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Quantum-memory-assisted precision rotation sensing
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We propose to implement a solid-state rotation sensor by employing a many-body quantum spin system
which takes the advantages of the easy controllability of the electron spin and the robustness provided by the
collective nuclear spin state. The sensor consists of a central electron spin coupled to many surrounding nuclear
spins. Previously, this central spin system has been suggested to realize a quantum memory. Here, we further
utilize the collective nuclear spins, which store a certain quantum state, to detect the macroscopic rotation.
Different from other nuclear spin-based gyroscopes, our proposal does not directly manipulate nuclear spins
via nuclear magnetic resonance technique. We analytically and numerically investigate the effects of partial
nuclear polarization and decoherence on the sensitivity. We also briefly introduce the procedure to generate
entanglement between nuclear spins through the quantum memory technique and to utilize this entanglement
to enhance the sensing performance. Our proposal paves the way to the experimental realization of a compact
solid-state, full-electrical, and spin-based gyroscope.
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I. INTRODUCTION

Quantum spin systems are attractive candidates to imple-
ment a quantum gyroscope, such as the well-explored nuclear
magnetic resonance gyroscopes (NMRG) [1–3], which have
manifested excellent sensitivity in a laboratory. However,
these nuclear spin systems are usually gas based [2,4] (the
active sensing volume >10 mm3) and are difficult to minia-
turize, which limits their practical applications. Recently,
solid-state quantum spin systems, such as nitrogen-vacancy
(NV) centers in a diamond, have been proposed to realize a
rotation sensor via the geometric phase [5–7]. These solid-
state spin gyroscopes are promising to be miniaturized [8]
(the active sensing volume <1 mm3) and to reduce the power
consumption. Moreover, the rotating solid-state quantum spin
system has been investigated in recent experiments [9,10] and
shown good prospect as a rotation sensor.

Unlike the spin-based magnetometry [11], the relative
phase change in a Ramsey-like protocol is independent of
the gyromagnetic ratio in a spin-based gyroscope. Therefore,
a nuclear spin is a better candidate than an electron spin
as a rotation sensor, due to its stability to magnetic noise
and long coherence time [6,11]. However, since the nuclear
gyromagnetic ratio is much smaller than the electronic gyro-
magnetic ratio, γn � γe, as well as the nuclear spins always
being well isolated from the environment, the manipulation
and measurement of nuclear spins are usually inefficient com-
pared to electronic spins, which greatly limits the gyroscope
sensitivity in practice [11]. An attractive way is to utilize the
hyperfine interaction to manipulate and measure the nuclear
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spin state through the electron. Single electronic spin coupled
with single nuclear spin has been suggested to implement
such a gyroscope in diamond [8]. However, the required pulse
sequences of this protocol are rather complicated, consisting
of both nuclear magnetic resonance (NMR) and electron spin
resonance (ESR). In addition, the single nuclear spin proximal
to the NV electronic spin is also very sensitive to external
perturbations [12].

Usually, the nuclear spins inside the semiconductor quan-
tum dot are factors that lead to the decoherence of electron
spin [13–15], which is typically used as the qubit. However,
when being properly controlled, these nuclear spins can be
useful resources for quantum computation or quantum sens-
ing. The long-lived quantum memory proposed by use of
a semiconductor quantum dot takes the advantages of the
fast electron spin manipulation and the long coherence time
provided by nuclei [16,17]. Specifically, this protocol cir-
cumvents the difficulty of controlling single nuclear spins by
utilizing the collective nuclear spin state. In this paper, we
combine the quantum memory technique with the nuclear spin
rotation sensing to implement a quantum memory assisted
rotation sensor. The most significant advantage of our proto-
col is that it only needs the fast and high-efficient electron
spin manipulations and measurement instead of the slow and
inefficient nuclear spin manipulations [18]. Furthermore, we
also show that the performance of the rotation sensor can be
enhanced by utilizing the nuclear spin entanglement, which is
generated using the quantum memory technique as well.

II. BASIC ROTATION SENSING PROTOCOL

Our rotation sensing proposal is developed from the
quantum memory protocol using quantum dots [16], while,
compared to the original quantum memory protocol, the major
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FIG. 1. Schematic of the basic quantum memory assisted rotation sensing using a quantum dot. At the start of the encoding (retrieval)
stage, an electron spin polarized along the x axis (−z axis) is injected into the quantum dot, with an applied external magnetic field tuned on
resonance. During the sensing stage, the electron can be ejected and the nuclear spins experience a pseudomagnetic field due to a macroscopic
rotation in the rotating frame.

difference of the rotation sensing protocol introduced here
lies in utilizing the nuclear spins to sense the rotation rather
than to store a quantum state. Meanwhile, compared to the
conventional rotation sensing protocols using nuclear spins
via the Ramsey-like scheme, the difference is that our protocol
employs the contact hyperfine interaction to indirectly initial-
ize, manipulate, and read out the nuclear spin state through the
electron spin rather than directly manipulating nuclear spins
via rf pulses.

We illustrate our proposal by use of the many-spin system
in a semiconductor quantum dot, as depicted in Fig. 1. The
protocol includes three stages: the encoding, the sensing, and
the retrieval stage. At the beginning of the encoding stage,
an electron in a certain spin state [here, the spin is polarized
along x axis, |ψe(0)〉 = (1/

√
2)(|↑〉e + |↓〉e)] is injected into

a quantum dot with polarized nuclear spins. With an external
magnetic field properly tuned on resonance, the electron spin
state is mapped onto the nuclear spins’ collective state after
a half period of Rabi oscillation [16]. This state mapping
helps to build up the coherence of the collective nuclear spin
state. Then, the electron is ejected from the quantum dot. The
nuclear spins experience a pseudomagnetic field due to the
macroscopic rotation and undergo a coherent precession in
the rotating reference frame during the sensing stage. After
the rotation sensing, a new electron polarized along the −z
axis (|↓〉e) is injected, along with the external magnetic field
tuned on resonance again. After another half period of Rabi
oscillation, the collective nuclear spin state with rotational
information encoded is mapped back onto the electron spin
and the electron spin state is measured subsequently.

We elaborate the protocol described above in much more
detail using the central spin model, which can describe a cen-
tral electron spin coupled to many surrounding nuclear spins
via isotropic Fermi contact hyperfine interaction (since the
electron spatial wave function is dominated by s-orbit states)
in a semiconductor quantum dot. For simplicity but without
generality, we only consider nuclei with spin I = 1/2 here
(the electron spin S = 1/2 as well). During the short encoding
and retrieval stages, the Hamiltonian is

H = geμBB0Sz + gnμnB0

N∑
j=1

I jz +
N∑

k=1

AkSzIkz

+
N∑

k=1

Ak

2
(S+Ik− + S−Ik+). (1)

The first term and the second term are the Zeeman energies
of the electron spin and nuclear spins, respectively, where
ge (gn) is the Landé g factor of the electron (nucleus), μB

(μn) is the Bohr magneton (nuclear magneton), and B0 is
the magnitude of the external magnetic field applied along
the z axis. The third (fourth) term is the dephase (flip-flop)
term of the Fermi contact hyperfine interaction of the elec-
tron with N surrounding nuclei, where S = (Sx, Sy, Sz ) [Ik =
(Ikx, Iky, Ikz )] is the spin operator of the electron (kth nucleus)
with S± = Sx ± iSy and Ik± = Ikx ± iIky. Typically, the hyper-
fine coupling coefficient Ak is nonuniform, for example, in
a quantum dot, Ak ∝ |ψ (rk )|2, where |ψ (rk )|2 is the electron
profile density at site rk of the kth nucleus. This nonuniformity
(Ak �= A) intrinsically limits the fidelity of quantum memory
[19] and will also limit the sensitivity of the rotation sensing
proposed in this paper. Specifically, for the encoding and
retrieval processes to work, an external magnetic field needs
to be applied to bring the system into resonance1 (the flip-
flop term of the hyperfine interaction dominates [16]), B0 =
P

∑
k Ak/(2geμB) − M3/(2M2geμB), where Mn = ∑

k An
k is

defined as the nth moment of the distribution of Ak and P is the
average nuclear polarization (see the Appendix). With M2 =∑

k A2
k ≈ 1.2 × 10−3 meV2 in a GaAs quantum dot [14], the

encoding (retrieval) time tE (R) ≈ π/
√

M2 ∼ 0.1 ns, which is
several orders of magnitude shorter than the typical electron
spin coherence time T ∗

2,e ≈ 10 ns [23].
During the relatively long rotation sensing stage, the evo-

lution of the system is governed by

HS = gnμnB� ·
N∑

k=1

Ik +
N∑

j<k

� jk (3I jzIkz − I j · Ik ). (2)

The first term describes nuclear spins precessing in the com-
mon pseudomagnetic field, B� = �/(gnμn), where � is the
rotational vector, in the frame rotating at an angular frequency
�. For simplicity, we assume the rotational vector to be di-
rected along the z axis, so the first term becomes �

∑
k Ikz. The

second term describes the dipole-dipole interaction between
nuclear spins, where the coefficient � jk is the dipolar coupling
strength. This term is neglected in H [Eq. (1)], since the rate of
state transfer (∼GHz) is many orders of magnitude faster than
the typical decoherence rate (∼kHz) induced by the nuclear

1The system can also be brought into resonance through electron g
factor engineering [20,21] or through optical ac Stark shifts [22].
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dipole-dipole interaction [16]. However, during the rotation
sensing stage, we cannot neglect the nuclear dipole-dipole
interaction anymore, since, for high sensitivity purpose, the
sensing time usually needs to be as long as possible, which is
ultimately restricted by the decoherence.

To demonstrate the entire rotation sensing protocol, as
shown in Fig. 1, we first consider the simplest case that nu-
clear spins are perfectly polarized, namely, P = 1, and this nu-
clear spin initial state is denoted as |φ0〉 = | ↓↓↓ . . .〉n. In this
case, the dipole-dipole interaction between nuclear spins be-
comes greatly suppressed [24], so we can temporarily neglect
the nuclear dipole-dipole term, HS ≈ �

∑N
k=1 Ikz. Because

of the conservation of the total spin, [Jz, H] = [Jz, HS] =
0, where Jz = Sz + ∑N

k=1 Ikz, the Hamiltonians can be ex-
panded in a set of orthonormal basis states: |ψ0〉 = |↓〉e ⊗
|φ0〉, |ψ1〉 = |↑〉e ⊗ |φ0〉, |ψ2〉 = (1/

√
M2)

∑
k Ak|↓〉e ⊗ |φk〉,

and |ψ3〉 = |u′〉/||u′||; |φk〉 = Ik+|φ0〉 are collective nuclear
spin states. The state

|u′〉 = − 1

M2

N∑
k=1

A2
k |↓〉e ⊗ |φk〉 + M3

M3/2
2

|ψ2〉

stands for the leakage from the ideal two-level system (when
only considering the spin-exchange term during state transfer

[16]) and δ = ||u′|| =
√

M4/M2
2 − M2

3/M3
2 is the norm of |u′〉,

with Mn = ∑
k An

k defined as the nth moment of the distribu-
tion of Ak . Thus the Hamiltonian H can be represented as (see
the Appendix)

H =
√

M2

2

⎡
⎢⎣

θ 0 0 0
0 0 1 0
0 1 0 δ

0 0 δ 0

⎤
⎥⎦, (3)

where θ =
√

M2
3/M3

2 . δ and θ reflect the inhomogeneity of the
hyperfine coupling strength, for example, in a semiconductor
quantum dot, Ak is often normally distributed, and the value
of δ and θ increases when the half width of the Gaussian
distribution reduces. Besides, δ, θ ∼ 1/

√
N , which are small

quantities when N is large (the typical number of nuclear spins
in a quantum dot is ∼104–106).

The initial state of the compound system is |
(0)〉 =
|ψe(0)〉 ⊗ |φ0〉, where |ψe(0)〉 = (1/

√
2)(|↑〉e + |↓〉e). After

the encoding stage, the state of the total system evolves into

|
(tE )〉 = e−iHtE |
(0)〉 = |↑〉e ⊗ |v1〉n + |↓〉e ⊗ |v2〉n, (4)

where |v1〉n and |v2〉n denote the collective nuclear spin state.
Next, the electron is ejected from the quantum dot (for ex-
ample via tunneling into the adjacent electron reservoir in a
gate-defined quantum dot [23]), which is equivalent to von
Neumann’s projection [19]. After that, the system evolves into
a mixed state,

ρ(tE ) = |↑〉〈↑|e ⊗ |v1〉〈v1|n + |↓〉〈↓|e ⊗ |v2〉〈v2|n. (5)

During the sensing stage, the nuclear spins evolve under the
Hamiltonian HS ,

|v′
1〉n = e−iHStS |v1〉n, |v′

2〉n = e−iHStS |v2〉n.

For the retrieval, another electron in the spin state |↓〉e is
injected and the state of the compound system becomes

ρ(tE + tS ) = |↓〉〈↓|e ⊗ (|v′
1〉〈v′

1|n + |v′
2〉〈v′

2|n). (6)

Finally, the state after the retrieval process becomes

ρF ≡ ρ(tE + tS + tR) = e−iHtRρ(tE + tS )eiHtR . (7)

The encoding (retrieval) time tE (R) = π/
√

M2 and tS is the
rotation sensing time. Then the expectation values of the elec-
tron spin can be calculated, 〈Si〉 = Tr[τeSi], with i = x, y, z,
where τe = TrnρF is the reduced density matrix of the electron
spin. Usually, the electron spin level population is measured in
experiment and the corresponding signal (here the probability
that |↑〉e is populated after applying an electron spin π/2
pulse) is

S = 1

2
+ Tr[e−i π

2 Syτeei π
2 Sy Sz]

= 1

2
− sin2

(
π

√
1+δ2

4

)[
1 + (1 + 2δ2) cos

(
π

√
1+δ2

2

)]
(1 + δ2)2

× cos(πθ − �tS ). (8)

This analytical result demonstrates that the retrieved electron
spin signal indeed oscillates at the rotational angular fre-
quency � and the inhomogeneity of the coupling strength also
affects the signal from various aspects. First, the finite value
of δ prevents complete transfer of the spin state, just the same
as in the quantum memory protocol. Second, we note that the
finite value of θ introduces an extra phase in the oscillation.
These characteristics may be used to detect properties of the
nuclear ensemble, such as estimating the inhomogeneity of
the hyperfine coupling strength or the size of the nuclear en-
semble. The analytical result in Eq. (8) is plotted in Fig. 2(d),
which shows great agreement with numerical simulations (in
Sec. III C).

Although the above procedure includes the electron ejec-
tion and injection, actually, just the same as in the quantum
memory protocol [16], after mapping the quantum state onto
nuclear spins, the electron can either be ejected from the dot
or stay in the dot with taking the system out of resonance,
geμBB0 � P

∑
k Ak/2. When the system is off resonant, the

flip-flop term of the hyperfine interaction gets greatly sup-
pressed, while the dephasing term, HD = Sz

∑
k AkIkz, will

lead to nuclear spin dephasing. However, this dephasing can
be refocused by flipping the electron spin using a spin-echo-
like technique via fast ESR pulses [16]. Besides, when the
electron is present in the quantum dot, there also exists the
electron-mediated nuclear dipole-dipole interaction which re-
duces the nuclear spin coherence time as well. However, this
second-order effect can be greatly suppressed [25,26] by in-
creasing the electron Zeeman splitting (through applying a
large external magnetic field or increasing the nuclear spin
polarization) or by increasing the quantum dot size (large N).
Interestingly, it has also been proven [27] that the existence
of the electron spin in the quantum dot can be helpful to
protect the nuclear spin coherence by making an energy gap
between the collective nuclear spin storage states with other
states. Specifically, spin diffusion due to nuclear dipole-dipole
interaction can be suppressed by this mechanism.
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FIG. 2. (a) Evolution of the electron spin population signal, cal-
culated using exact numerical method with N = 20 nuclear spins
under homogeneous nuclear polarization with P = 0.8. The solid
(dashed) line corresponds to the case with (without) consideration
of the nuclear dipole-dipole interaction. (b) Same as (a), except the
dash-dotted line corresponds to the inhomogeneous nuclear polariza-
tion. (c) Fourier transform (FT) of the curves in (a). (d) The analytical
result (solid line) and numerical result (circles) for the case of perfect
nuclear polarization with N = 20. The phase shift is due to the finite
value of θ .

III. ESTIMATION OF THE SENSITIVITY

However, in realistic situations, the nuclear polarization
is far from perfect (P < 1), which limits the state transfer
fidelity and reduces the signal contrast. At the same time, the
nuclear dipole-dipole interaction induced decoherence also
intrinsically limits the sensitivity. In the following part, we
will investigate the effects of these imperfections on the per-
formance of the basic rotation sensing protocol. We quantify
the performance of this rotation sensing protocol by calculat-
ing the quantum Fisher information (QFI), which is defined
[28] as FQ = Tr[τeL2], where L is the symmetric logarithmic
derivative (determined by ∂τe/∂� = (1/2)[τeL + Lτe]). For
the retrieved electron spin state here, the QFI has a simple
expression [29],

FQ =
{

|∂�v|2 + (v·∂�v)2

1−|v|2 if |v| < 1,

|∂�v|2 if |v| = 1,
(9)

where v = (〈Sx〉, 〈Sy〉, 〈Sz〉) is the Bloch vector representing
the retrieved electron spin state. For instance, corresponding
to the signal in Eq. (8), the calculated quantum Fisher infor-
mation is as follows:

FQ = 4t2
S sin4

(
π

√
1+δ2

4

)[
1 + (1 + 2δ2) cos

(
π

√
1+δ2

2

)]2

(1 + δ2)4
, (10)

which shows the relation of the quantum Fisher information
and the inhomogeneity of the hyperfine coupling strength;
namely, for the fixed sensing time tS , the quantum Fisher infor-
mation reduces as the inhomogeneity of the coupling strength
increases (the value of δ increases while still maintaining

δ � 1). The intuition behind this dependence is that the in-
homogeneity of the hyperfine coupling results in the leakage
from the subspace that we used for quantum state transfer,
and the increase in the coupling strength inhomogeneity will
exacerbate this leakage, reducing the signal contrast and de-
grading the quantum Fisher information. Using the quantum
Cramér-Rao bound [30], we can estimate the sensitivity from
the QFI,

δ� =
√

tS + tM
C

√
FQ

, (11)

where C is the coefficient measuring the readout efficiency of
the electron spin state; tM is the dead time which is required
for initialization, transfer, and readout of the quantum state.

A. Effects of partial nuclear polarization

In order to analytically investigate the effects of average
nuclear polarization on sensitivity, we consider the case that
the electron spin has a uniform coupling with nuclear spins,
namely, Ak = A. Thus we can use the collective nuclear spin
operator, I = ∑N

k=1 Ik , and the Hamiltonian during the encod-
ing and retrieval stage can be simplified as

HQ = (geμBB0 + AIz )Sz + A

2
(S+I− + S−I+). (12)

For simplicity, we also neglect the nuclear dipole-dipole
interaction during the sensing stage, with HS ≈ �Iz. Since
[I2, HQ] = [I2, HS] = 0, the magnitude of the collective nu-
clear spin angular momentum I0 is the constant of motion
during the entire rotation sensing protocol. We will first cal-
culate the spin dynamics with the collective nuclear spin state
|I0, M0〉, where I0(I0 + 1) is the eigenvalue of I2 and M0 is the
eigenvalue of Iz, and then average over the distribution of I0

and M0 corresponding to the thermal nuclear spin state due to
partial nuclear polarization.

The initial state of the system is |ψ (0)〉 = 1√
2
(|↑〉e +

|↓〉e) ⊗ |I0, M0〉 and the Hamiltonian HQ can be expanded in
the bases |↑〉e ⊗ |I0, M0〉, |↑〉e ⊗ |I0, M0 + 1〉, |↓〉e ⊗ |I0, M0〉,
and |↓〉e ⊗ |I0, M0 − 1〉 as

HQ =

⎡
⎢⎢⎣

p1 0 q2 0
0 p1 − A

2 0 q1

q2 0 −p1 − A
2 0

0 q1 0 −p1

⎤
⎥⎥⎦, (13)

with

q1 = A

2

√
(I0 + M0)(I0 − M0 + 1),

q2 = A

2

√
(I0 − M0)(I0 + M0 + 1),

p1 = A

2
M0 + 1

2
geμBB0.

After the encoding process, the compound system evolves
into the state in the same form as Eq. (4), except now with
|v1〉n = α1|I0, M0〉 + α2|I0, M0 − 1〉 and |v2〉n = α3|I0, M0 +
1〉 + α4|I0, M0〉, where αi’s are appropriate coefficients. After
ejection of the electron, the compound system evolves into a
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mixed state in the same form as Eq. (5). During the sensing
stage, the nuclear spins precess in the common pseudomag-
netic field, and after the rotation sensing the nuclear spin state
evolves into

|v′
1〉n = α1e−iM0�tS |I0, M0〉 + α2e−i(M0−1)�tS |I0, M0 − 1〉,

|v′
2〉n = α4e−iM0�tS |I0, M0〉 + α3e−i(M0+1)�tS |I0, M0 + 1〉.

After injection of a new polarized electron, the state of the
compound system again has the same form as Eq. (6). The
evolution during the retrieval stage is unitary,

ρF = e−iHtRρ(tE + tS )eiHtR

= |ψ1〉〈ψ1| + |ψ2〉〈ψ2|, (14)

where |ψ1〉 = e−iHtR |↓〉e ⊗ |v′
1〉n and |ψ2〉 = e−iHtR |↓〉e ⊗

|v′
2〉n.
With the final state obtained, the expectation value of the

electron spin can be calculated,

〈Si〉′ = Tr[ρF Si] = 〈ψ1|Si|ψ1〉 + 〈ψ2|Si|ψ2〉, (15)

with i = x, y, z. The last step is the average over the distribu-
tion of I0 and M0,

〈Si〉 =
N/2∑
I0=0

I0∑
M0=−I0

w(I0, M0)〈Si〉′, (16)

where w(I0, M0) is the probability distribution of I0 and M0.
For the thermal state with average nuclear polarization P,

w(I0, M0)

= CN/2−I0
N

(
1 + P

2

)N/2−M0
(

1 − P

2

)N/2+M0 2I0 + 1

N/2 + I0 + 1
,

where CN/2−I0
N is the binomial coefficient. For the situation

of large nuclear polarization (P ∼ 1) and many nuclear spins
(N → ∞), the contribution of I0 = −M0 dominates, and the
distribution w(I0, M0) can be approximated by

w(M0) ≈ 1√
2πσ

e− (M0−M̄ )2

2σ2 , (17)

with M̄ = −N
2 P and σ 2 = N

4 (1 − P2). Under this approxima-
tion, Eq. (16) becomes

〈Sx〉 = lim
N→∞

∫ N/2

−N/2

1√
2πσ

e− (M0−M̄ )2

2σ2

×
2M0 cos

[ (M0−M̄−1)π
2
√

N
− �

]
sin2

[√
M0+M0(M̄+1)+M̄2π

2
√

N

]
M0 + M0(M̄ + 1) + M̄2

× dM0, (18)

while 〈Sy〉 and 〈Sz〉 can be calculated similarly. After obtaining
these electron spin expectation values, we can calculate the
quantum Fisher information using Eq. (9) and the result is
shown in Fig. 4(a).

B. Effects of nuclear decoherence

In order to get a qualitative understanding, we first consider
a simple situation, namely, during the encoding and retrieval
stages the central electron spin interacts strongly with the

nearest nuclear spin (with polarization P), which is decohered
by other surrounding nuclear spins during the rotation sensing
stage. The effect of the surrounding nuclear spins (bath spins)
to the nearest nuclear spin can be approximated by a random
field BN (t ), which can be described by the Ornstein-Uhlenbek
process [31] with the correlation function

〈BN (t )BN (0)〉 = b2 exp(−Rt ), (19)

where b =
√∑N

k=2 �1k (we assume the nearest nuclear spin
to be the first nuclear spin) and R is the correlation decay
rate, which is determined by the internal dynamics of the
bath spins. The Hamiltonian that describes the decoherence
process of the nearest nuclear spin is

Hd = BN (t )I1z (20)

and the evolution of the nearest nuclear spin state can be
calculated using

i
∂ρn

∂t
= [Hd , ρn]. (21)

The solution of this decoherence process can be expressed as
a phase damping channel [29],

ρn = sρn0 + r(ρn0,11|↑〉〈↑|n + ρn0,22|↓〉〈↓|n), (22)

where ρn0 and ρn are the density matrices of the nearest
nuclear spin before and after the phase decoherence process,
respectively; s represents the phase decoherence process and
r = 1 − s. Using the cumulant expansion method [32], we get

s = 〈e−i
∫ t

0 BN (t ′ )dt ′ 〉 = exp

[
b2

R2
(1 − e−Rt − Rt )

]
. (23)

For a slow bath (R � b), we get s ≈ e−b2t2/2, which shows
as a Gaussian decay. For clarity, we denote s ≈ e−(t/T ∗

2 )2
,

with decoherence time T ∗
2 = √

2/b. Following again the en-
tire rotation sensing procedure introduced above, the reduced
density matrix of electron spin can be calculated,

τe = a|↑〉〈↑|e + (1 − a)|↓〉〈↓|e + b∗|↑〉〈↓|e + b|↓〉〈↑|e,
(24)

where

a = −8Pλ2 + 2(P3 − P2 + 3P + 5)λ

(P2 − 2P + 5)2
,

b = −2i es−iλ(tS�−P π
2 )

P2 − 2P + 5
,

with λ = sin2 ( 1
4π

√
P2 − 2P + 5). Then the quantum Fisher

information can be calculated as

FQ = 16t2
S e

− 2t2
S

(T ∗
2 )2 sin4

(
1
4π

√
P2 − 2P + 5

)
(P2 − 2P + 5)2

. (25)

From this result, we see that the decoherence of the nuclear
spin seems to transfer to the electron spin and the perfor-
mance of the rotation sensor is now limited by the nuclear
decoherence time, instead of by the electron spin decoherence
time. Using the quantum Cramér-Rao bound, we can obtain
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the sensitivity after a straightforward calculation,

δ� = e

(
tS
T ∗
2

)2√
tS + tM (P2 − 2P + 5)

4CtS sin2
(

π
4

√
P2 − 2P + 5

) , (26)

where T ∗
2 represents the characteristic nuclear decoherence

time. This equation indicates that there exists an optimal
sensing time, tS ≈ T ∗

2 /2 (when tM � tS), to achieve the best
sensitivity.

C. Numerical investigation of the effects of partial polarization
and decoherence

In order to study these imperfections at the same time,
we use the exact numerical method, based on the Chebyshev
polynomial expansion of the evolution operator [33], to sim-
ulate the dynamics of this many-spin system [using the full
Hamiltonian in Eq. (1) and Eq. (2) without any approxima-
tion]. Here, we follow the configurations used in a previous
work [19], where N = 20 nuclei are placed on a 4 × 5 2D
lattice, with the value of Ak’s in the range of 0.31 to 0.96,
corresponding to a Gaussian |ψ (r)|2, and obtain � jk’s from
uniformly distributed random numbers in the range of −0.01
to 0.01.

Specifically, we will consider two nuclear polarization cir-
cumstances in detail. Thermal nuclear polarization, which
usually needs the application of a large static magnetic
field at low temperature [18], results in homogeneous nu-
clear polarization and the initial nuclear state is ρn(0) =
(1/Z ) exp(−γ

∑
k Ikz ), where Z is the partition function

and γ = 2 tanh−1(P). On the other hand, dynamic nuclear
polarization (DNP), for example, by passing a series of
spin-polarized electrons through a quantum dot, leads to inho-
mogeneous nuclear polarization [34,35] and the initial nuclear
state is ρn(0) = ⊗N

k=1ρnk (0), with ρnk (0) = (1/2)1 + pkIkz,
where pk = 1 − exp(−2βA2

k ) is the polarization of the kth
nuclear spin (β is a parameter reflecting an effective spin
temperature) and the average nuclear polarization is defined
as P = (1/N )

∑N
k=1 pk . The evolution of the entire rotation

sensing process can be calculated following the procedures
introduced above and here the initial state of the compound
system is ρ(0) = |ψe(0)〉〈ψe(0)| ⊗ ρn(0).

The numerically calculated electron spin population S ver-
sus sensing time tS is plotted in Figs. 2(a) and 2(b). Indeed, the
nuclear dipole-dipole interaction results in decay of the signal,
restricting the available sensing time and eventually limiting
the sensitivity. In Fig. 2(c), we plot the Fourier analysis of the
signals in Fig. 2(a). This shows that the peak frequency, which
corresponds to the rotational frequency, is broadened but not
shifted by the nuclear dipole-dipole interaction.

Next, we plot the electron spin population S as a function
of the rotational angular frequency � with a fixed sensing
time tS for different nuclear polarizations in Figs. 3(a) and
3(b). The high degree of nuclear polarization leads to a large
oscillation amplitude, as the result shown in Fig. 3(a). Mean-
while, as shown in Fig. 3(b), with the same average nuclear
polarization, the inhomogeneous case presents a larger os-
cillation amplitude than the homogeneous case, indicating a
higher signal-to-noise ratio in experiment. These features are
similar to that of the quantum memory protocol [36], since the

FIG. 3. Numerical results of the electron spin population signal
versus the rotational angular frequency with a fixed sensing time
tS < T ∗

2 , for different nuclear polarizations in a slope detection mea-
surement. The dotted lines reflect the sensitivity. (a) Comparison of
different degrees of nuclear polarization, P = 0.8 (solid line) and
P = 0.6 (dashed line), for the homogeneous case. (b) Comparison of
homogeneous nuclear polarization (solid line) and inhomogeneous
nuclear polarization (dash-dotted line) with the same P = 0.8.

increase of the state transfer fidelity will naturally lead to an
improvement on the signal contrast and the sensitivity.

The QFI as a function of average nuclear polarization
with fixed sensing time is depicted in Fig. 4(a). Apparently,
the QFI increases as the average nuclear polarization in-
creases, indicating an improvement in measurement precision.
In addition, under the same average nuclear polarization, the
inhomogeneous case exhibits much larger QFI than the ho-
mogeneous case—almost two times larger when P = 0.7. We
also find that the behavior of the homogeneous case is in ac-
cordance with the analytical model (by assuming Ak = A; see
Sec. III A), whereas the inhomogeneous case shows nontrivial
characteristics, which can be explained by the utilization of
the nonuniformity of the hyperfine coupling [36].

Finally, we investigate the effects of decoherence on the
sensitivity. In Fig. 4(b), we present the estimated sensitivity
from the exact numerical simulation. As we can see, there
indeed exists an optimal sensing time, tS ≈ T ∗

2 /2, where T ∗
2

can be obtained by fitting to a Gaussian decay (see Sec. III B)
of the corresponding signal in Fig. 2(b). Again, the inhomoge-
neous case always exhibits an enhanced sensitivity compared

FIG. 4. (a) Quantum Fisher information as a function of average
nuclear polarization with a fixed sensing time. The circles (triangles)
are numerical results for the homogeneous (inhomogeneous) nuclear
polarization. The dashed line corresponds to the analytical result
of the uniformly coupling model (Ak = A; see Sec. III A). (b) The
estimated sensitivity for the inhomogeneous case (triangles) and the
homogeneous case (circles) corresponding to the data in Fig. 2(b) by
assuming C = 0.8, T ∗

2 = 3 ms, and tM = 100 ns.

032612-6



QUANTUM-MEMORY-ASSISTED PRECISION ROTATION … PHYSICAL REVIEW A 102, 032612 (2020)

to the homogeneous case. In other words, the inhomogeneous
polarization method relaxes the requirement on average nu-
clear polarization to obtain the same sensitivity as using the
homogeneous polarization method. Besides, to obtain the in-
homogeneous nuclear polarization through DNP usually does
not make a stringent requirement on temperature and mag-
netic fields, whereas the conventional thermal polarization
method usually does.

D. Feasibility of the basic protocol

Our proposal can be implemented using quantum dots of
various materials and sizes. The maximum average nuclear
polarization achieved so far is ∼80% [37] in a nanohole in-
filled GaAs/AlGaAs quantum dot using an optical pumping
method with an external magnetic field ∼8 T, operating at
temperature ∼4.2 K. The size of this in-filled GaAs/AlGaAs
quantum dot is ∼50 nm, with ∼105 nuclei inside the quantum
dot and nuclear spin relaxation time T1 > 500 s reported in
this experiment. While in a gate-defined quantum dot [38], the
nuclear spin polarization reaches ∼50%, using the electrical
control, at operating temperature ∼100 mK. In this experi-
ment, the size of the GaAs double quantum dot is ∼100 nm
and a single domain nanomagnet is used to apply the static
magnetic field.

The dead time tM in Eq. (11) includes the time needed for
the electron spin initialization and readout, the time needed for
nuclear spin polarization, and the time needed for quantum
state transfer. For the basic rotation sensing protocol intro-
duced here, after one sensing cycle, only the electron spin
state is measured and ideally the nuclear spins will return
to the initial state. Hence, in every sensing cycle, only the
electron polarization is consumed and, due to the extremely
long relaxation time of nuclear spins in a quantum dot [39],
they only need to be repolarized after many sensing cycles
(the time needed for the initial nuclear spin polarization is
equivalent to the startup time of the apparatus). Therefore,
the dominant contribution to tM is the time needed for the
electron spin initialization and readout, which can be as short
as ∼100 ns [40], while the time needed for state transfer is
subnanoseconds [16]. Finally, with the electron spin read-
out visibility ∼80% [41] and the nuclear decoherence time
T ∗

2 ∼ 3 ms [16,17,42], we estimate the sensitivity as δ� ∼
50 rad s−1Hz−1/2 per sensor unit (or per qubit), which is at the
same level as the proposed solid-state rotation sensor using
nuclear spins in diamond [6,8].

In order to obtain high sensitivity in practice, the basic
protocol proposed here should make use of large wafers
of quantum dots which confine spins as ensemble sensor.
One advantage of a semiconductor quantum dot qubit is
the scalability compared to many other qubit candidates and
the manufacturing technology of semiconductors can be di-
rectly employed to fabricate quantum dots; for example, the
gate-defined quantum dot can be lithographically defined
by metallic gates on the semiconductor substrate. In nowa-
days semiconductor industry, billions of transistors can be
integrated on a chip with size ∼100 mm2. The projected sen-
sitivity using QD ensemble with similar integration level on
such a chip is ∼10−4 rad s−1Hz−1/2 and here we suppose the
sensitivity scales as 1/

√
M for the ensemble sensor, where M

is the number of quantum dots integrated on the chip. Besides,
the scaling problem for quantum sensing may be much easier
to solve than for quantum computation, since qubits may not
need to be coupled together for a quantum sensing purpose,
while it is usually essential to couple qubits for large-scale
quantum computation.

Some theories predicted that, after the preparation by elec-
tron spins, the collective nuclear spin state may evolve into the
dark state |D〉 [43,44], which is defined by

∑N
k AkIk−|D〉 = 0.

The dark state has low values of polarization and purity, but
it can still be used as long-lived quantum memory due to its
symmetry property [44]. Our rotation sensing scheme can be
generalized to this quantum memory protocol as well and it is
estimated that the state transfer fidelity can exceed 80% with
state transfer time ∼100 ns in a quantum dot containing ∼104

nuclei, while the average nuclear polarization is vanishingly
small [44]. Moreover, the recently proposed collective nu-
clear spin quantum memory using a strain-enabled quantum
dot [45,46] predicted a state storage fidelity up to 90% with
nuclear polarization ∼50%. Even though in this proposal the
interaction used to encode and retrieve is different, the basic
idea of the rotation sensing protocol proposed here may still
be generalized.

One downside of the basic rotation sensing protocol is that
the scaling of the sensitivity is independent of N (the number
of nuclear spins inside the quantum dot), which is the trade-off
for the benefit of avoiding direct nuclear manipulations, since
for the basic rotation sensing scheme (when nuclear spins are
perfectly polarized), approximately, only the ground collec-
tive nuclear spin state and the first excited collective nuclear
spin state are employed for the rotation sensing. The basic
rotation sensing protocol mainly takes advantage of the sta-
bility and long coherence time provided by the nuclear spins.
A recent proposal using electron spin to detect the nuclear
spins shows that [47] the optimal scaling of the sensitivity can
go as N−1/2. However, for this proposal, the single nuclear
manipulation needs to be applied and some anisotropic terms
of the hyperfine interaction need to be utilized. In the next
section, we will extend our basic rotation sensing protocol
to the entanglement regime (still by employing the quantum
memory technique) to fully take advantage of the quantum
property. Ideally, the sensitivity will scale as N−1, while the
scheme still maintains the advantage of avoiding direct nu-
clear manipulations through rf pulses.

IV. ENTANGLEMENT ENHANCED ROTATION SENSING

In order to obtain the full quantum enhancement for the
rotation sensing protocol proposed here, the entanglement
between nuclear spins can be utilized [48–50]. The conven-
tional method to generate entanglement between surrounding
nuclear spins in a central spin system is first to employ
the Hadamard gate on the central electron spin and then to
employ the controlled-NOT gate, where the rotation of the
surrounding nuclear spins depends on the central electron
spin state [49,51–53]. However, this technique is restricted by
the electron spin coherence time, which is relatively short in
semiconductor quantum dots. Besides, the rotation of nuclear
spins is driven by NMR, which is against the advantage of
our scheme (only electron spin is directly manipulated in
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our scheme). Instead, here we adopt the idea (mentioned in
Ref. [16]) based on quantum memory technique and employ
the tailored procedure introduced in Ref. [54] to generate
nuclear spin entanglement, which still only needs the fast
and efficient electronic manipulations. The basic idea lies
in engineering the collective nuclear spin state through con-
tinuously mapping specific electron spin states onto nuclear
spins in many cycles. In each cycle, first the electron spin is
prepared into a specific quantum state via ESR manipulations
(the classical channel); then the hyperfine interaction is tuned
on resonant and the electron spin state is encoded onto the
collective nuclear spin state (the quantum channel).

We illustrate the basic entanglement generation procedure
by considering the ideal case of uniform coupling (Ak = A)
and perfect nuclear polarization (P = 1). Again, the collective
nuclear spin state can be represented by the eigenbasis of the
total nuclear spin operator, I = ∑

k Ik , which is the same as
in Sec. III A, and the Hamiltonian describing the quantum
channel is also HQ in Eq. (12). By tuning the external mag-
netic field, geμBB0 ∼ −A〈Iz〉, the system can be brought into
resonance, with the flip-flop term dominating the dynamics.
While, for the classical channel, the system is tuned off reso-
nant by changing the external magnetic field, with the flip-flop
term being greatly suppressed and the Hamiltonian describing
the classical channel becomes

HC
∼= (geμBB0 + AIz )Sz

+ geμBB1(e−i(ω1t+φ1 )S+ + ei(ω1t+φ1 )S−), (27)

where B1, ω1, and φ1 are the amplitude, frequency, and
phase of the applied alternating magnetic field, respectively.
In fact, using our entanglement generation technique, arbitrary
collective nuclear spin state |
〉n = ∑2I0

l=0 cl |I0,−I0 + l〉 can
be prepared from the initially polarized state |
0〉n = |I0 =
N/2, M0 = −I0〉. However, for the rotation sensing purpose,
here we only consider the preparation and utilization of the
Greenberger-Horne-Zeilinger (GHZ)-like entangled state,

|
∗〉n = 1√
2

(|I0, M0 = −I0〉 + |I0, M0 = −I0 + m〉),

and here m � N/2 denotes the largest excitation in the en-
tangled state. Next, we will give a detailed description of the
preparation of this entangled state.

It is much easier to consider the inverse state evolution of
the entanglement generation, namely,

|↓〉e ⊗ |
0〉n = C†
1 Q†

1C†
2 Q†

2 · · ·C†
mQ†

m(|↓〉e ⊗ |
∗〉n),

where the evolution operator Cj in the jth cycle is governed by
HC and Qj is governed by HQ. For each cycle, these following
equations should be satisfied:

(〈I0,−I0 + m − j| ⊗ e〈 ↓ |)Q†
m− j |Fj〉 = 0,

(〈I0,−I0 + m − j − 1| ⊗ e〈 ↑ |)C†
m− jQ

†
m− j |Fj〉 = 0,

where 1 � j � m and

|Fj〉 ≡ C†
m− j+1Q†

m− j+1C
†
m− j+2Q†

m− j+2 · · ·C†
mQ†

m|F0〉,
with |F0〉 ≡ |↓〉e ⊗ |
∗〉n.

As an example, we consider the first cycle of the evolution.
For the quantum channel, namely,

Q†
m

1√
2
|↓〉e ⊗ (|I0,−I0〉 + |I0,−I0 + m〉)

→ 1√
2

(e−iϕm |↓〉e ⊗ |I0,−I0〉 + i|↑〉e ⊗ |I0,−I0 + m − 1〉),

we have to tune the external magnetic field in HQ

with geμBB0 ≈ −A(−I0 + m), so the flip-flop term be-
comes effective only for the |↓〉e ⊗ |I0,−I0 + m〉 sub-
space. Meanwhile, for the |↓〉e ⊗ |I0,−I0〉 subspace, it
will evolve under (geμBB0 + AIz )Sz, resulting in an extra
relative phase ϕm = A

2 mtE , with the encoding time tE =
π/[A

√
(m + 1)(2I0 − m)]. However, this extra phase can be

eliminated in the last cycle (we will illustrate this later). While
for the classical channel, namely,

C†
mQ†

m

1√
2
|↓〉e ⊗ (|I0,−I0〉 + |I0,−I0 + m〉)

→ 1√
2

(e−iϕm |↓〉e ⊗ |I0,−I0〉 + i|↓〉e ⊗ |I0,−I0 + m − 1〉),

we need to set appropriate parameters of the alternating mag-
netic field to selectively rotate the electron spin, for example,
in this step, we need to set ω1 = A(I0 − m + 1)/(geμBh̄),
φ1 = 0, and B1 = π/(geμBtC ), where tC is the duration of the
ESR pulse.

The subsequent cycles are operated similarly, until the
classical channel of the last cycle,

C†
1

1√
2

(e−i
∑

j ϕ j |↓〉e ⊗ |I0,−I0〉 + im|↑〉e ⊗ |I0,−I0〉))

→ |↓〉e ⊗ |I0,−I0〉,
where we need to choose the correct phase φ1 in C†

1 to rotate
the electron spin state 1√

2
(e−i

∑
j ϕ j |↓〉e + im|↑〉e) to the ground

state |↓〉e.
The preparation of the entangled state from the initial

polarized state is the inverse process of the above evolu-
tion. Compared to the conventional entanglement preparation
method, here we only utilize the fast and efficient electron
spin manipulation, which still keeps the advantage of our
rotation sensing protocol. However, the performance of this
entanglement generation procedure hinges on the quality of
ESR manipulation, especially for those very early cycles.

After preparation, the entangled collective nuclear spin
state can be employed to sense rotation under the Hamilto-
nian, HS ≈ �Iz, and the collective nuclear spin state evolves
into

|
∗〉′n = 1√
2

(|I0,−I0〉 + eim�tS |I0,−I0 + m〉). (28)

Using the inverse entangling process, the relative phase in
the collective nuclear spin state which encoded the rotational
information can be mapped back to the electron spin,

|↓〉e ⊗ 1√
2

(|I0,−I0〉 + eim�tS |I0,−I0 + m〉)

→ 1√
2

(|↑〉e + eim�tS |↓〉e) ⊗ |I0,−I0〉.
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Clearly, the accumulated relative phase using this entangle-
ment enhanced protocol is m times larger than that of the basic
rotation sensing protocol without entanglement. Besides, the
nuclear spin’s return to the initial polarized state and another
full sensing cycle can be repeated. It indicates that, ideally, the
sensitivity scales as 1/N (since m � N/2) in a single quantum
dot for the entanglement enhanced protocol, approaching the
Heisenberg limit, where N is the number of nuclear spins in
a quantum dot (N ∼ 104–106 in typical quantum dots), while,
for the entanglement enhanced ensemble sensor, the overall
sensitivity scales as 1/(N

√
M ), where M is the number of

quantum dots.
However, many more factors need to be considered to

estimate the overall sensitivity enhancement in practical sit-
uations. Extra dead time to prepare and readout the entangled
state should be included to estimate the sensitivity and this
may lead to an optimal value of m to prepare the entangled
state. Usually, the prepared GHZ-like entangled state has a rel-
atively short lifetime [55], while other entangled states which
are robust to decoherence may be prepared by modifying
procedures introduced above [48]. For realistic situations of
nonuniform coupling strength (Ak �= A) and partial nuclear
polarization (P < 1), the perfect GHZ-like entangled state is
difficult to generate. However, through similar procedures as
introduced above, a partially entangled collective nuclear spin
state can still be prepared and used for quantum enhanced
rotation sensing [52,53].

V. DISCUSSION

In this paper, we propose a rotation sensing protocol
utilizing the solid-state central spin system, which can be
implemented using a semiconductor quantum dot. Gas-based
gyroscopes using various quantum systems, such as cold
atoms [56], atom beam [57], NMRG [3], and ring lasers [58],
show excellent sensitivity, but usually require a large active
sensing volume and high power consumption. For example,
the miniaturization of the vapor cell of NMRG will increase
the cell-wall effects, resulting in reduction of the nuclear spin
lifetime [11]. On the other hand, solid-state spin gyroscopes
possess the advantage of miniaturization. Specifically, minia-
turization is important for magnetic shielding, which is crucial
for the performance of spin-based sensors [11].

Our protocol also shows some advantages compared to
other solid-state rotation sensing protocols. For instance, the
ubiquitous microelectromechanical systems (MEMS) gyro-
scope suffers from the problem of sensitivity drifts due to
the formation of charge asperities [59], which does not occur
in spin-based protocols. In particular, compared to another
recently proposed solid-state spin-based protocol using NV
centers in diamond [6,8], which own the advantage of room-
temperature operation, the gyroscope using QD also shows
some advantages as follows. First, in the diamond, the single
proximal 14N nuclear spin has relatively short coherence time
because of its strong interaction with the NV electronic spin
(such as the optical illumination on NV centers will lead to nu-
clear spin depolarization [12,60]), and the nuclear spin needs
to be repolarized in every sensing cycle. On the contrary, the
electron can be removed from the quantum dot to switch off
the hyperfine interaction completely, resulting in a remarkably

long nuclear coherence time [39] and the nuclear spins only
need to be repolarized after many sensing cycles due to the
utilization of collective state and the long nuclear relaxation
time in a quantum dot. Second, our proposal circumvents
direct nuclear manipulations via the NMR technique by fully
exploiting the coherent spin state transfer instead. It is widely
known that the nuclear spin manipulation (especially for sin-
gle nuclear spins) is usually difficult and inefficient, as well as
introducing extra noise to the system [18]. Third, since there
are many more nuclear spins interacting strongly with the
electron spin in the quantum dot, the scheme proposed here
seems to be more promising to employ quantum many-body
entanglement for enhanced sensing.

By use of a gate-defined semiconductor quantum dot, a
full-electrical spin-based rotation sensor seems feasible, since
nuclear spins can be electrically polarized by DNP [34,61],
while the electron spin can be coherently controlled by electric
fields [62–64] and readout via spin-to-charge conversion [65].
Because electrical fields can be easily confined in nanoscale
regions compared to magnetic fields or optical fields, qubits
in the full-electrical solutions can be locally addressed and
controlled, which is beneficial for the generation of quantum
entanglement and important for large scale quantum devices.
Besides, full-electrical solutions can be much more compact
and easier to integrate with other quantum devices than optical
solutions.

In principle, the technique proposed in this paper may
be generalized to various quantum systems that can be im-
plemented as quantum memory, such as atomic ensembles
[66–68], rare-earth-ion doped crystals [69], cold ions [70,71],
or other solid-state spin systems [72–75]. Particularly, it has
been proposed to store the quantum state of light into nuclear
spins inside a quantum dot [76]. Our rotation sensing scheme
can be directly adapted to this quantum interface, with the
quantum state mapping between light and nuclear spins, while
still employing nuclear spins as the rotation sensor. In addition
to the utilization of entanglement between nuclear spins, the
electron spins in different quantum dots can also be entangled
together via the exchange interaction to further enhance the
rotation sensing [52,53].
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APPENDIX: RESONANCE CONDITION AND THE
HAMILTONIAN MATRIX ELEMENTS FOR THE FULLY

POLARIZED CASE

For the fully polarized case, the nuclear spin is prepared
in the state |φ0〉 = |↓↓↓ . . .〉n, while the initial state of the
electron spin is |ψe(0)〉 = α|↓〉e + β|↑〉e. The initial state of
the compound system then becomes |ψ (0)〉 = α|↓〉e ⊗ |φ0〉 +
β|↑〉e ⊗ |φ0〉. We denote |ψ0〉 = |↓〉e ⊗ |φ0〉 and |ψ1〉 =
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|↑〉e ⊗ |φ0〉. To obtain the matrix form of the Hamilto-
nian, we need to apply the Hamiltonian H = geμBB0Sz +∑

k AkSzIkz + ∑
k

Ak
2 (S−Ik+ + S+Ik−) on these states. Obvi-

ously, |ψ0〉 is an eigenstate of H , with

H |ψ0〉 =
(

−geμBB0

2
+

∑
k Ak

4

)
|ψ0〉. (A1)

On the other hand,

H |ψ1〉 =
(

geμBB0

2
−

∑
k Ak

4

)
|ψ1〉 +

∑
k

Ak

2
|↓〉e ⊗ |φk〉,

where |φk〉 = Ik+|φ0〉 is the collective nuclear spin state with
the kth nuclear spin been flipped. We rewrite the second term
by defining a normalized state |ψ2〉 = 1√∑

k A2
k

∑
k Ak|↓〉e ⊗

|φk〉, which is orthogonal to |ψ1〉 and |ψ0〉. By using the
definition of the nth moment of the distribution of Ak , namely,
Mn = ∑

k An
k , the above equation can be rewritten as

H |ψ1〉 =
(

geμBB0

2
−

∑
k Ak

4

)
|ψ1〉 +

√
M2

2
|ψ2〉. (A2)

Next, we apply the Hamiltonian on state |ψ2〉 to obtain

H |ψ2〉 =
(

−geμBB0

2
+

∑
k Ak

4

)
|ψ2〉 +

√
M2

2
|ψ1〉

− 1

2
√

M2

∑
k

A2
k |↓〉e ⊗ |φk〉,

where the last term is orthogonal to |ψ1〉, but not orthogonal to
|ψ2〉. In order to continue, we need to subtract the component
along |ψ2〉 from the last term to obtain a new state |u′〉, which
satisfies the following relation:

− 1

2
√

M2

∑
k

A2
k |↓〉e ⊗ |φk〉 = − M3

2M2
|ψ2〉 +

√
M2

2
|u′〉.

Since |u′〉 is now orthogonal to |ψ2〉, we can obtain the norm
of |u′〉 as follows:

||u′||2 = M4/M2
2 − M2

3/M3
2 .

Finally, the application of the Hamiltonian on state |ψ2〉 can
be rewritten as

H |ψ2〉 =
(

−geμBB0

2
+

∑
k Ak

4
− M3

2M2

)
|ψ2〉 +

√
M2

2
|ψ1〉

+
√

M2||u′||
2

|ψ3〉, (A3)

where |ψ3〉 = |u′〉/||u′|| is the normalized state from |u′〉 and
|ψ3〉 is orthogonal to |ψ0〉, |ψ1〉, and |ψ2〉. The last term stands
for the leakage from the quantum memory subspace and, in a
realistic quantum dot, the norm ||u′||2 ∼ 1/N , which is a small

quantity. For the determination of the resonance condition, we
temporarily neglect the last term is Eq. (A3) and, combined
with Eq. (A2), we can expand the Hamiltonian in the subspace
spanned by |ψ1〉 and |ψ2〉 as follows:

H ≈
[

geμBB0

2 −
∑

k Ak

4

√
M2

2√
M2

2 − geμBB0

2 +
∑

k Ak

4 − M3
2M2

]
,

which can be represented by the Hamiltonian of a qubit as

H ≈− M3

4M2
1+

(
1

2
geμBB0−

∑
k Ak

4
+ M3

4M2

)
σ̂z+

√
M2

2
σ̂x,

where σ̂x,z are Pauli matrices and 1 is the unity matrix. It
is clear that, in order to make the largest possible transition
between |ψ1〉 and |ψ2〉, the value of the external magnetic field
should be B0 = ∑

k Ak/(2geμB) − M3/(2M2geμB), which is
the resonance condition for the fully polarized case. Since∑

k Ak/(2geμB) is equal to the value of the Overhauser field
when the nuclear spins are fully polarized, we then generalize
this resonance condition to the partially polarized nuclear
ensemble as

B0 = P
∑

k

Ak/(2geμB) − M3/(2M2geμB), (A4)

where P is the average nuclear polarization and the first term
corresponds to the Overhauser field generated by partially
polarized nuclear spins.

We then return to Eq. (A1), Eq. (A2), and Eq. (A3) to
expand the original Hamiltonian in the basis states |ψ0〉, |ψ1〉,
|ψ2〉, and |ψ3〉, as done in the main text. With the resonance
condition given above, Eq. (A1), Eq. (A2), and Eq. (A3)
become

H |ψ0〉 = M3

4M2
|ψ0〉,

H |ψ1〉 = − M3

4M2
|ψ1〉 +

√
M2

2
|ψ2〉,

H |ψ2〉 = − M3

4M2
|ψ2〉 +

√
M2

2
|ψ1〉 +

√
M2||u′||

2
|ψ3〉.

By adding a constant term to the original Hamiltonian H ′ =
H + M3/(4M2), we get the matrix form of H ′ in the basis
states |ψ0〉, |ψ1〉, |ψ2〉, and |ψ3〉, as follows:

H ′ =
√

M2

2

⎡
⎢⎢⎣

√
M2

3/M3
2 0 0 0

0 0 1 0
0 1 0 ||u′||
0 0 ||u′|| 0

⎤
⎥⎥⎦, (A5)

corresponding to Eq. (3) in the main text.
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