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Simulation of wave-particle duality in multipath interferometers on a quantum computer
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We present an architecture to investigate wave-particle duality in N-path interferometers on a universal quan-
tum computer involving as low as 2 log2 N qubits and develop a measurement scheme that allows the efficient
extraction of quantifiers of interference visibility and which-path information. We implement our algorithms
for interferometers with up to N = 16 paths in proof-of-principle experiments on a noisy intermediate-scale
quantum (NISQ) device using down to O(log2 N ) gates and despite increasing noise consistently observe
a complementary behavior between interference visibility and which-path information. Our results are in
accordance with our current understanding of wave-particle duality and allow its investigation for interferometers
with an exponentially growing number of paths on future quantum devices beyond the NISQ era.
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I. INTRODUCTION

The duality of particles and waves played a key role in the
development of quantum theory and led Bohr to formulate the
celebrated complementarity principle [1,2], which states that
quantum objects hold both wave- and particlelike features in a
mutually exclusive fashion. Its fundamental role manifests in
various systems ranging from the interrelation between single-
and two-body systems [3–7] to complex quantum systems
[8] and systems of many identical particles [9]. Initially, the
basic principle was formulated [10–12] and experimentally
tested [13–15] for a single particle passing through a two-
path interferometer, with which-path information governed
by different a priori probabilities of the individual paths
[10–12]. Later extensions consider equal a priori probabilities
but which-path detectors placed in each arm of the inter-
ferometer [4,9,16], such that which-path information is due
to the distinguishability of the which-path detector states as
demonstrated in a multitude of experiments [6,17–22]. In both
cases, wave-particle duality ultimately manifests in a com-
plementary behavior of interference visibility and which-path
information. In various theoretical approaches these scenar-
ios were generalized from two- to multipath interferometers
[23–31]. However, realizing multipath interference possibly
in the presence of which-path detectors constitutes a highly
elaborate task, such that only little [32] has been undertaken
to underpin our current understanding of wave-particle duality
for an increasing number of paths.

In contrast to direct experimental implementations, it be-
comes more feasible to simulate multipath interferometers
on different experimental platforms [6,19,20]. Indeed, the
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simulation of intricate quantum processes constitutes one of
the key points for the realization of an universal quantum
computer [33], which has already turned out to be fruitful in
various simulations and computational tasks [34–38]. From
this perspective it is, thus, natural to ask how wave-particle
duality in multipath interferometers can efficiently be simu-
lated and tested on a universal quantum computer.

In our present contribution we answer this question. We
provide a compact architecture to simulate N-path interfer-
ence in the presence of which-path detectors on a univer-
sal quantum computer running on no more than 2 log2 N
qubits, and present a quantum algorithm, which allows us
to efficiently extract quantifiers of the interference visibility
and which-path information. In particular, we show how
to quantify which-path information from N measurements,
and extract the multipath interference visibility introduced in
Ref. [39] from a single measurement. We further investigate
the N-path interference visibility from Ref. [23], which, in
contrast, ideally requires an infinite number of measurements,
and find a method to obtain this visibility measure only
from a finite number of 2N measurements. We implement
the proposed scheme in proof-of-principle experiments on the
IBM Q 16 Melbourne NISQ device for N = 2, 4, 8, and 16
paths using quantum circuits with down to O(log2 N ) gates,
and, despite increasing noise, consistently find a complemen-
tary behavior between interference visibility and which-path
information.

II. MULTIPATH INTERFEROMETER

Let us set the scene as illustrated in Fig. 1(a), and consider
a single particle entering a N-path interferometer in mode 0,
together with a which-path detector that can acquire informa-
tion about the particle’s path. Initially [position I in Fig. 1(a)]
we assume an uncorrelated state |�I〉 = |0〉 |0〉, with the first
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FIG. 1. Quantum circuit of a N-path interferometer. (a) A mul-
tiport beam splitter (MBS) sets the particle into a superposition of
passing through each path, with a which-path detector acquiring
information about the particle’s path. Varying phases φ0, . . . , φN−1

give rise to interference fringes after the recombination beam split-
ter. (b) The particle (which-path detector) in (a) is simulated by
the particle (detector) register involving n = log2 N (m � n) qubits.
Hadamard gates (H) act as multiport beam splitters, controlled uni-
tary transformations serve to acquire which-path information (here
illustrated for the most general case involving N − 1 operations),
with open (filled) circles referring to a control on |0〉 (|1〉), and phase
gates introduce the phase shifts from (a). In the detector register an
additional unitary transformation U †

k is performed (see main text for
details).

(second) ket referring to the particle (which-path detector).
The multiport beam splitter sets the particle into a balanced
superposition 1/

√
N

∑N−1
j=0 | j〉 of orthogonal states, 〈 j|k〉 =

δ j,k , with | j〉 corresponding to the particle passing through
the jth interferometer arm. If the particle takes the jth arm,
the which-path detector can acquire which-path information
via the action of the unitary Uj on its initial state. Note that
without loss of generality we can set U0 = 1. The action of
different unitaries Uj do not necessarily lead to orthogonal
which-path detector states, such that the amount of which-path
information can be quantified by our ability to discriminate the
so-obtained states Uj |0〉 for j ∈ {0, . . . , N − 1}. Motivated by
the upper bound from Ref. [40] on the success probability for
unambiguously discriminating these states (see Appendix A),
we consider the quantifier

D =
√√√√√√1 − 1

N (N − 1)

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2, (1)

which is built from all mutual overlaps of the which-path
detector states, and yields D = 0 (D = 1) if all states are equal
(mutually orthogonal), corresponding to no (full) which-path
information.

After position II in Fig. 1(a), phase shifters introduce rela-
tive phases between the paths, followed by a recombination
beam splitter and a measurement of the particle in mode
0. Due to interference of the particle’s paths, varying the
phases φ = {φ0, . . . , φN−1} can lead to a changing probability
pp(0|φ) in finding the particle in output 0. Let us quantify
the visibility of this interference effect by maximizing the
difference of this probability to its mean 1/N over all phase
settings,

VC = max
φ

N

N − 1

∣∣∣∣pp(0|φ) − 1

N

∣∣∣∣. (2)

Interestingly, as shown in detail in Appendix A, VC relates to
the coherence properties of the reduced state of the particle
at position II in Fig. 1(a) [39]. On the other hand, a similar
visibility measure based on the root-mean-square spread of
pp(0|φ) from its mean 1/N was introduced in Ref. [23] [Eq.
(1.10) there],

VP =
√√√√ N3

N − 1

〈(
pp(0|φ) − 1

N

)2
〉

φ

, (3)

with 〈·〉φ the average over all phases φ0, . . . , φN−1. This mea-
sure quantifies the purity of the reduced state of the particle
at position II in Fig. 1(a) (see Appendix A), and constitutes
an upper bound of VC from Eq. (2), VC � VP (see Appendix
B). However, both visibility measures are normalized, 0 �
VC,VP � 1, and together with the which-path information
quantifier D from Eq. (1) satisfy the usual wave-particle
duality relation

D2 + V2
C � D2 + V2

P = 1, (4)

with the inequality saturating if the overlaps 〈0|U †
k Uj |0〉 have

equal modulus, and are real or equal for all j, k ∈ {0, . . . , N −
1} (see Appendix C). Note that while VP and D are perfectly
complementary to each other, for VC the inequality in (4) does
not imply strict complementarity in the sense of an opposite
monotonicity behavior.

III. QUANTUM CIRCUIT

The complementarity between which-path information and
interference visibility can be tested on a quantum computer
using the circuit from Fig. 1(b). The first register comprises
n = log2 N qubits and is associated with the particle passing
through an interferometer with N paths, with | j〉 correspond-
ing to the particle taking the jth path. The which-path de-
tector, on the other hand, is modeled by the second register
in Fig. 1(b), which contains m � n qubits (below we choose
m = n in all experiments). In general, the which-path detector
may acquire which-path information via any unitary operation
on the detector register controlled by the state of the particle
register. However, in order to account for the most general
case, let us consider N − 1 controlled unitary operations Uk

acting on the detector qubits (recall that U0 = 1).
In order to read out the amount of which-path information

as quantified by D from Eq. (1), we additionally act with
the unitary U †

k on the detector register [see Fig. 1(b)], and,
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subsequently, measure this register in the computational basis.
This reveals the probability pd(0|k) to observe the outcome
|0〉. As we show in Appendix D, by performing this measure-
ment scheme for all unitaries U †

k , with k ∈ {0, . . . , N − 1}, we
obtain D via

D =
√√√√ N

N − 1

(
1 − 1

N

N−1∑
k=0

pd(0|k)

)
. (5)

In order to extract the visibilities VC and VP [see Eqs. (2)
and (3)] from measurements of the particle register, we in-
troduce phase gates [see Fig. 1(b)], such that the particle
register state | j〉 acquires the phase factor eiφ j , and we denote
by pp(0|φ) the probability to observe the particle register
in |0〉 under the phase setting φ = {φ0, . . . , φN−1}. First let
us consider VC from Eq. (2): This visibility measure can be
obtained from a single phase setting. In particular, for the
phases φ = {0, . . . , 0} ≡ 0 Eq. (2) entails

VC � N

N − 1

∣∣∣∣pp(0|0) − 1

N

∣∣∣∣, (6)

with the inequality saturating in the case of real detector
state overlaps 〈0|U †

k Uj |0〉 for all j, k ∈ {0, . . . , N − 1} (see
Appendix A). Thus, in our implementation further below we
choose the unitaries Uj such that these overlaps are real, and
measure VC via Eq. (6).

On the other hand, for VP the phase average in Eq. (3)
entails an ideally continuous number of phase settings, which
becomes experimentally intractable for an increasing number
of paths. However, as we show in Appendix E, this can be
circumvented using the lower bound

VP �

√√√√ N3

2N+1(N − 1)

∑
φ∈{0,π}N

(
pp(0|φ) − 1

N

)2

, (7)

which also saturates for real overlaps 〈0|U †
k Uj |0〉 of the de-

tector states. Accordingly, VP can be obtained only from 2N

different phase settings, which constitutes a vast advantage as
compared to the phase average in Eq. (3).

IV. SIMULATION RESULTS

We implement our quantum circuit from Fig. 1 on the IBM
Q 16 Melbourne quantum device, and start with N = 2 paths
by utilizing one qubit for each register [see Fig. 1(b)]. In this
case, the detector register acquires which-path information
via the action of a single unitary U1 (recall that U0 = 1),
for which we choose a controlled rotation gate U1 = Rϑ with
angle ϑ , yielding Rϑ |0〉 = cos(ϑ/2)|0〉 + sin(ϑ/2)|1〉 (see
Appendix F for details). Thus, in consideration of Eq. (1)
and the overlap 〈0|Rϑ |0〉 = cos(ϑ/2) between the which-path
detector states, the rotation angle ϑ dictates the amount of
which-path information stored in the detector register via
D =

√
1 − cos2(ϑ ). On the other hand, for N = 2 paths we

have VC = VP ≡ V . In this case, i.e., for N = 2, we implement
the traditional method of measuring V [see Eq. (3)], which
involves recording interference fringes, and for an increasing
number of paths we then utilize our less expensive measure-
ment scheme [see Eqs. (6) and (7)] presented above.

FIG. 2. Results for a two-path interferometer. For the rotation
angles ϑ = 0, 0.3π , 0.6π , and π , (a)–(d) show the interference
signal as a function of φ, with the circuit executed 8000 times for
each φ. The normalized count rate of the particle qubit yielding
|0〉 (blue circles) and |1〉 (green triangles) is fitted by a solid and
dotted sine curve, respectively. Error bars arising from counting
statistics are too small to be visible. (e) The interference visibility
V (blue circles), extracted from the fit to the interference fringes, and
the which-path information quantifier D (green triangles) is plotted
against the rotation angle ϑ , respectively. The solid blue and dotted
green line show a fit to the data. (f) For the data in (e) V2 is plotted
against D2, with the red data points (open circles) corresponding to
the interference signals from (a)–(d). The dotted blue line results
from the fit in (e) and the solid black line illustrates the upper bound
from Eq. (4).

For varying phases φ ∈ [0, 2π ] between the two paths,
introduced by a phase gate operating on the qubit of the
particle register [see Fig. 1(b)], we record interference fringes
for 22 rotation angles ϑ in the interval [0, 1.1π ] as shown
in Fig. 2(a)–2(d). For each angle ϑ we fit the obtained in-
terference signal by a sine curve and extract the interference
visibility V via the fit’s amplitude. At the same time, the
measurement of the which-path detector qubit reveals the
corresponding distinguishability D via Eq. (5). The values of
both quantifiers are plotted as a function of the rotation angle
ϑ in Fig. 2(e), and, on the basis of Eq. (4), we plot V2 against
D2 in Fig. 2(f).

Figure 2(e) shows a complementary behavior between
interference visibility V and which-path information D, while
the sum of their square lies below unity throughout [see
Fig. 2(f)]. This can be explained by noise, imperfect state
preparation, and imprecise gate operations, as, for example,
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evident in the interference signal for ϑ = 0 in Fig. 2(a): Noise
and imperfect state preparation cause a deviation of pp(0|0)
from unity, and imprecise Hadamard gates (setting the qubit
in an imbalanced superposition) lead to a larger difference of
pp(0|π ) from zero as compared to the difference of pp(0|0)
form unity. Moreover, imperfect rotation gates lead to a non-
vanishing interference signal for ϑ = π in Fig. 2(d), with the
lowest interference visibility reached for ϑ = 1.1π . Note that,
therefore, we record interference signals for rotation angles
ϑ ∈ [0, 1.1π ]. Moreover, compared to ϑ = 0 in Fig. 2(a), we
observe a phase shift in the interference signal in Fig. 2(d).
This shift, however, does not move the observed signal away
from the antidiagonal line in Fig. 2(f).

While the IBM Q 16 Melbourne device used for our proof-
of-principle experiments has been characterized elsewhere,1

we here model the arising imperfections by accounting for
mixed qubits (1 − ε)|0〉〈0| + ε|1〉〈1| with ε ∈ R, imbalanced
Hadamard gates acting as |0〉 → T |0〉 + √

1 − T 2|1〉 and
|1〉 → √

1 − T 2|0〉 − T |1〉 with T ∈ R, and a factor γ ∈ R
giving rise to the rotation angle γϑ (instead of ϑ). Note that in
the ideal case we have ε = 0, T = 1/

√
2, and γ = 1. Fitting

our model to the data in Fig. 2(e) reveals the parameters ε =
0.072(3), T = 0.767(4), and γ = 0.873(7), and gives rise to
the solid lines in Figs. 2(e) and 2(f).

We now increase the number of paths to N = 4, 8, and 16,
and utilize Eqs. (6) and (7) to extract the interference visibility
VC and VP, respectively. For the controlled unitaries Uj [see
Fig. 1(b)] acting on the detector register, we choose controlled
rotation gates, such that a control on the jth particle qubit
rotates the jth detector qubit by the rotation angle ϑ (see
Appendix F for details). Since we choose the same rotation
angle ϑ for all controlled rotation gates, the amount of which-
path information obtained by the detector register is fully
specified by ϑ ∈ [0, π ], with ϑ = 0 (ϑ = π ) corresponding
to no (full) which-path information. This scheme results for
all rotation angles ϑ in real-valued overlaps 〈0|U †

k Uj |0〉 of the
resulting which-path detector states, such that the inequalities
in Eqs. (6) and (7) saturate, and we can utilize them to
determine the visibilities VC and VP. Note that this scheme
involves O(log2 N ) rotation gates for the acquisition of which-
path information. Hence, for vanishing phase operations (as in
the case of investigating VC) the total number of gates scales
as O(log2 N ). In the general case, however, there may be up to
N − 1 controlled unitary operations [cf. Fig. 1(b)] requiring at
least O(N ) gates.

We implement the circuit for N = 4 paths using two quibits
for both particle and detector register. While VC can be
inferred from a single phase setting, the measurement of VP

[see Eq. (7)] requires data collection for 16 different phases.
We perform 8000 runs for each phase setting, and measure VC

and VP together with the which-path information quantifier
D [see Figs. 3(a) and 3(b)]. By fitting our model accounting

1According to the specifications [41,42] provided by IBM on their
web site at the time of the experiment, the qubits’ average relaxation
time T1 and dephasing time T2 is around 54 μs and 71 μs, respec-
tively. The average error rates of single-qubit gates and CNOT gates
are specified with 0.3% and 7.3%, respectively, and the read-out error
amounts about 6.6%.

FIG. 3. Results for interferometers with N = 4, 8, and 16 paths.
For N = 4 paths, (a) and (b) show the interference visibility VC and
VP (blue circles) together with the extracted which-path information
quantifier D (green triangles) as a function of the rotation angle ϑ ,
respectively. (c) and (d) show the recorded date of VC (blue circles)
and D (green triangles) for N = 8 and N = 16 paths, respectively.
In all panels, solid blue and dotted green lines correspond to a fit to
the data, with the red data points for ϑ = 0 in (a) excluded due to
apparent inconsistencies in the noise level.

for imperfections in the implemented circuit (described for
two paths above) to the data of VC, we obtain ε = 0.057(4),
T = 0.854(13), and γ = 1.02(3). On the other hand, for VP

we fix T = 1/
√

2,2 and get ε = 0.17(2) and γ = 0.86(7). The
difference between the values of ε indicates more noise (due
to a larger number of involved gates) in the measurement of
VP as compared to VC.

As apparent in Figs. 3(a) and 3(b), extracting VP from 16
phase settings leads to a considerably larger error as compared
to VC, which is obtained from a single phase setting only. By
further increasing the number of paths to N = 8 and N = 16,
measuring VP would require data collection for 256 and 65536
different phases, respectively. This, however, leads to insignif-
icant results with the present NISQ device. On the other hand,
for the visibility VC we can record data for interferometers as
large as 16 paths, simply limited by the number of available
qubits. The results for N = 8 paths and N = 16 paths, using in
total six and eight qubits, are illustrated in Figs. 3(c) and 3(d),
respectively. Again, we fit our model including imperfections
to the data, and obtain ε = 0.075(2), T = 0.82(2), and γ =
0.92(2) for eight paths, and ε = 0.102(6) and γ = 0.86(6)
with a fixed value of T = 1/

√
2 for 16 paths.

2Note that we fix T since leaving it as a free parameter would result
in a nonvanishing p value
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For a vanishing rotation angle ϑ = 0, the noise level char-
acterized by ε gives rise to the difference of the interference
visibilities VC and VP from unity, and the difference of D
from zero. Considering this, Figs. 3(a), 3(c) and 3(d) directly
reveal increasing noise for an increasing number of paths, in
accordance with ε increasing from 0.057(4) over 0.075(2) to
0.102(6). However, despite imperfections in the circuit, all
our results demonstrate an opposite monotonicity behavior
[see Figs. 2(e) and 3] and, thus, a complementary behavior
between interference visibility and which-path information.

V. CONCLUSION

Notwithstanding its fundamental role in quantum mechan-
ics, even in the seemingly simple case of a single particle
interfering on a multipath interferometer in the presence of
which-path detectors there is only little experimental evidence
of wave-particle duality due to the experimentally challeng-
ing task of extracting multipath interference visibilities and
which-path information. Here we overcame this challenge and
presented a scheme on how to efficiently extract quantifiers
of both which-path information and interference visibility.
While our scheme allows for an implementation of N-path
interferometers on diverse experimental platforms operating
on as low as 2 log2 N qubits, we here obtained results in
favor of our current understanding of wave-particle duality
by simulating interferometers with up to N = 16 paths in
proof-of-principle experiments using down to O(log2 N ) gates
on a NISQ device operating on superconducting transmon
qubits. The scaling behavior of our presented quantum circuit
(with the number of paths scaling exponentially in the number
of qubits) particularly provides an advantage compared to
direct implementations of N paths, e.g., via photons in N-
path optical interferometers. However, while the simulation
of wave-particle duality with current available NISQ devices
may not provide a computational advantage compared to clas-
sical computers, we are optimistic that future quantum devices
will go beyond the NISQ era and allow for simulations of
wave-particle duality in multipath interferometers intractable
on any classical device.
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APPENDIX A: DETAILS ON D, VC, and VP

Under consideration of our scheme from Fig. 1 we now
provide details on the measures D, VC, and VP. Let us start
with considering the common state of the particle and the

which-path detector at position I in Fig. 1,

ρI = |0〉〈0| ⊗ |0〉〈0|,
with the first (second) term of the tensor product corre-
sponding to the particle (which-path detector). The multiport
beam splitter (or Hadamard gates) then sets the particle into
a superposition, |0〉 → 1/

√
N

∑N−1
j=0 | j〉, and the which-path

detector acquires information about the particle’s path by an
action of the unitary Uj if the particle takes the jth path.
Putting this together, the common state at position II in Fig. 1
reads

ρII = 1

N

N−1∑
j,k=0

| j〉〈k| ⊗ Uj |0〉〈0|U †
k .

From this expression we obtain the which-path detector state
by tracing over the particle, resulting in

ρd = Trp(ρII ) = 1

N

N−1∑
j=0

ρd,j, (A1)

with

ρd,j = Uj |0〉〈0|U †
j .

Thus, the which-path detector is in state ρd,j with probability
1/N , which corresponds to the detection of the particle in
the jth path. Therefore, the ability to discriminate the states
ρd,j (with all states having equal a priori probability 1/N)
provides a measure for the which-path information obtained
by the which-path detector. Let us therefore use the upper
bound of the success probability PA for unambiguous quantum
state discrimination derived in Ref. [40],

PA � 1 −
√√√√√√

1

N (N − 1)

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2

�

√√√√√√1 − 1

N (N − 1)

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2

≡ D, (A2)

which motivates the quantifier D [cf. Eq. (1)]. If 〈0|U †
k Uj |0〉 =

1 for all j, k ∈ {0, . . . , N − 1}, there is no which-path infor-
mation, D = 0, and, accordingly, a vanishing probability PA to
discriminate the which-path detector states ρd,j. On the other
hand, orthogonal which-path detector states, 〈0|U †

k Uj |0〉 =
δ j,k , yield a full which-path information, D = 1, since the
which-path detector states can be discriminated unambigu-
ously.

Next let us consider the state of the particle at position II in
Fig. 1, which we obtain by tracing out the which-path detector,

ρp = Trd(ρII ) =
N−1∑
j,k=0

[ρp] j,k| j〉〈k|, (A3)

with

[ρp] j,k = 1

N
〈0|U †

k Uj |0〉. (A4)
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The phase shifters (see Fig. 1) then introduce the phase
eiφ j in the jth path, and the recombination beam splitter
(or Hadamard gates) acts on the particle state as | j〉 →∑N−1

j′=0 β j, j′ | j′〉, with |β j, j′ |2 = 1/N and β j,0 = 1/
√

N . Ac-
cordingly, the state of the particle after the multiport beam
splitter reads

ρp,out =
N−1∑
j,k=0

[ρp] j,kei(φ j−φk )
N−1∑

j′,k′=0

β j, j′β
∗
k,k′ | j′〉〈k′|.

The probability pp(0|φ) to measure the particle in |0〉 with the
phase setting φ = {φ0, . . . , φN−1} is then given by

pp(0|φ) = Tr(|0〉〈0|ρp,out )

= 1

N

N−1∑
j,k=0

[ρp] j,kei(φ j−φk ). (A5)

With Eq. (A5) at hand, let us now inspect the visibility
quantifiers VC and VP provided in Eqs. (2) and (3). We start
with VC, which is defined as

VC = max
φ

N

N − 1

∣∣∣∣pp(0|φ) − 1

N

∣∣∣∣.
Inserting Eq. (A5) yields

VC = max
φ

1

N − 1

∣∣∣∣∣∣∣∣∣
N−1∑

j, k = 0
j �= k

[ρp] j,kei(φ j−φk )

∣∣∣∣∣∣∣∣∣
� 1

N − 1

N−1∑
j, k = 0
j �= k

∣∣[ρp] j,k

∣∣. (A6)

Equation (A6) highlights that VC is directly related to the
(normalized) coherence of the reduced state of the particle ρp

[see Eq. (A3)] at position II in Fig. 1 [39]. In particular, for
the phase setting φ = (0, . . . , 0) ≡ 0 we have ei(φ j−φk ) = 1,
and the inequality in (A6) saturates if the overlaps 〈0|U †

k Uj |0〉
of the which-path detector states (and, thus, by Eq. (A4), the
elements [ρp] j,k) are real for all j, k ∈ {0, . . . , N − 1}.

Next we consider the interference visibility VP from
Eq. (3), defined as

VP =
√√√√ N3

N − 1

〈(
pp(0|φ) − 1

N

)2
〉

φ

.

As shown in Ref. [23], by performing the average via a
normalized integration over all phases φ0, . . . , φN−1, VP can
be expressed in terms of the off-diagonal elements of ρp from
Eq. (A3):

VP =
√√√√√√

N

N − 1

N−1∑
j, k = 0
j �= k

|[ρp] j,k|2. (A7)

Utilizing this expression, a short calculation reveals that VP

is related to the difference between the purity of ρp and the

purity of its incoherent counterpart ρp,inc = 1/N
∑N−1

j=0 | j〉〈 j|,
i.e., ρp from Eq. (A3) with zero off-diagonal elements, by

VP =
√

N

N − 1

[
Tr

(
ρ2

p

) − Tr
(
ρ2

p,inc

)]
.

APPENDIX B: PROOF OF VC � VP

In the following, let us prove the hierarchy VC � VP: Using
the Cauchy-Schwarz inequality for the bound of VC from Eq.
(A6), we obtain

VC �

√√√√√√√√
⎛
⎜⎜⎜⎝

N−1∑
j, k = 0
j �= k

1

N − 1
|[ρp] j,k|

⎞
⎟⎟⎟⎠

2

�

√√√√√√
N−1∑

j′, k′ = 0
j′ �= k′

1

(N − 1)2

N−1∑
j, k = 0
j �= k

|[ρp] j,k|2

=
√√√√√√

N

N − 1

N−1∑
j, k = 0
j �= k

|[ρp] j,k|2

= VP, (B1)

where we identified VP from Eq. (A7) in the last step. Note
that the first inequality is due to Eq. (A6), and the second
inequality saturates if and only if all off-diagonal elements of
ρp have equal modulus.

APPENDIX C: DUALITY RELATION (4)

We obtain the duality relation from Eq. (4) by inserting the
elements of ρp from Eq. (A4) into the expression for VP from
Eq. (A7), yielding

VP =
√√√√√√

1

N (N − 1)

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2. (C1)

In consideration of D from Eq. (1) and the hierarchy (B1), we
then find

D2 + V2
C � D2 + V2

P = 1,

which coincides with Eq. (4).

APPENDIX D: PROOF OF EQ. (5)

In the following we prove Eq. (5), which provides an ex-
pression of the which-path information quantifier D in terms
of the probabilities pd(0|k) to measure the detector register in
|0〉 after applying the additional unitary U †

k (e.g., see Fig. 1):
First consider the transformed detector state (A1) at position II
in Fig. 1, U †

k ρdUk , such that the probability to find the detector
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register in |0〉 yields

pd(0|k) = Tr(|0〉〈0|U †
k ρdUk )

= 1

N

N−1∑
j=0

|〈0|U †
k Uj |0〉|2.

Performing this measurement for all k ∈ {0, . . . , N − 1}, and
summing over all probabilities pd(0|k) then results in

N−1∑
k=0

pd(0|k) = 1 + 1

N

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2.

Therewith, we obtain D from Eq. (1) through

D =
√√√√ N

N − 1

(
1 − 1

N

N−1∑
k=0

pd(0|k)

)
, (D1)

which proves Eq. (5).

APPENDIX E: PROOF OF EQ. (7)

In order to prove Eq. (7), reading

VP �

√√√√ N3

2N+1(N − 1)

∑
φ∈{0,π}N

(
pp(0|φ) − 1

N

)2

,

we start with its right-hand side abbreviated by A, and use
pp(0|φ) = 1/N2 ∑N−1

j,k=0 〈0|U †
k Uj |0〉ei(φ j−φk ) [see Eqs. (A4)

and (A5)],

A2 = N3

2N+1(N − 1)

∑
φ∈{0,π}N

(
pp(0|φ) − 1

N

)2

= 1

2N+1N (N − 1)

∑
φ∈{0,π}N

⎛
⎜⎜⎜⎝

N−1∑
j, k = 0
j �= k

〈0|U †
k Uj |0〉ei(φ j−φk )

⎞
⎟⎟⎟⎠

2

.

By expanding the square of the parentheses, we obtain

A2 = 1

2N+1N (N − 1)

N−1∑
j, k = 0
j �= k

N−1∑
j′, k′ = 0

j′ �= k′

〈0|U †
k Uj |0〉〈0|U †

k′Uj′ |0〉

×
∑

φ∈{0,π}N

ei(φ j−φk )ei(φ j′ −φk′ ). (E1)

Here, the third sum yields (note that j �= k and j′ �= k′)

∑
φ∈{0,π}N

ei(φ j−φk )ei(φ j′ −φk′ ) =
⎧⎨
⎩

2N for j = j′, k = k′
2N for j = k′, k = j′
0 otherwise.
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FIG. 4. Implemented quantum circuits. The data for N = 2 paths
shown in Fig. 2 results from the circuit in (a). Which-path infor-
mation is obtained by the detector register via a controlled rotation
gate Rϑ . For N = 4, 8, and 16 paths, we implement the circuit in
(b), which gives rise to the data in Fig. 3 in the main text. Here
which-path information obtained by the detector register is also due
to controlled rotation gates. The corresponding Hermitian conjugate
unitary operations U †

k are illustrated in (c). The phase operations
in the particle register in (b) are detailed for N = 4 path in (d).
The circuits in the corresponding boxes are activated if φ j = π , and
dropped if φ j = 0.

Therefore, Eq. (E1) becomes

A2 = 1

2N (N − 1)

N−1∑
j, k = 0
j �= k

[(〈0|U †
k Uj |0〉)2 + |〈0|U †

k Uj |0〉|2]

� 1

N (N − 1)

N−1∑
j, k = 0
j �= k

|〈0|U †
k Uj |0〉|2, (E2)

with the inequality saturating if the overlaps 〈0|U †
k Uj |0〉 of the

detector states are real for all j, k ∈ {0, N − 1}. In considera-
tion of Eq. (C1), we then arrive at

A2 � V2
P,
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which proves Eq. (7). As discussed in the main text, let us
stress that for real overlaps of the detector states, Eq. (7)
allows us to measure VP only with 2N phase settings instead of
a continuous number of phase settings required for the average
in Eq. (3).

APPENDIX F: DETAILS ON THE QUANTUM CIRCUITS

The quantum circuit utilized for N = 2 paths is illustrated
in Fig. 4(a). It involves a single qubit (i.e., n = m = 1) for
both the particle and detector register. Since we set U0 = 1,
there is only a single unitary transformation, U1, through
which the detector register (i.e., the detector qubit) can gain
information about the particle’s path. In particular, for U1 we
choose a controlled rotation gate

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos(ϑ/2) − sin(ϑ/2)
0 0 sin(ϑ/2) cos(ϑ/2)

⎞
⎟⎠,

which rotates the detector qubit by the angle ϑ controlled
by the particle qubit [see Fig. 4(a)]. Since for N = 2 paths
the particle register only comprises a single qubit, the
phase operations (setting the relative phases between the
states of the particle register in order to record interference
fringes) can be performed via a single phase gate on the
particle qubit.

In the case of N = 4, 8, and 16 paths, we also choose
controlled rotation gates for the unitaries Uj with which the
particle register acquires which-path information. However,
for N = 2n paths there are n controlled rotation gates in-
volved, with the jth gate rotating the jth detector qubit con-
trolled by the jth particle qubit [see Fig. 4(b)]. Accordingly,
the Hermitian conjugate unitaries U †

k , which additionally act
on the detector register [in order to read out the amount of
which-path information via Eq. (D1)] correspond to inverse
rotations (note that R†

ϑ = R−ϑ ) as illustrated in Fig. 4(c). We
note that the quantum circuit and the measurement scheme
presented in the main text does not depend on choosing rota-
tion gates for the unitaries Uj . However, we choose rotation
gates since these gates can easily be implemented on the IBM
Q quantum device and, by their low circuit depth, are subject
to little noise. By setting the angle ϑ equal for all n involved
rotation gates, this choice also allows us to investigate the
complementarity between the interference visibilities VC and
VP and the which-path information quantifier D as a function
of a single parameter, the rotation angle ϑ [see Figs. 2(e)
and 3(a)–3(d)].

In order to measure the visibility quantifier VP via Eq. (7),
2N different phase settings are needed. In particular these
phases φ = {φ0, . . . , φN−1} are given by all combinations φ ∈
{0, π}N . For N = 4, i.e., for the particle register involving
n = 2 qubits, the quantum circuits to realize these phase
operations are illustrated in Fig. 4(d): If φ j = π , the circuit
in the corresponding box in Fig. 4(d) is activated and sets
the phase shift, while for φ j = 0 the circuit in the box
is dropped.
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