 5(d), we compare the sum
of electric fluxes, an indicator of string breaking, over vari-
ous long-short distance ratios. Although different long-short
distance ratios have very different fidelities, they result in
similar string-breaking phenomena except for γ = 1.0. Qual-
itatively, at all of the ratios except for γ = 1.0, our results
at m = 0.25 × √

2w reveal string breaking while the results
at m = 2.0 × √

2w do not. This provides some evidence that
we may be able to choose suboptimal (in terms of fidelity
with respect to the ideal QLM) but experimentally favorable
parameters to explore the physics of interest through analog
simulation.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we propose an approach for simulating
quantum link models based on the restricted internal-state
dynamics of fixed dipolar spins. Our numerical tests of sim-
ple U(1) LGTs in 1 + 1 dimensions show that this approach
enables the experimental exploration of important dynamical
phenomena such as string inversion and string breaking. Fur-
ther directions are suggested by the present work, including
extensions to realizations of higher S values, non-Abelian
LGTs, quantum mechanical θ angles [57], and QLM dynam-
ics in higher dimensions [58]. Moreover, while our scheme
based on dipolar spin interactions is of relevance to a range
of systems, such as cold molecules and Rydberg atom arrays,
the potential reach could be greatly broadened by generalizing
this framework to generic spin systems, as realized by most
physical quantum information platforms.

Note added. We note that a recent experiment has reported
the analog simulation of S = 1/2 QLMs with scalar neutral
atoms in an optical superlattice [59].
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APPENDIX A: QUANTUM LINK MODELS

We start with the Hamiltonian for (1 + 1)-dimensional
U(1) LGT with staggered fermions in the temporal gauge,

HLGT = −w
∑

x

[ψ†
x Ux,x+1ψx+1 + ψ

†
x+1U

†
x,x+1ψx]

+ m
∑

x

(−1)xψ†
x ψx + g2

2

∑
x

E2
x,x+1. (A1)

The link variables Ux,x+1 = exp(iagAx,x+1) take continu-
ous values in the group U(1), where Ax,x+1 is the spatial
component of the U(1) gauge field and a is the lattice
spacing. The electric flux Ex,x+1 = −i 1

ag
∂

∂Ax,x+1
is propor-

tional to the canonical momentum of Ax,x+1 and can take
any integer values. Commutation relations for quantum op-
erators on a link are [Ux,x+1,U †

x,x+1] = 0, [Ex,x+1,Ux,x+1] =
Ux,x+1, and [Ex,x+1,U †

x,x+1] = −U †
x,x+1. In the QLM version

of this LGT, the first commutation relation is modified to
[Ux,x+1,U †

x,x+1] = 2Ex,x+1. In analogy with quantum angular

momentum operators, we can write Ux,x+1 = S+
x,x+1, U †

x,x+1 =
S−

x,x+1, and Ex,x+1 = S3
x,x+1, so that each link is in a spin-S

representation with S = 0, 1/2, 1, . . .. The Hamiltonians of
the QLM and the LGT look exactly the same, but the link
variables and the sizes of the Hilbert spaces are different. If the
number of sites on the lattice is finite, then the QLM Hilbert
space is finite whereas the LGT Hilbert space is infinite. The
physical Hilbert space of the QLM is defined through the
Gauss law G̃x|phys〉 = 0, with the Gauss-law operator defined
in the main text and |phys〉 any state in the physical Hilbert
space.

APPENDIX B: MOLECULAR DIPOLE-DIPOLE
INTERACTION

The molecular dipole-dipole interaction [31] is

V = 1

2

∑
i, j

∑
α,β,γ ,η

V α,β;γ ,η
i, j b†

i,γ b†
j,ηb j,βbi,α = 1

2

∑
i j

V̂i j, (B1)

where

V̂i j = 1

4πε0

d̂i · d̂ j − 3(d̂i · r̂i j )(d̂ j · r̂i j )

r3
i j

= −√
6

4πε0r3
i j

2∑
p=−2

(−1)pT 2
−p(C)T 2

p (d̂i, d̂ j ) (B2)

is the interaction between two molecules at positions ri and
r j , ri j ≡ ri − r j is the vector connecting these two molecules,
r̂i j = ri j/ri j is the directional vector, di is the dipole operator
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of molecule i, and d j is that of molecule j. The functions
T 2

−p(C) are proportional to spherical harmonics Y2,−p,

T 2
0 (C) = (3 cos2 θi j − 1)

2
= 2

√
π

5
Y2,0(θi j, φi j ), (B3)

T 2
±1(C) = ∓

√
3

2
e±iφi j sin θi j cos θi j

= 2

√
π

5
Y2,±1

(
θi j, φi j

)
, (B4)

T 2
±2(C) =

√
3

8
e±2iφi j sin2 θi j = 2

√
π

5
Y2,±2(θi j, φi j ), (B5)

where the polar and azimuthal angles θi j and φi j are measured
with respect to the quantization axis (which we assume to
be defined by the direction of a strong uniform magnetic
field in experiments with small or zero dc electric field). The
quantization axis does not specify a second direction so the
azimuthal angles φi j are defined only up to an overall offset.
T 2

p (d̂i, d̂ j ) are rank-2 tensor operators

T 2
0 (d̂i, d̂ j ) = 2√

6

[
d̂ i

0d̂ j
0 + d̂ i

+1d̂ j
−1 + d̂ i

−1d̂ j
+1

2

]
, (B6)

T 2
±1(d̂i, d̂ j ) = d̂ i

0d̂ j
±1 + d̂ i

±1d̂ j
0√

2
, (B7)

T 2
±2(d̂i, d̂ j ) = d̂ i

±1d̂ j
±1, (B8)

where d̂± = d̂x ± id̂y, d̂0 = d̂z, d̂±1 = ∓(d̂x ± id̂y)/
√

2,
d̂+1 = −d̂+/

√
2, d̂−1 = d̂−/

√
2. It is worth noting the minus

sign in the relation d̂†
+1 = −d̂−1.

The matrix elements of d̂q for a given molecule are

〈N ′, m′
N |d̂q|N, mN 〉

= d (−1)m′
N
√

(2N ′ + 1)(2N + 1)

×
(

N ′ 1 N
−m′

N q mN

)(
N ′ 1 N
0 0 0

)
, (B9)

where the parentheses are Wigner 3- j symbols and d is the
electric dipole moment of the molecule. Dipole selection rules
�N = N ′ − N = ±1 and �mN = m′

N − mN = 0,±1 are re-
quired to have a nonzero matrix element explicitly by the
second Wigner 3- j symbol.

We only consider N = 0 and N = 1 states. States with
N � 2 are naturally off resonant from the initialized config-
urations. We introduce in the main text the notation for these
four states |a〉 ≡ |0, 0〉, |b〉 ≡ |1,−1〉, |c〉 ≡ |1, 0〉, and |d〉 ≡
|1, 1〉 for each molecule. Without external electric fields,
magnetic fields, or laser fields, and ignoring internal nuclear
structures (i.e., only considering the rotational kinetic energy),
states |b〉, |c〉, and |d〉 of a single molecule are degenerate and
their energy is greater than the energy of |a〉 by 2hBrot, where
Brot is the rotational constant.

Single-molecule nonvanishing dipole matrix elements
within the four-state subspace stated above are

〈a|d̂+1|b〉 = 〈0, 0|d̂+1|1,−1〉 = − 1√
3

d, (B10)

〈a|d̂0|c〉 = 〈0, 0|d̂0|1, 0〉 = 1√
3

d, (B11)

〈a|d̂−1|d〉 = 〈0, 0|d̂−1|1,+1〉 = − 1√
3

d, (B12)

and their complex conjugates.
Nonzero matrix elements of the dipole-dipole interac-

tion between a pair of molecules in any combination of
single-molecule states can be easily calculated by multiplying
single-molecule matrix elements. Nonzero matrix elements
are

V a,a;b,b
i, j = (

V b,b;a,a
i, j

)∗ = − 1

4πε0r3
i, j

e2iφi, j sin2 θi, j
1

2
d2, (B13)

V a,a;c,c
i, j = (

V c,c;a,a
i, j

)∗ = − 1

4πε0r3
i, j

(3 cos2 θi, j − 1)
1

3
d2,

(B14)

V a,a;d,d
i, j = (

V d,d;a,a
i, j

)∗ = − 1

4πε0r3
i, j

e−2iφi, j sin2 θi, j
1

2
d2,

(B15)

V a,a;b,c
i, j = V a,a;c,b

i, j = (
V b,c;a,a

i, j

)∗ = (
V c,b;a,a

i, j

)∗

= − 1

4πε0r3
i, j

eiφi, j sin θi, j cos θi, j
1√
2

d2, (B16)

V a,a;b,d
i, j = V a,a;d,b

i, j = (
V b,d;a,a

i, j

)∗ = (
V d,b;a,a

i, j

)∗

= − 1

4πε0r3
i, j

(3 cos2 θi, j − 1)

2

1

3
d2, (B17)

V a,a;c,d
i, j = V a,a;d,c

i, j = (
V c,d;a,a

i, j

)∗ = (
V d,c;a,a

i, j

)∗

= 1

4πε0r3
i, j

e−iφi, j sin θi, j cos θi, j
1√
2

d2, (B18)

V a,b;b,a
i, j = V b,a;a,b

i, j = 1

4πε0r3
i, j

(3 cos2 θi, j − 1)

2

1

3
d2, (B19)

V a,c;c,a
i, j = V c,a;a,c

i, j = − 1

4πε0r3
i, j

(3 cos2 θi, j − 1)
1

3
d2, (B20)

V a,d;d,a
i, j = V d,a;a,d

i, j = 1

4πε0r3
i, j

(3 cos2 θi, j − 1)

2

1

3
d2, (B21)

V a,b;c,a
i, j = V b,a;a,c

i, j = (
V c,a;a,b

i, j

)∗ = (
V a,c;b,a

i, j

)∗

= − 1

4πε0r3
i, j

e−iφi, j sin θi, j cos θi, j
1√
2

d2, (B22)

V a,b;d,a
i, j = V b,a;a,d

i, j = (
V d,a;a,b

i, j

)∗ = (
V a,d;b,a

i, j

)∗

= 1

4πε0r3
i, j

e−2iφi, j sin2 θi, j
1

2
d2, (B23)

V a,c;d,a
i, j = V c,a;a,d

i, j = (
V d,a;a,c

i, j

)∗ = (
V a,d;c,a

i, j

)∗

= 1

4πε0r3
i, j

e−iφi, j sin θi, j cos θi, j
1√
2

d2. (B24)

APPENDIX C: MOLECULAR INTERNAL-STATE
ENERGIES AND THEIR EXPERIMENTAL CONTROL

The dipole-dipole interactions described in the previous
section provide the fundamental mechanism by which dy-
namics can proceed and by which the densities of various
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internal states can evolve in the considered system of molecu-
lar “spins” fixed in place. In the mapping to the QLM, this will
provide a mechanism for “fermions” (or “charges”) hopping,
as represented by spin excitations (i.e., hard-core bosons)
being exchanged between different fixed molecules.

Equally important to our proposed framework is the ability
to restrict these dipolar exchange processes in a controlled
way. Specifically, by imposing energetic constraints on the
various internal-state configurations of the molecules, we can
effectively impose gauge invariance or enforce Gauss’s law,
by only allowing processes that correlate the hopping of
fermions between “sites” with the modification of the spin
that resides on the intervening “link.” In this approach, such
energetic constraints are imposed directly on the molecules
through the single-particle terms (H0) of the DMH. These
energy terms εi,α of the DMH depend in general on both the
molecule position (labeled by the index i) and the internal ro-
tational level (denoted by α). First off, for typical experiments
on ultracold molecules operating at large magnetic fields (near
the field values used for magnetoassociation of the atomic
constituents), rotational-level-dependent energy terms arise
due to the weak coupling between molecular rotation and the
hyperfine (nuclear) degrees of freedom [30]. These naturally
arising shifts to the various rotational levels serve to break the
degeneracy of the N = 1 rotational manifold at the scale of
∼10−100 kHz, even in zero electric field. In addition to this,
the energies of the rotational levels can be modified globally
through the addition of weak dc electric fields or off-resonant
(and polarized) microwave fields. These can be used, e.g., for
the purpose of shifting particular rotational sublevels of the
N = 1 manifold by a large amount so as to decouple it from
near-resonant dipole-driven dynamics.

Finally, and most central to the proposed approach, spa-
tially resolved control of the internal-state energies can be
engineered by direct optical addressing, using level-dependent
ac Stark shifts to tune the internal-state energies. Such an
ability to locally address individual molecules arises naturally
in implementations based on microtrapped arrays [49], but
could also be achieved by projecting tailored laser patterns
onto lattice-trapped samples.

In the proposed scheme, the positions of all molecules are
fixed, and the total number of molecules as well as the total
number of molecules in the N = 0 rotational ground state, or
level |a〉, are conserved. As such, the full tuning of all rele-
vant configurations of molecules can be accomplished through
local and level-dependent control of the differential (with
respect to |a〉) ac Stark shift of the utilized N = 1 sublevels.
In general, molecules play host to a strongly anisotropic and
rotational level-dependent ac polarizability [48]. By control
of the local laser intensity and polarization (with respect to
the quantization axis, here assumed to be defined by a quan-
tization magnetic field), a large differential tuning of these
energies is available for almost any laser wavelength.

For a complete and general control, we consider addressing
the array of molecules with a control laser that is tuned near
a narrow optical transition from the molecular ground state
to a relatively long-lived electronic excited state. For com-
monly used bialkalis such as NaRb or KRb, this could for
example relate to transitions of the form |X 1�, ν = 0, N =
1, mN 〉 → |b 3�0+ , ν = 0, N = 0, mN = 0〉, characterized by

kilohertz-level linewidths [60–62]. In particular, for gigahertz-
scale detunings from such a transition, local control of laser
intensity and polarization would provide complete control
over all relevant differential rotational-level-dependent ener-
gies εi,α of the DMH, owing to dipole selection rules. Shifts
at the necessary scales (even up to megahertz order) can be
accommodated with modest optical powers in scenarios based
on local projection of tightly focused lasers. For alternative
realizations based on arrays of Rydberg atoms, we note that
the control of internal state-dependent energies via local state-
dependent ac Stark shifts has already been demonstrated [46].

The local detection of the various molecular internal states
could be accomplished, e.g., by mapping them onto different
atomic levels (in a reversal of the stimulated Raman adia-
batic passage process) followed by imaging of the atoms,
or alternatively by extensions of direct molecular detection
methods [63]. Similar capabilities will be equally critical to
the development of molecules as qubits or qudit architectures
for applications in quantum information science.

APPENDIX D: QUASIDEGENERATE EFFECTIVE
HAMILTONIANS

Before the construction of QLM Hamiltonians, we first
introduce the method of quasidegenerate effective Hamilto-
nians [51]. This method is a perturbative way of calculating
an effective Hamiltonian that will yield similar dynamics as
the original Hamiltonian H = H0 + V in a subspace α which
we are interested in. Eigenstates |m, α〉 ∈ α of H0 are given
by H0|m, α〉 = Emα|m, α〉. Emα for different m’s are nearly
degenerate and small variations are allowed. Eigenvalues of
eigenstates of H0 outside the subspace α are separated from
Emα . To second order, the matrix elements of the effective
Hamiltonian for α are

〈m, α|Hα
eff |n, α〉

= Emαδm,n + 〈m, α|V |n, α〉

+1

2

∑
l,γ �=α

〈m, α|V |l, γ 〉〈l, γ |V |n, α〉

×
[

1

Emα − Elγ
+ 1

Enα − Elγ

]
+ · · · , (D1)

where greek letters label subspaces and roman letters label
states.

In our case of realizing QLMs, α is chosen as the subspace
of DMHs that maps to the physical Hilbert space of QLMs.
There are no two-body interactions in the QLM Hamiltonian
so there should be no such terms in the effective Hamiltonian
either. We describe here how to suppress these terms in the
effective Hamiltonian. The dipole-dipole interaction decays
as a power law of r−3 but it exists even for two molecules
far away from each other. We choose parameters in Table II,
as explained below, such that only our wanted DMH states
are nearly degenerate and 〈i, α|V | j, α〉 always vanishes. In
addition, for the two molecules extremely far away from each
other such that their dipole-dipole interaction is much smaller
than w, m, and g2, then their dipole-dipole interaction can be
neglected and the requirement of energy separations can be
loosened in this case.
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TABLE II. Energy conditions for the nth unit cell in the S = 1/2 QLM, n = 0, 1, 2, . . .. The other molecule states not listed are made off
resonant. B is the molecule’s rotational constant and h is Planck’s constant.

Molecule state energy Value

εS2n+1,a −m − �S2n+1,a;L2n+1,b − �L2n+2,b;S2n+3,a

εS2n+1,b 2hB + δ1,n

εL2n+1,a 0
εL2n+1,1/2 (εL2n+1,d ) 2hB + �1,n + g2/2

−�S2n+1,a;L2n+1,d − �L2n+2,d;S2n+3,a + �S2n+1,a;L2n+1,b + �L2n+2,b;S2n+3,a

εL2n+1,−1/2 (εL2n+1,b) 2hB + �1,n + (δ2,n − δ1,n) + g2/2
εS2n+2,a m − �L2n+1,b;S2n+2,a − �S2n+2,a;L2n+2,d

εS2n+2,b 2hB + δ2,n

εL2n+2,a 0
εL2n+2,1/2 (εL2n+2,d ) 2hB + �2,n + g2/2
εL2n+2,−1/2 (εL2n+2,b) 2hB + �2,n + (δ1,n+1 − δ2,n) + g2/2

APPENDIX E: CONSTRUCTION OF FERMIONS FROM
HARD-CORE BOSONS

We map the fermion operators in QLMs to spin operators
through a Jordan-Wigner transformation, which will be fur-
ther related to the hard-core boson operators in the DMH.

According to the mapping between fermion site states and
dipolar molecule states in Table I in the main text for both spin
1/2 and spin 1, the occupied fermion site is always mapped
to |a〉 while the unoccupied fermion site is mapped to either
|b〉 or |c〉. In our setup, each “fermion” site in the DMH is
either occupied or unoccupied. Namely, b†

x,abx,a + b†
x,↓bx,↓ =

1, where ↓= b or c. In this situation, each molecule is a two-
level system and analogous to spin 1/2.

Since the internal-state excitations of dipolar molecules
can be described as hard-core bosons, in one spatial dimen-
sion a Jordan-Wigner transformation can map the hard-core
boson states to the fermion states while preserving the locality
of local operators. The Jordan-Wigner transformation takes
fermion operators to spin-1/2 operators, ψ†

x

∏x−1
β=1 eiπψ

†
βψβ =

S+
x , ψx

∏x−1
β=1 e−iπψ

†
βψβ = S−

x . As a result, ψ†
x ψx = S3

x + 1/2
and ψ†

x ψx+1 = S+
x S−

x+1. The spin-1/2 operators mentioned
above, S+

x , S−
x , and S3

x , have no relation with the spin operators
on quantum links. Similarly, they are not to be confused with
the actual site identifiers of the form Sx and Sx+1 as introduced
in the main text.

Finally, we have relations between spin operators and hard-
core bosonic operators in the DMH, which are S+

x = b†
x,abx,↓,

S−
x = b†

x,↓bx,a, and S3
x = (b†

x,abx,a − b†
x,↓bx,↓)/2. They give

rise to ψ†
x ψx = S3

x + 1/2 = (b†
x,abx,a − b†

x,↓b†
x,↓ + 1)/2 and

ψ†
x ψx+1 = b†

x,abx,↓b†
x+1,↓bx+1,a.

APPENDIX F: CONSTRUCTION OF THE S = 1/2 QLM
HAMILTONIAN

For the S = 1/2 QLM, the link operators can be mapped
to hard-core bosonic operators as follows: Ux,x+1 = S+

x,x+1 =
b†

(x,x+1),d b(x,x+1),b, U †
x,x+1 = S−

x,x+1 = b†
(x,x+1),bb(x,x+1),d , and

Ex,x+1 = S3
x,x+1 = (b†

(x,x+1),d b(x,x+1),d − b†
(x,x+1),bb(x,x+1),b)/2.

With the mappings given above, the S = 1/2 QLM
Hamiltonian can be written in the dipolar molecular operators

as

H = −w
∑

x

[b†
x,abx,bb†

(x,x+1),d b(x,x+1),bb†
x+1,bbx+1,a + H.c.]

+m
∑

x

(−1)x 1

2
(b†

x,abx,a− b†
x,bbx,b + 1) + g2

2

∑
x

1

4
, (F1)

where the last term is a constant and can be discarded.
The hopping process |a〉Sx |d〉Lx |b〉Sx+1

virtual−−−→
|b〉Sx |a〉Lx |b〉Sx+1

virtual−−−→ |b〉Sx |b〉Lx |a〉Sx+1 described in the
main text (where |b〉Sx |a〉Lx |b〉Sx+1 is a virtual intermediary) is
illustrated schematically in Fig. 6.

We choose εi,α introduced in Eq. (2) in the main text as
shown in Table II for the nth unit cell. �1,n, �2,n, δ1,n, and
δ2,n for any n are at the order of � mentioned in the main text
and are specified in numerical simulations.

For a molecule in the N = 0 (|a〉) state and another
molecule in an N = 1 state, there are self-interactions to sec-
ond order, a virtual process in which a state first hops to
an intermediate state and then hops back to the initial state.
This type of self-interaction always exists in principle for
such pairs of molecules, no matter how far they are from
each other in space, although the self-interaction decays as
r−6. If the distance between the two molecules is far away

FIG. 6. Schematic hopping on Sx , Lx , and Sx+1 through a vir-
tual intermediate molecular configuration. The QLM states and the
molecular levels are shown together for the initial and final con-
figurations, respectively. The key hopping process of the QLM is
achieved through a second-order dipolar exchange process, where
the correlation between matter hopping and the changes to the link
spin (Gauss’s law) is imposed through energetic constraints.
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enough such that the self-interaction is much smaller than
relevant energy scales in the QLM, w, m, and g2, then those
self-interactions can be neglected. For the S = 1/2 QLM, we
use a molecular chain with roughly uniform spacing between
adjacent molecules (within the order of magnitude), which is
specified later in the numerical details. The second-order self-
interaction between next-nearest molecules (such as S1 and
S2) is about w/26 = w/64 � w because of the r−6 scaling.
Therefore, we can safely neglect self-interactions between
next-nearest molecules and those between two molecules that
are even farther apart. We only consider self-interactions be-
tween the nearest molecules (such as S1 and L1) which are at
the order of w.

Self-interactions between molecule i with internal state α

and molecule j with internal state β can be denoted as

�i,α; j,β n̂i,α n̂ j,β , (F2)

where

�i,α; j,β =
∑
γ �= α

η �= β

V α,β;γ ,η

i, j V γ ,η;α,β

i, j

1

εi,α + ε j,β − εi,γ − ε j,η

=
∑
γ �= α

η �= β

∣∣V α,β;γ ,η

i, j

∣∣2 1

εi,α + ε j,β − εi,γ − ε j,η
(F3)

is the coefficient. From the dipole selection rule, �i,α; j,β = 0
if both α and β are from N = 1, or both are from N = 0.
For our purpose, �i,α; j,β only needs to be precise at the
order of O(V 2/�) and any higher orders can be neglected.
Therefore, in calculating the denominator in Eq. (F3), εi,α +
ε j,β − εi,γ − ε j,η, corrections at the order of m, g2, � � �

can be neglected, since these corrections when propagated to
Eq. (F3) are at most at the order of O(V 3/�2). Note that we
are interested in regions of parameter space where m, g2, and
w are comparable, and also � ∼ O(w).

We explain in detail how to suppress the nearest self-
interaction for S = 1/2. The nearest self-interactions for S =
1/2 are products of two number operators, as is shown in
Eq. (F3). These products of number operators, in the physical
Hilbert space, can be rewritten into one-body terms which are
just single number operators using the Gauss law. Single num-
ber operators are one-body potentials and we can compensate
them by adding laser light potentials of the opposite values.

The Gauss law on the site S2n+2, written in terms of
molecule number operators, is

n̂S2n+2,a − n̂L2n+2,d + n̂L2n+1,d = 0, (F4)

where we have used constraints on each molecular position:

n̂S2n+2,a + n̂S2n+2,b = 1, (F5)

n̂L2n+1,b + n̂L2n+1,d = 1, (F6)

n̂L2n+2,b + n̂L2n+2,d = 1. (F7)

We can simplify the two-body interaction terms to one-body
potentials by using these constraints on number operators.
From the Gauss law,

n̂S2n+2,a − n̂L2n+2,d = −n̂L2n+1,d , (F8)

we square it:

n̂2
S2n+2,a + n̂2

L2n+2,d − 2n̂S2n+2,an̂L2n+2,d = n̂2
L2n+1,d . (F9)

Because n̂2
i,α = n̂i,α for hard-core bosonic states,

n̂S2n+2,a + n̂L2n+2,d − 2n̂S2n+2,an̂L2n+2,d = n̂L2n+1,d , (F10)

and we arrive at

n̂S2n+2,an̂L2n+2,d = n̂S2n+2,a. (F11)

Similarly,

n̂S2n+2,an̂L2n+1,d = 0, (F12)

n̂S2n+2,an̂L2n+2,b = 0, (F13)

n̂S2n+2,an̂L2n+1,b = n̂S2n+2,a. (F14)

The Gauss law on the site S2n+1, written in terms of
molecule number operators, is

n̂S2n+1,a − n̂L2n+1,d + n̂L2n,d = 1, (F15)

where we have used constraints on each molecular position

n̂S2n+1,a + n̂S2n+1,b = 1, (F16)

n̂L2n+1,b + n̂L2n+1,d = 1, (F17)

n̂L2n,b + n̂L2n,d = 1. (F18)

We can derive that

n̂S2n+1,an̂L2n+1,d = n̂L2n+1,d , (F19)

n̂S2n+1,an̂L2n,d = n̂L2n,d , (F20)

n̂S2n+1,an̂L2n+1,b = n̂S2n+1,a − n̂L2n+1,d , (F21)

n̂S2n+1,an̂L2n,b = n̂S2n+1,a − n̂L2n,d . (F22)

The left-hand sides of Eqs. (F11)–(F14) and Eqs. (F19)–(F22)
are the only possible combinations of two number operators
with nonzero second-order self-interactions. The right-hand
sides of Eqs. (F11)–(F14) and Eqs. (F19)–(F22) show that the
effects of self-interactions are equivalent to one-body terms.
These one-body terms from self-interactions are not in the
original QLM Hamiltonian, so we want to compensate for
them by using laser lights to introduce one-body terms with
opposite values.

To know what values should be used to compensate for
the self-interactions, we need to calculate �i,α; j,β . With the
general form in Eq. (F3), we can plug values of V α,β;γ ,η

i, j and
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εi,α to obtain all of the nearest self-interaction coefficients as follows:

�L2n+1,b;S2n+2,a = V b,a;a,b
L2n+1,S2n+2

V a,b;b,a
L2n+1,S2n+2

1

�1,n − δ1,n
=

[
1

4πε0r3
L2n+1,S2n+2

(3 cos2 θL2n+1,S2n+2 − 1)

2

1

3
d2

]2
1

�1,n − δ1,n
, (F23)

�S2n+2,a;L2n+2,d = V a,d;b,a
S2n+2,L2n+2

V b,a;a,d
S2n+2,L2n+2

1

�2,n − δ2,n
=

[
1

4πε0r3
S2n+2,L2n+2

sin2 θS2n+2,L2n+2

1

2
d2

]2
1

�2,n − δ2,n
, (F24)

�S2n+1,a;L2n+1,d = V a,d;b,a
S2n+1,L2n+1

V b,a;a,d
S2n+1,L2n+1

1

�1,n − δ1,n
=

[
1

4πε0r3
S2n+1,L2n+1

sin2 θS2n+1,L2n+1

1

2
d2

]2
1

�1,n − δ1,n
, (F25)

�L2n+2,d;S2n+3,a = V d,a;a,b
L2n+2,S2n+3

V a,b;d,a
L2n+2,S2n+3

1

�2,n − δ1,n+1
=

[
1

4πε0r3
L2n+2,S2n+3

sin2 θL2n+2,S2n+3

1

2
d2

]2
1

�2,n − δ1,n+1
, (F26)

�S2n+1,a;L2n+1,b = V a,b;b,a
S2n+1,L2n+1

V b,a;a,b
S2n+1,L2n+1

1

�1,n + δ2,n − 2δ1,n
=

[
1

4πε0r3
S2n+1,L2n+1

(
3 cos2 θS2n+1,L2n+1 − 1

)
2

1

3
d2

]2
1

�1,n + δ2,n − 2δ1,n
,

(F27)

�L2n+2,b;S2n+3,a = V b,a;a,b
L2n+2,S2n+3

V a,b;b,a
L2n+2,S2n+3

1

�2,n − δ2,n
=

[
1

4πε0r3
L2n+2,S2n+3

(
3 cos2 θL2n+2,S2n+3 − 1

)
2

1

3
d2

]2
1

�2,n − δ2,n
. (F28)

APPENDIX G: CONSTRUCTION OF THE S = 1 QLM HAMILTONIAN

The S = 1 quantum link model is

H = −w
∑

x

[b†
x,abx,cS+

x,x+1b†
x+1,cbx+1,a + b†

x+1,abx+1,cS−
x,x+1b†

x,cbx,a]

+ m
∑

x

(−1)x 1

2
(b†

x,abx,a − b†
x,cb†

x,c + 1) + g2

2

∑
x

(
S3

x,x+1

)2

= −w
∑

x

√
2[b†

x,abx,c(b†
(x,x+1),cb(x,x+1),b + b†

(x,x+1),bb(x,x+1),d )b†
x+1,cbx+1,a

+ b†
x+1,abx+1,c(b†

(x,x+1),bb(x,x+1),c + b†
(x,x+1),d b(x,x+1),b)b†

x,cbx,a]

+ m
∑

x

(−1)x 1

2
(b†

x,abx,a − b†
x,cb†

x,c + 1) + g2

2

∑
x

(b†
(x,x+1),cb(x,x+1),c − b†

(x,x+1),d b(x,x+1),d )2, (G1)

where the S = 1 spin operators are

S+
x,x+1 =

√
2(b†

(x,x+1),cb(x,x+1),b + b†
(x,x+1),bb(x,x+1),d ), (G2)

S−
x,x+1 =

√
2(b†

(x,x+1),bb(x,x+1),c + b†
(x,x+1),d b(x,x+1),b), (G3)

S3
x,x+1 = b†

(x,x+1),cb(x,x+1),c − b†
(x,x+1),d b(x,x+1),d . (G4)

The energy conditions are listed in Table III. Similar to S = 1/2, �1,n, �2,n, δ1,n, δ2,n for any n are at the order of � mentioned
in the main text and are specified in numerical simulations.

The nearest-neighbor self-interactions with two number operators from the second-order effective Hamiltonian are the total
sum of the following terms:

�S2n+1,a;L2n+1,cn̂S2n+1,an̂L2n+1,c + �S2n+1,a;L2n+1,bn̂S2n+1,an̂L2n+1,b + �S2n+1,a;L2n+1,d n̂S2n+1,an̂L2n+1,d

= (
�S2n+1,a;L2n+1,c − 2�S2n+1,a;L2n+1,b + �S2n+1,a;L2n+1,d

)
n̂S2n+1,an̂L2n+1,c

+(
�S2n+1,a;L2n+1,d − �S2n+1,a;L2n+1,b

)( − n̂L2n+1,c + n̂L2n,d
) + �S2n+1,a;L2n+1,bn̂S2n+1,a, (G5)

�S2n+1,a;L2n,cn̂S2n+1,an̂L2n,c + �S2n+1,a;L2n,bn̂S2n+1,an̂L2n,b + �S2n+1,a;L2n,d n̂S2n+1,an̂L2n,d

= (
�S2n+1,a;L2n,c − 2tS2n+1,a;L2n,b + �S2n+1,a;L2n,d

)
n̂S2n+1,an̂L2n,c

+(
�S2n+1,a;L2n,d − �S2n+1,a;L2n,b

)( − n̂L2n+1,c + n̂L2n,d
) + �S2n+1,a;L2n,bn̂S2n+1,a, (G6)
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TABLE III. Energy conditions for the nth unit cell the S = 1 QLM, n = 0, 1, 2, . . .. The other molecule states not listed are made off
resonant. B is the molecule’s rotational constant and h is Planck’s constant.

Molecule state energy Value

εS2n+1,a −m − �S2n+1,a;L2n+1,b

εS2n+1c 2hB + δ1,n

εL2n+1,a 0
εL2n+1,+1 (εL2n+1,c) 2hB + �1,n − (δ2,n − δ1,n) + g2/2

+�S2n+1,a;L2n+1,d − �S2n+1,a;L2n+1,b − �S2n+2,a;L2n+2,d + �S2n+2,a;L2n+2,b

εL2n+1,0 (εL2n+1,b) 2hB + �1,n

εL2n+1,−1 (εL2n+1,d ) 2hB + �1,n + (δ2,n − δ1,n) + g2/2
εS2n+2,a m
εS2n+2,c 2hB + δ2,n

εL2n+2,a �S2n+2,a;L2n+2,b

εL2n+2,+1 (εL2n+2,c) 2hB + �2,n − (δ1,n+1 − δ2,n) + g2/2 + �S2n+2,a;L2n+2,d − �S2n+2,a;L2n+2,b

εL2n+2,0 (εL2n+2,b) 2hB + �2,n

εL2n+2,−1 (εL2n+2,d ) 2hB + �2,n + (δ1,n+1 − δ2,n) + g2/2 − �S2n+3,a;L2n+3,d + �S2n+3,a;L2n+3,b

�S2n+2,a;L2n+1,cn̂S2n+2,an̂L2n+1,c + �S2n+2,a;L2n+1,bn̂S2n+2,an̂L2n+1,b + �S2n+2,a;L2n+1,d n̂S2n+2,an̂L2n+1,d

= (
�S2n+2,a;L2n+1,c − 2�S2n+2,a;L2n+1,b + �S2n+2,a;L2n+1,d

)
n̂S2n+2,an̂L2n+1,c

+ (
�S2n+2,a;L2n+1,d − �S2n+2,a;L2n+1,b

)(
n̂L2n+1,d − n̂L2n+2,d

) + �S2n+2,a;L2n+1,bn̂S2n+2,a, (G7)

�S2n+2,a;L2n+2,cn̂S2n+2,an̂L2n+2,c + �S2n+2,a;L2n+2,bn̂S2n+2,an̂L2n+2,b + �S2n+2,a;L2n+2,d n̂S2n+2,an̂L2n+2,d

= (
�S2n+2,a;L2n+2,c − 2�S2n+2,a;L2n+2,b + �S2n+2,a;L2n+2,d

)
n̂S2n+2,an̂L2n+2,c

+(
�S2n+2,a;L2n+2,d − �S2n+2,a;L2n+2,b

)( − n̂L2n+2,c + n̂L2n+1,c
) + �S2n+2,a;L2n+2,bn̂S2n+2,a, (G8)

where the Gauss law and other molecular number constraints are already used.
We want the coefficients in front of the two-number operators to vanish, so there are four independent equations for each unit

cell generated from this, shown as follows:

�S2n+1,a;L2n+1,c − 2�S2n+1,a;L2n+1,b + �S2n+1,a;L2n+1,d = 0, (G9)

�S2n+1,a;L2n,c − 2�S2n+1,a;L2n,b + �S2n+1,a;L2n,d = 0, (G10)

�S2n+2,a;L2n+1,c − 2�S2n+2,a;L2n+1,b + �S2n+2,a;L2n+1,d = 0, (G11)

�S2n+2,a;L2n+2,c − 2�S2n+2,a;L2n+2,b + �S2n+2,a;L2n+2,d = 0. (G12)

Equations (G9)–(G12) are overdetermined as equations for distances r’s, energy parameters δ’s and �’s, and the angle θ ’s.
As is explained in the main text, we have introduced nonequal intermolecular separations such that the self-interactions for
molecular pairs Lx and Sx+1 are negligible. Therefore, Eqs. (G10) and (G11) are no longer needed. The remaining equations are
underdetermined. Equations (G9) and (G12) with �’s plugged in are

1

�1,n − δ2,n

∣∣∣∣∣− 1

4πε0r3
S2n+1,L2n+1

(
3 cos2 θS2n+1,L2n+1 − 1

)1

3
d2

∣∣∣∣∣
2

−2
1

�1,n − δ1,n

∣∣∣∣∣− 1

4πε0r3
S2n+1,L2n+1

e−iφS1 ,L1 sin θS2n+1,L2n+1 cos θS2n+1,L2n+1

1√
2

d2

∣∣∣∣∣
2

+ 1

�1,n + δ2,n − 2δ1,n

∣∣∣∣∣ 1

4πε0r3
S2n+1,L2n+1

e−iφS2n+1 ,L2n+1 sin θS2n+1,L2n+1 cos θS2n+1,L2n+1

1√
2

d2

∣∣∣∣∣
2

= 0, (G13)

1

�2,n − δ1,n+1

∣∣∣∣− 1

4πε0r3
S2,n;L2,n

(
3 cos2 θS2,n;L2,n − 1

)1

3
d2

∣∣∣∣2

−2
1

�2,n − δ2,n

∣∣∣∣− 1

4πε0r3
S2,n;L2,n

e−iφS2 ,n;L2 ,n sin θS2,n;L2,n cos θS2,n;L2,n
1√
2

d2

∣∣∣∣2
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+ 1

�2,n + δ1,n+1 − 2δ2,n

∣∣∣∣ 1

4πε0r3
S2,n;L2,n

e−iφS2 ,n;L2 ,n sin θS2,n;L2,n cos θS2,n;L2,n
1√
2

d2

∣∣∣∣2

= 0. (G14)

After a bit of algebra from the equations, we obtain the constraints

�1,n = 1

2
(3δ1,n − δ2,n), (G15)

�2,n = 1

2
(3δ2,n − δ1,n+1). (G16)

From further calculation, there are constraints on angles

1√
2

∣∣ sin θS2n+1,L2n+1 cos θS2n+1,L2n+1

∣∣ = 1

3

∣∣∣∣3 cos2 θS2n+1,L2n+1 − 1

3

∣∣∣∣, (G17)

1√
2

∣∣ sin θS2n+2,L2n+2 cos θS2n+2,L2n+2

∣∣ = 1

3

∣∣∣∣3 cos2 θS2n+2,L2n+2 − 1

3

∣∣∣∣, (G18)

which gives

cos2 θS2n+1,L2n+1 = 0.0220216 or 0.917372, (G19)

cos2 θS2n+2,L2n+2 = 0.0220216 or 0.917372. (G20)

In addition to the solutions above, we also need to impose the condition that tunneling amplitudes −√
2w at all positions should

be equal, which yields some constraints on the distances r and angles θ . In principle, the chain can be a zigzag. However, in our
scheme, we specifically set the chain of molecules to be a straight line. Namely, all of the angles θ are the same.

APPENDIX H: DETAILS ON NUMERICAL METHODS
AND SIMULATION

We have implemented the exact diagonalization (ED)
method to simulate the time evolution of QLMs and the DMH
for three unit cells. This section provides the details for the
numerical algorithm and the choices of parameters in the
simulation.

1. Construction of the Hilbert spaces

For QLMs, each unit cell has two sites and links S2n+1,
L2n+1, S2n+2, and L2n+2 where each site has two degrees of
freedom and each link has 2S + 1 degrees of freedom for
spin S. Therefore, for N unit cells (n = 0, 1, . . . , N − 1), the
Hilbert space should have the dimension (4S + 2)2N . For the
DMH, each unit cell has four molecules and each molecule
has four degrees of freedom. It follows that for N unit cells,
the dimension of the Hilbert space is 28N . It is clear that the
DMH Hilbert space dimension is the bottleneck of the ED
method when N is large.

To implement the ED method, we need to reduce the di-
mensionality of both the DMH and QLM Hilbert spaces while
preserving the accuracy of the simulation. To achieve that, we
utilize symmetries and quantum numbers in both the DMH
and the QLM Hamiltonian. Because of the dipole selection
rules and the large value of B, the number of molecules at
the state a is exactly conserved and thus a good quantum
number. In addition, we can make certain states off resonant
by tuning the laser light. For S = 1/2, states c, d on fermion
sites and the state c on link sites are off resonant while for
S = 1, states b, d on fermion sites are off resonant. Therefore,
those states will be excluded when we construct the DMH
Hilbert space. Since the last link L2N never changes its state in
QLMs due to open boundary conditions, we fix the state of the
molecule which represents L2N to its initial state throughout

the simulation for DMH. For the QLM Hamiltonian, the total
number of fermions is conserved and we can use this fact to
reduce the dimensionality of the QLM Hilbert space. Similar
to the DMH, the state of the last link L2N is fixed.

According to the above construction of the DMH and QLM
Hamiltonian, the DMH Hilbert space is larger than the QLM
Hilbert space. The QLM wave function can be embedded
into the DMH Hilbert space while the DMH wave function
needs to be truncated when it is projected onto the QLM
Hilbert space, where the mapping is provided in Table I in
the main text. In this paper, fidelity is computed with the
embedded QLM wave function in the DMH Hilbert space and
DMH observables are computed with the DMH wave function
which is projected onto the QLM Hilbert space. Since our
constructed QLM Hilbert space, onto which the DMH wave
function is projected, is larger than the physical QLM Hilbert
space, we will be able to see slight Gauss-law violation in
DMH simulations. In experiments, to measure the Gauss law,
one can postselect the measurement outcomes of the DMH
from our constructed QLM Hilbert space. The Gauss-law
plots presented in the main text are computed in the same way.

2. Choices of distances and energy conditions

The assumed minimum molecule spacing in experiments
is 0.5 μm. In this section, all of the energies are divided
by Planck’s constant h and are thus in units of hertz. With
the following specified intermolecular distances and energy
conditions, hopping parameters are w = 82.7 Hz for S = 1/2
and w = 3.17 Hz for S = 1. We note that these choices have
yielded decent fidelity overlap with the QLM dynamics (ex-
cluding the influence of the “extra” gauge-invariant terms in
the S = 1 case), and larger hopping energies can be achieved
if sources of dephasing, decoherence, or parameter control
disorder serve as practical limitations.
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TABLE IV. Energy conditions used in simulations for the nth unit cell in the S = 1/2 QLM, n = 0, 1, 2, . . .. The other molecule states not
listed are made off resonant. B is the molecule’s rotational constant and h is Planck’s constant.

Molecule state energy Value

εS2n+1,a −m − �S2n+1,a;L2n+1,b − �L2n+2,b;S2n+3,a

εS2n+1,b 2hB + δ1,n

εL2n+1,a 0
εL2n+1,d 2hB + (3δ1,n/2 − δ2,n/2) + g2/2

−�S2n+1,a;L2n+1,d − �L2n+2,d;S2n+3,a + �S2n+1,a;L2n+1,b + �L2n+2,b;S2n+3,a

εL2n+1,b 2hB + (δ2,n/2 + δ1,n/2) + g2/2
εS2n+2,a m − �L2n+1,b;S2n+2,a − �S2n+2,a;L2n+2,d

εS2n+2,b 2hB + δ2,n

εL2n+2,a 0
εL2n+2,d 2hB + (3δ2,n/2 − δ1,n+1/2) + g2/2
εS2n+2,b 2hB + (δ1,n+1/2 + δ2,n/2) + g2/2

Since the energy conditions of �1,n and �2,n for S = 1/2
are flexible, for a particular realization of energy conditions
for S = 1/2, Eqs. (G15) and (G16) for S = 1 are also appli-
cable and can be substituted into Table II, which gives rise to
Table IV. For S = 1, Eqs. (G15) and (G16) are substituted into
Table III to obtain Table V.

For both S = 1/2 and S = 1, we construct two arithmetic
sequences δ1,n, δ2,n by δ2,n = δ1,n − D1 and δ1,n+1 = δ2,n −
D2 to avoid accidental energy degeneracy between two states
in different unit cells and thus suppress the first-order interac-
tions in the effective Hamiltonian. We define V0 ≡ 1

4πε0r3
S1 ,L1

d2,

where d is the electric dipole moment of one molecule. For
S = 1/2, we choose δ1,0 = 25V0, D1 = 20V0, D2 = 140V0,
and B = 1000V0. For S = 1, we use δ1,0 = 12.5V0, D1 =
10V0, D2 = 70V0, and B = 1000V0. As explained earlier, the
experimental value of B should be much higher than any
other relevant energy scales in the experiment, so the number
of |a〉 states is an effectively conserved quantity. With this
conservation, the value of B = 1000V0 used in the numerical
simulation will produce the same result as greater B values.

For S = 1/2, in the main text,

−w = 1

2
V b,a;a,d

Sx,Lx
V b,a;a,b

Lx,Sx+1

[
1

�ε1,x
+ 1

�ε2,x

]
, (H1)

with �ε1,x = εSx,a + εLx,d − εSx,b − εLx,a and �ε2,x = εLx,b +
εSx+1,a − εLx,a − εSx+1,b. �ε1,x and �ε2,x have been specified
by energy conditions. The right-hand sides of Eq. (H1) at
different x’s are required to be the same because the hopping
parameter w does not depend on x. In order to achieve that, we
need to alter the dipole-dipole interactions by tuning the inter-
molecular distances. Similar tuning needs to be done for S =
1 as well for the same reason. In particular, for both S = 1/2
and S = 1, we set the relative distance ratios as rS2n+1,L2n+1 =
rS1,L1 , rL2n+1,S2n+2 = γ rS1,L1 , rS2n+2,L2n+2 = βrS1,L1 , rL2n+2;S2n+3 =
βγ rS1,L1 for every n, where β = (D1/D2)1/6 ≈ 0.723 is fixed
by energy conditions and γ is defined as a variable long-short
distance ratio greater than or equal to one, mentioned in the
main text. rS2n+2,L2n+2 are the smallest intermolecular distances,
which we assume can be set to 0.5 μm in an envisioned exper-
iment which corresponds to rS1,L1 = 0.692 μm. The θ angles
for all positions are set to be the same with all the molecules
on a line. For S = 1/2, we choose cos θ = 0. For S = 1, from
Eqs. (G19) and (G20), we choose cos θ = 0.14840. The φ

angles are all the same with a line of molecules and are
set to zero for both S = 1/2 and S = 1. They are further-
more irrelevant for one-dimensional models with only local
hopping terms. The body-frame electric dipole moment of
the ground-state NaRb molecule is d = 3.3 D (debye) [64].

TABLE V. Energy conditions used in simulations for the nth unit cell the S = 1 QLM, n = 0, 1, 2, . . .. The other molecule states not listed
are made off resonant. B is the molecule’s rotational constant and h is Planck’s constant.

Molecule state energy Value

εS2n+1,a −m − �S2n+1,a;L2n+1,b

εS2n+1,c 2hB + δ1,n

εL2n+1,a 0
εL2n+1,c 2hB + (5δ1,n/2 − 3δ2,n/2) + g2/2

+�S2n+1,a;L2n+1,d − �S2n+1,a;L2n+1,b − �S2n+2,a;L2n+2,d + �S2n+2,a;L2n+2,b

εL2n+1,b 2hB + (3δ1,n/2 − δ2,n/2)
εL2n+1,d 2hB + (δ1,n/2 + δ2,n/2) + g2/2
εS2n+2,a m
εS2n+1,c 2hB + δ2,n

εS2n+2,a �S2n+2,a;L2n+2,b

εS2n+2,c 2hB + (5δ2,n/2 − 3δ1,n+1/2) + g2/2 + �S2n+2,a;L2n+2,d − �S2n+2,a;L2n+2,b

εS2n+2,b 2hB + (3δ2,n/2 − δ1,n+1/2)
εS2n+2,d 2hB + (δ2,n/2 + δ1,n/2) + g2/2 − �S2n+3,a;L2n+3,d + �S2n+3,a;L2n+3,b
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In the considered experimental setup, V0 = 4.96 kHz when
rS1,L1 = 0.692 μm.

In the following, we compute the hopping parameter w

with the above energy conditions and with experimentally
reasonable parameters. For S = 1/2, we set γ = 1. Since w

is the same for every position, we can just compute its value
at one position,

−w =
(

δ1,n − δ2,n

2

)−1

V b,a;a,d
S1L1

V b,a;a,b
L1S2

= 1

δ1,n − δ2,n
V 2

0 sin2 θ
3 cos2 θ − 1

6
, (H2)

where as described we have chosen δ1,n − δ2,n = D1. From
our chosen parameters, it follows that w = V0/120 =
41.3 Hz. For S = 1, we calculate

−
√

2w =
(

3(δ1,n − δ2,n)

2

)−1(
− 1

4πε0r3
S1,L1

d2 3 cos2 θ − 1

3

)
×

(
− 1

4πε0r3
L1;S2

d2 1√
2

sin θ cos θ

)

= −
(

3D1

2

)−1 V 2
0

γ 3

1

3
√

2
(3 cos2 θ − 1) sin θ cos θ

= 0.000638V0. (H3)

We choose the long-short distance ratio γ = 1.5 in the main
text. From our chosen parameters, it follows that

√
2w =

3.17 Hz. We note that this rather small energy scale may
be practically challenged by both dephasing and parameter
control disorder, and larger values can be achieved by relaxing
some of the assumed energy constraint conditions.

3. Symmetries exhibited by densities in QLM simulations

Here we remark that there are certain symmetries and
conserved quantities explicitly exhibited in QLM simulations
starting with our prepared initial states. For the S = 1/2 QLM,
the dynamic of the density on each site or link is invariant
under the change of mass from m to −m. In QLMs with open
boundary conditions for any S, there exists a CP symmetry
manifested by dynamical densities as well.

The Hamiltonian of the S = 1/2 QLM is

H = Hhopping + Hmass

= −w
∑

x

[ψ†
x Ux,x+1ψx+1 + H.c.]

+ m
∑

x

(−1)xψ†
x ψx, (H4)

where Hhopping is the fermion hopping term, Hmass is the
fermion mass term, and we have discarded the constant elec-
tric flux energy term. The Hamiltonian with an opposite mass
term is denoted as

H ′ = Hhopping − Hmass

= −w
∑

x

[ψ†
x Ux,x+1ψx+1 + H.c.]

− m
∑

x

(−1)xψ†
x ψx. (H5)

In discussing the inversion symmetry of the mass term for
S = 1/2, we need to pick a specific basis of the QLM Hilbert
space in order to implement an explicit complex conjugation
which is basis dependent. After a specific basis is chosen,
we will just work with vectors and matrices comprised of
complex numbers instead of Dirac’s bras and kets. A natural
basis to use is comprised of tensor products of single site
and/or link states

| f1〉S1 |E1,2〉L1 | f2〉S2 |E2,3〉L2 · · · , (H6)

where the fermion occupation number fx takes values of fx =
1 for “occupied” or fx = 0 for “unoccupied” and Ex,x+1 is the
electric flux on the link between sites x and x + 1. In this basis,
the matrix elements of the QLM Hamiltonian H are all real
numbers because the coefficients −w and m are real.

We consider a real column vector (all of the components
of which are real) ψ0 in our chosen basis as the initial state of
real-time evolution. The real-time evolution of our initial state
is e−iHtψ0, where H refers to the aforementioned real matrix.
The expectation value of a Hermitian quantum operator with
the Hamiltonian H as a function of time is

〈O(t )〉H ≡ ψ
†
0 eiHt Oe−iHtψ0, (H7)

where O is the representation of the quantum operator in our
chosen basis. The expectation value of the same operator with
the other Hamiltonian H ′ is

〈O(t )〉H ′ ≡ ψ
†
0 eiH ′t Oe−iH ′tψ0. (H8)

We want to figure out the conditions for 〈O(t )〉H = 〈O(t )〉H ′

at any time t . It will be done in two steps, taking
the complex conjugate such that H ′ = Hhopping − Hmass →
−H ′ = −Hhopping + Hmass and carrying out a diagonal unitary
transformation such that −H ′ = −Hhopping + Hmass → H =
Hhopping + Hmass.

〈O(t )〉H ′ is real because O is Hermitian, and thus we can
write

〈O(t )〉H ′ = 〈O(t )〉∗H ′

= ψT
0 e−iH ′t OeiH ′tψ∗

0

= ψ
†
0 e−iH ′t OeiH ′tψ0, (H9)

where in the last line we have used the fact that all of the
components of ψ0 are real. Then we consider to implement
a diagonal unitary transformation U whose diagonal matrix
elements are given by

(· · · 〈 fx|Sx 〈Ex,x+1|Lx 〈 fx+1|Sx+1〈Ex+1,x+2|Lx+1 · · · )

×U (· · · | fx〉Sx |Ex,x+1〉Lx | fx+1〉Sx+1 |Ex+1,x+2〉Lx+1 · · · )

= (−1)
∑

x odd fx , (H10)

where the bra and the ket only differ in the state of a site Sx. All
of the off-diagonal matrix elements of U vanish. U takes ψx to
−ψx for any odd x, i.e., UψxU = −ψx. Similarly, Uψ†

x U =
−ψ†

x for any odd x. Therefore, we have UHhoppingU † =
−Hhopping and UHmassU † = Hmass. U acting on ψ0 gives a
global phase Uψ0 = eiϕ0ψ0 where ϕ0 = π

∑
x odd fx depends
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FIG. 7. Real-time evolution of densities of sites and links in the
dipolar molecular system to simulate the S = 1/2 QLM on two unit
cells. The dynamics for initialized strings of right-pointing electric
fields are shown for the cases of small mass, (a) m = 0.1w, and large
mass, (b) m = 2.0w. Time is in units of the inverse hopping, w−1. For
small mass (a), the electric field of the string undergoes large-scale
oscillations. For large mass (b), the string stays roughly fixed, with
only small fluctuations of the charge densities and link spins. To note
for both (a) and (b), the outermost sites and links are fixed because
of the open boundary conditions. (c) Electric fluxes summed over all
dynamical links for m = 0.1w (blue) and m = 2.0w (orange). Solid
and dashed lines relate to the DMH and QLM dynamics, respectively.
(d) Top: Fidelity of the dipolar molecular wave function versus the
QLM wave function. Bottom: The effective gauge-invariance param-
eter G ≡ ∑

x |〈G̃x〉|/L [35] at the two mass values shown in (a) and
(b).

on details of ψ0. Following Eq. (H9), we further derive

〈O(t )〉H ′ = ψ
†
0 e−iH ′t OeiH ′tψ0

= ψ
†
0U †(Ue−iH ′tU †)(UOU †)(UeiH ′tU †)Uψ0

= ψ
†
0 e−iϕ0 eiHt (UOU †)e−iHt eiϕ0ψ0

= ψ
†
0 eiHt (UOU †)e−iHtψ0. (H11)

Clearly, if UOU † = O, then we arrive at 〈O(t )〉H = 〈O(t )〉H ′ .
The condition UOU † = O is true for any densities of sites
or links because density operators are diagonal in our chosen
basis. This accounts for why the densities in our numerical
studies exhibit an invariance under m → −m.

S = 1 QLMs do not have the inversion symmetry of the
mass term.

The parity P and the charge conjugation C transformations
for QLM operators are given by [35]

P−1ψxP = ψ−x, (H12)

P−1ψ†
x P = ψ

†
−x, (H13)

P−1Ux,x+1P = U †
−x−1,−x, (H14)

P−1Ex,x+1P = −E−x−1,−x, (H15)

C−1ψxC = (−1)x+1ψ
†
x+1, (H16)

FIG. 8. Real-time evolution of fermions and links in the dipolar
molecular system to simulate the S = 1 QLM on two unit cells
with g2 = √

2w starting from a string of right-pointing electric fields
at (a) m = 0.25 × √

2w and (b) m = 2.0 × √
2w. Time is in units

of (
√

2w)−1. With a small mass (a), the string breaks (modulo
finite size effects [56]), reaching values close to zero on the hop-
ping timescale, resulting in two approximate mesons on the edges
and approximate vacuum in between. With a large mass (b), the
string approximately remains, with small fluctuations in densities.
In (a) and (b), the densities of the two sites and two links on the
edges are fixed due to the open boundary condition. (c) Electric
fluxes summed over all dynamical links for both m = 0.25 × √

2w

(blue) and m = 2.0 × √
2w (orange). Solid and dashed lines relate

to the DMH and QLM dynamics, respectively. (d) Top: Fidelity of
the dipolar molecular wave function versus the QLM wave function.
Bottom: The effective gauge-invariance parameter G ≡ ∑

x |〈G̃x〉|/L
[35] at two values of masses in (a) and (b).

C−1ψ†
x C = (−1)x+1ψx+1, (H17)

C−1Ux,x+1C = U †
x+1,x+2, (H18)

C−1Ex,x+1C = −Ex+1,x+2. (H19)

The CP transformation (a P transformation followed by a C
transformation) on QLM operators is

C−1P−1ψxPC = (−1)−x+1ψ
†
−x+1, (H20)

C−1P−1ψ†
x PC = (−1)−x+1ψ−x+1, (H21)

C−1P−1Ux,x+1PC = U−x,−x+1, (H22)

C−1P−1Ex,x+1PC = E−x,−x+1. (H23)

It can be checked that the QLM Hamiltonian H is CP sym-
metric, i.e., C−1P−1HPC = H .

We then show that there are observables exhibiting the CP
symmetry in time evolution of a CP-symmetric initial state.
Such an initial state |ψ (0)〉 = |ψ0〉 obeys

PC|ψ0〉 = eiϕ0 |ψ0〉, (H24)
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where ϕ0 is a constant phase with no physical meaning in itself
and may depend on |ψ0〉. We consider a CP-odd operator that,
by definition, obeys

C−1P−1OPC = −O. (H25)

The expectation value of O evaluated at the time evolution of
|ψ0〉 is

〈ψ0|eiHt Oe−iHt |ψ0〉
= (〈ψ0|C−1P−1)(PCeiHtC−1P−1)

× (PCOC−1P−1)(PCe−iHtC−1P−1)(PC|ψ0〉)

= 〈ψ0|e−iϕ0 eiHt (−O)e−iHt eiϕ0 |ψ0〉
= −〈ψ0|eiHt Oe−iHt |ψ0〉
= 0. (H26)

It can be checked that ψ†
x ψx + ψ

†
−x+1ψ−x+1 − 1 and Ex,x+1 −

E−x,−x+1 are both CP-odd operators.
In our envisioned systems with open boundary conditions

with N unit cells, we can relabel the sites using indices −N +
1,−N + 2, . . . , 0, 1, . . . , N , consistent with indices used in

the above CP transformation. When the initial state is pre-
pared as a CP-symmetric state as in the main text, expectation
values of ψ†

x ψx + ψ
†
−x+1ψ−x+1 − 1 and Ex,x+1 − E−x,−x+1 for

any valid x always vanish at any time t . The time evolution
of the CP-symmetric initial state is also CP symmetric and
this fact is manifested by density expectation values, as is
illustrated in numerical results in the main text.

APPENDIX I: COMPARISON WITH THE
TWO-UNIT-CELL CASE

We provide the two-unit-cell results in Figs. 7 and 8 for
comparing with the three-unit-cell results given in the main
text, using the same parameters. This comparison is to give
a glimpse of the scaling with the system size, within the
capability of our ED method. The oscillation periods in the
two-unit-cell case are slightly greater than the three-unit-cell
case. The fidelity in the two-unit-cell case out to t = 20w−1

for S = 1/2 or t = 20(
√

2w)−1 is greater than that in the
three-unit-cell case. Finite size effects can make dynamics in
two unit cells different from that in three unit cells.
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