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The discretely modulated continuous-variable quantum key distribution (DM CVQKD) has been proven to be
secure, and a basic assumption for the current theoretical security proof of the DM CVQKD is that the signal
source cannot be compromised. However, this assumption is quite unpractical in real quantum communication
systems. In this paper, we investigate the DM CVQKD with a special configuration in which the entanglement
source is placed at the untrusted channel. With this configuration, the source is no longer protected by the sender
but is exposed to the vulnerable environment. In particular, we consider the configuration for two typical DM
CVQKD protocols, which are the four-state protocol and the eight-state protocol. Security analysis based on
linear bosonic channel shows that the DM CVQKD with an untrusted entanglement source is able to defend itself
against the most powerful quantum collective attack in a certain distance range and it can still generate positive
secret key rate when considering finite-size effect and composable security, thereby providing a theoretical proof
for applying the DM CVQKD system to a realistic environment.
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I. INTRODUCTION

Continuous-variable quantum key distribution (CVQKD)
[1,2] provides an approach to allows two distant legitimate
partners, Alice and Bob, to share a random secure key over
insecure quantum and classical channels. One of the ad-
vantage of the CVQKD protocol is that the most state-of-
art telecommunication technologies can be compatible with
CVQKD protocols, so that one may apply a CVQKD system
to the practical communication network in use.

In general, there are two modulation approaches in the
CVQKD protocol, i.e., the Gaussian-modulated CVQKD
protocol (GM CVQKD) [3,4] and the discretely modulated
CVQKD protocol (DM CVQKD) [5,6]. For the first approach,
Alice usually encodes key bits in the quadratures (p̂ and q̂) of
the optical field [7], while Bob can restore the secret key bits
through high-speed and high-efficiency coherent detection
techniques. This strategy usually has a repetition rate higher
than that of single-photon detections so that GM CVQKD
could potentially achieve higher secret key rates. After solv-
ing the theoretical security issues of GM CVQKD [8,9], its
experimental implementation has been widely studied; see,
e.g., Refs. [10–13]. However, it still seems unfortunately
limited to much shorter distance due to the problem of quite
low reconciliation efficiency in long-distance transmission.
For the second approach, the DM CVQKD generates several
nonorthogonal coherent states and exploits the sign of the
measured quadrature of each state to encode information
rather than using the quadrature p̂ or q̂ itself [14]. This discrete
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modulation strategy is more suitable for long-distance trans-
mission since the sign of the measured quadrature is already
discrete, thereby validating most excellent error-correcting
codes even at low signal-to-noise ratio (SNR) [15]. Therefore,
the DM CVQKD is becoming a hotspot in the long-distance
quantum communication field due to its strong compatibil-
ity with current telecommunication technologies. However,
because the idea of the DM CVQKD was proposed later
than that of GM CVQKD, current research regarding the DM
CVQKD mainly focuses on its theoretical protocol and proof
of security.

DM CVQKD has been proven to be secure in a linear
quantum channel against collective attacks [16] and, very
recently, its asymptotic security against arbitrary collective
attacks has also been proven [17,18]. However, there exists
a basic assumption for these theoretical proofs of security;
namely, the signal source cannot be compromised. That is
to say, the source is perfectly protected by the legitimate
sender Alice. Apparently, this assumption is quite unpractical
in real quantum communication systems. Legitimate users
may also be compromised in a realistic environment, let alone
the source. Although this issue can be theoretically fixed
by applying plug-and-play measurement-device-independent
(PP MDI) configuration in which both measurement device
and signal source are integrated with the third untrusted part
Charlie [19], the PP MDI-based DM CVQKD actually does
not work well in realistic communication system. This is
because the most widely used amplitude modulators, e.g.,
LiNbO3 modulators, are polarization sensitive and feature a
polarizer, where the light can hardly be transmitted if its
orientation is not perfectly aligned in PP configuration.

To solve this problem, we thoroughly investigate a special
configuration for the DM CVQKD in which entanglement
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FIG. 1. Phase-space presentation of coherent state in the (a) four-
state protocol and (b) eight-state protocol.

source is placed at the untrusted quantum channel. By simply
moving the source out of sender’s protection, we discover that
the DM CVQKD with an untrusted entanglement source is
able to defend itself against the most powerful quantum col-
lective attacks in a certain distance range. More specifically,
we consider the configuration for two typical DM CVQKD
protocols, which are four-state protocol and eight-state pro-
tocol, respectively, and compare their performance with dif-
ferent coherent detection technologies, i.e., heterodyne detec-
tion and homodyne detection. Numeric simulation based on
linear bosonic channels shows that the performance is well
acceptable by putting the untrusted entanglement source close
to one of the legitimate parties, Alice or Bob. Moreover, by
further taking finite-size effects and composable security into
account, the DM CVQKD with an untrusted entanglement
source can still generate a positive secret key rate. As a result,
this work waives the necessity of the assumptions of a secure
signal source and an infinite length of the secret key, thereby
providing a theoretical proof for applying a DM CVQKD
system in a realistic environment.

This paper is structured as follows: In Sec. II, we briefly
introduce the two typical DM CVQKD protocols, namely, the
four-state protocol and the eight-state protocol. In Sec. III, we
detail the proposed configuration of the DM CVQKD with
an untrusted entanglement source. Performance analysis and
discussion are presented in Sec. IV and final conclusions are
drawn in Sec. V.

II. DISCRETELY MODULATED CONTINUOUS-VARIABLE
QUANTUM KEY DISTRIBUTION PROTOCOLS

To make the derivation self-contained, in this section, we
first introduce two typical discretely modulated CVQKD pro-
tocols, i.e., the four-state protocol and the eight-state protocol,
both of which can be generalized to the one with N coherent
states |αN

k 〉 = |αei2kπ/N 〉, where k ∈ {1, 2, . . . , N} and α is a
positive number related to the modulation variance of coher-
ent state as VM = 2α2 [6]. Figure 1 depicts the phase-space
presentation of the coherent state in these two protocols.

Let us first consider the prepare-and-measurement (PM)
version of the discretely modulated CVQKD protocol. Alice
randomly chooses one of the coherent states |αN

k 〉 and sends
it to the remote Bob through a lossy and noisy quantum
channel, which is characterized by a transmission efficiency

T and an excess noise ε. When Bob receives the modulated
coherent states, he can apply either homodyne or heterodyne
detector with detection efficiency μ and electronics noise vel

to measure arbitrary one of the two quadratures x̂ or p̂ (or
both quadratures). The mixture state that Bob received can be
expressed with the following form

ρN = 1

N

N∑
k=1

∣∣αN
k

〉〈
αN

k

∣∣. (1)

After the measurement, Bob reveals some values publicly
through a classical authenticated channel (see Ref. [18] for
further details about these values). This information allows
Alice and Bob to turn the information-reconciliation problem
into a well-studied channel-coding problem for the binary-
input additive white-noise Gaussian channel. The rest steps
of the protocol are standard, namely, parameter estimation,
reconciliation, and privacy amplification. Finally, Alice and
Bob can establish a correlated sequence of random secure key.

The PM version of the DM CVQKD protocol is equivalent
to the entanglement-based (EB) version, which is more con-
venient for security analysis [17,20,21]. In what follows, we
present the specific four-state protocol and eight-state protocol
with the respective EB version.

A. Four-state protocol

Alice prepares a pure state |�4〉 which is defined as

|�4〉 =
3∑

k=0

√
λk

∣∣φ4
k

〉∣∣φ4
k

〉

= 1

2

3∑
k=0

∣∣ψ4
k

〉∣∣α4
k

〉
,

(2)

where the states

|ψ4
k 〉 = 1

2

3∑
m=0

ei(1+2k)mπ/4
∣∣φ4

m

〉
(3)

are the non-Gaussian states, and the state |φ4
m〉 is given by

∣∣φ4
k

〉 = e−α2/2

√
λk

∞∑
n=0

(−1)n α4n+k

√
(4n + k)!

|4n + k〉, (4)

with

λ0,2 = 1
2 e−α2

[cosh(α2) ± cos(α2)], (5)

λ1,3 = 1
2 e−α2

[sinh(α2) ± sin(α2)], (6)

Consequently, the mixture state ρ4 can be expressed by

ρ4 = Tr(|�4〉〈�4|)

=
3∑

k=0

λk

∣∣φ4
k

〉〈
φ4

k

∣∣. (7)

Let A and B respectively denote the two output modes of the
bipartite state |�4〉, â and b̂ denote the annihilation operators
applying to mode A and B respectively. We have the covari-
ance matrix 
4

AB of the bipartite state |�4〉 with the following
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form


4
AB =

(
XI Z4σz

Z4σz Y I

)
, (8)

where I and σz represent diag(1, 1) and diag(1,−1) respec-
tively, and

X = 〈�4|1 + 2a†a|�4〉 = 1 + 2α2,

Y = 〈�4|1 + 2b†b|�4〉 = 1 + 2α2,

Z4 = 〈�4|ab + a†b†|�4〉 = 2α2
3∑

k=0

λ
3/2
k−1λ

−1/2
k . (9)

Note that the addition arithmetic should be operated with
modulo four.

After preparing the bipartite state |�4〉 with vari-
ance V = 1 + VM , Alice performs projective measurements
|ψk〉〈ψk| (k = 0, 1, 2, 3) on mode A, which projects another
mode B onto a coherent state |α4

k 〉. Alice subsequently sends
mode B to Bob through the quantum channel. Bob then
applies homodyne (or heterodyne) detection to measure the

incoming mode B. Finally, the two trusted parties Alice and
Bob extract a string of secret keys by using error correction
and privacy amplification.

B. Eight-state protocol

Similarly, Alice prepares a pure state |�8〉 which is
defined as

|�8〉 = 1

4

7∑
k=0

∣∣ψ8
k

〉∣∣α8
k

〉
, (10)

where the states

∣∣ψ8
k

〉 = 1

2

7∑
m=0

ei(1+4k)mπ/4
∣∣φ8

m

〉
(11)

are orthogonal non-Gaussian states. The state |φ8
m〉 could be

described as follows:

∣∣φ8
k

〉 = e−α2/2

√
λk

∞∑
n=0

e
α(8n+k)√

(8n+k)! |8n + k〉, (12)

with

λ0,4 = 1

4
e−α2

[
cosh(α2) + cos(α2) ± 2cos

(
α2

√
2

)
cosh

(
α2

√
2

)]
, (13)

λ1,5 = 1

4
e−α2

[
sinh(α2) + sin(α2) ±

√
2cos

(
α2

√
2

)
sinh

(
α2

√
2

)]
±

√
2sin

(
α2

√
2

)
cosh

(
α2

√
2

)]
, (14)

λ2,6 = 1

4
e−α2

[
cosh(α2) − cos(α2) ± 2sin

(
α2

√
2

)
sinh

(
α2

√
2

)]
, (15)

λ3,7 = 1

4
e−α2

[
sinh(α2) − sin(α2) ∓

√
2cos

(
α2

√
2

)
sinh

(
α2

√
2

)]
±

√
2sin

(
α2

√
2

)
cosh

(
α2

√
2

)]
. (16)

The covariance matrix 
8
AB has the form


8
AB =

(
XI Z8σz

Z8σz Y I

)
, (17)

where

X = 〈�8|1 + 2a†a|�8〉 = 1 + 2α2,

Y = 〈�8|1 + 2b†b|�8〉 = 1 + 2α2,

Z8 = 〈�8|ab + a†b†|�8〉 = 2α2
7∑

k=0

λk−1
3/2λk

−1/2. (18)

Here the addition arithmetic should be operated with modulo
eight, and the remaining steps are the same as for the four-state
protocol.

The detailed derivation of the four-state protocol and eight-
state protocol can be found in Ref. [22].

III. DISCRETELY MODULATED
CONTINUOUS-VARIABLE QUANTUM KEY

DISTRIBUTION WITH UNTRUSTED
ENTANGLEMENT SOURCE

In this section, we first detail the DM CVQKD scheme
in which the entanglement source is placed at the untrusted

quantum channel, and then derive the calculation of its asymp-
totic secret key rate.

A. Scheme

Figure 2 (top) shows the EB version of the original DM
CVQKD protocol in which bipartite state |�〉 is perfectly
protected by Alice, whose security is trusty. However, from an

FIG. 2. (top) Original DM CVQKD protocol. (bottom) DM
CVQKD with entanglement source in the untrusted channel.
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eavesdropping point of view, it is necessary to assume that Eve
could have controlled the entangled source. As shown in Fig. 2
(bottom), the source is moved out of the sender’s protection,
so that Eve may replace the quantum channel between Alice
and Bob with her own quantum channel. Two separate beam
splitters with transmittances T1 and T2 are used for simulating
the losses caused by the replaced channels. Note that the
scheme will return to the original DM CVQKD with a trusted
source when T1 = 1. Bob’s detector inefficiency is modeled
by a beam splitter with transmission μ, while its electronic
noise vel is modeled by an EPR state of variance v, one half
of which is entering the second input port of the beam splitter.

Assuming Eve launches quantum collective attack strategy,
which has been proven to be the most powerful attack under
both direct and reverse reconciliation [7]. Eve prepares her
ancillary system in a product state for both quantum links, and
the ancilla mode of each link interacts individually with a sin-
gle pulse sent to Alice and Bob, respectively. The combined
state reads

ρAE1BE2 =
∑
a,b

[
P(a)|a〉〈a| ⊗ ψa

AE1
⊕ P(b)|b〉〈b| ⊗ ψb

BE2

]⊗n
.

(19)

Then Eve exploits the so-called entangling cloner [7,23] to
perform a collective attack. In particular, Eve replaces the
channels with transmittance Ti (i = 1, 2) and excess noise
referred to the input χlinei by preparing the ancilla |Ei〉 of
variance Wi and a beam splitter of transmittance Ti. The value
Wi can be tuned to match the noise of the real channel χlinei =
1/Ti − 1 + ε. Note that for a special case which entangled
source is located in the middle of channel, the two related
beam-splitter attacks are symmetric, i.e., T1 = T2, and the total
transmittance T = T1T2. After that, Eve keeps one mode Ei1

of |Ei〉 and injects the other mode into the unused port of each
beam splitter respectively and thus acquires the output mode
Ei2. After repeating this process for each pulse, Eve stores
her ancilla modes, Ei1 and Ei2, in quantum memories. Finally,
Eve measures the exact quadrature on Ei1 and Ei2 after Alice
and Bob reveal the classical communication information. The
measurement of Ei1 will allow her to decrease the noise added
by Ei2.

B. Calculation

In what follows, we derive the expressions of asymp-
totic secret key rate for the DM CVQKD with an untrusted
entanglement source. Without loss of generality, we here
mainly consider the situation where reverse reconciliation in
use.

In general, the asymptotic secret key rate of the DM
CVQKD under collective attack can be given by

K = βI (A1 : B2) − S(B2 : E ), (20)

where β is reverse reconciliation efficiency, and I (A1 : B2)
is the Shannon mutual information between Alice and Bob,
which can be straightforwardly derived as [24]

I (A1 : B2) =
{

log2
V +χtot

1+χtot
, for heterodyne detection

1
2 log2

V +χtot

1+χtot
, for homodyne detection,

(21)

where χtot = χline + χh/T is the total noise referred to
the channel input χline = 1/T − 1 + ε and detection in-
put χh := χhet = (2 − μ + 2vel )/μ for heterodyne detection
or χh := χhom = (1 − μ + vel )/μ for homodyne detection.
Term S(B2 : E ) denotes the maximum information available
to Eve on Bob’s measurement, it is bounded by Holevo
quantity [25]

S(B2 : E ) = S(ρE ) −
∫

dmBP(mB)S
(
ρ

mB
E

)
, (22)

where mB denotes Bob’s measurement result, it can be ex-
pressed as mB = xB, pB for heterodyne detection or mB = xB

for homodyne detection. P(mB) is the probability density of
the measurement, ρ

mB
E is the eavesdropper’s state conditional

on Bob’s measurement result, and S is the von Neumann
entropy of the quantum state ρ.

Due to the fact that Eve’s system purifies the system A1B1

and Bob’s measurement purifies the system A1EFG, Eq. (22)
can be further expressed as

S(B2 : E ) = S(ρA1B1 ) − S
(
ρ

mB
A1FG

)
=

2∑
j=1

G

(
λ j − 1

2

)
−

5∑
j=3

G

(
λ j − 1

2

)
, (23)

where G(x) = (x + 1)log2(x + 1) − xlog2x is the von Neu-
mann entropy and λ1, λ2 are symplectic eigenvalues of the
covariance matrix 
A1B1 characterizing the state ρA1B1 , and λ3,
λ4, λ5 are symplectic eigenvalues of the covariance matrix



mB
A1FG characterizing the state ρ

mB
A1FG after Bob’s coherent

measurement.
The first covariance matrix 
A1B1 depends on the system

after mode A and B passed respective quantum channel, so
that the first part of Eq. (23) can be given by


A1B1 =
(

aI cσz

cσz bI

)
, (24)

where a = T1V + (1 − T1)W1, b = T2V + (1 − T2)W2, and
c = [T1T2(V 2 − 1)]1/2. Therefore, the symplectic eigenvalues
λ1, λ2 of the above matrix can be calculated by

λ2
1,2 = 1

2 [� ±
√

�2 − 4C], (25)

with

� = a2 + b2 − 2c2 (26)

and

C = (ab − c2)2. (27)

The second covariance matrix 

mB
A1FG can be written as



mB
A1FG = 
A1FG − σ T

A1FGB2
�σA1FGB2 , (28)

where � = (
B2 + I)−1 for heterodyne detection and � =
(X
B2 X )MP for homodyne detection, with

X =
[

1 0
0 0

]
,
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and MP presents the Moore-Penrose pseudoinverse of a ma-
trix. The matrices 
A1FG, 
B2 , and σA1FGB2 can all be derived
from the decomposition of the covariance matrix 
A1FGB2 ,
which can be derived with appropriate rearrangement of lines
and columns from the matrix describing the quantum system
ρA1B2FG, we have


A1B2FG = (Y BS )T
[

A1B1 ⊕ 
F0G

]
Y BS, (29)

where 
F0G is the matrix that describes the EPR state with
variance v used to model the detector’s electronic noise. It can
be written as


F0G =
(

vI
√

v2 − 1σz√
v2 − 1σz vI

)
, (30)

where v takes the proper value for coherent detection. The
matrix Y BS describes the beam splitter transformation that
models the inefficiency of the detector and acts on modes B1

and F0. It can be expressed by

Y BS = IA1 ⊕
( √

μI
√

1 − μI

−√
1 − μI

√
μI

)
⊕ IG. (31)

Now, we have all the elements required to proceed to the
calculation of the symplectic eigenvalues λ3, λ4, λ5 which are
given by the following form:

λ2
3,4 = 1

2 [O ±
√

O2 − 4D],

λ5 = 1, (32)

where for heterodyne detection,

Ohet = 1

T 2(V + χtot )2

[
�χ2

het + C + 1

+ 2χhet (V
√

C + T (V + χline ) + 2T Z2)
]
, (33)

Dhet =
(

V + √
Cχhet

T (V + χtot )

)2

, (34)

and for homodyne detection,

Ohom = �χhom + V
√

C + T (V + χline )

T (V + χtot )
, (35)

Dhom =
√

C
V + √

Cχhom

T (V + χtot )
. (36)

Finally, we can calculate the Holevo information bound S(B2 :
E ) and thereby derive the asymptotic secret key rate K of the
DM CVQKD with an untrusted entanglement source.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

For comparison, we first present the performance of the
original DM CVQKD protocols depicted in Fig. 2 (top),
whose calculation can be found in Ref. [15]. Figure 3 shows
the asymptotic secret key rates of four-state protocol and
eight-state protocol as functions of transmission distance.
Although the eight-state protocol outperforms the four-state
protocol in terms of maximal transmission distance, both
protocols achieve more than 150 km. In particular, the per-
formance of the protocols with fixed Vm (Vm = 0.3 for the
four-state protocol and Vm = 0.35 for the eight-state protocol)

FIG. 3. Performance of original DM CVQKD protocols. The
upper solid line (red) denotes the four-state protocol with optimal
modulation variance and the lower solid line (blue) denotes the eight-
state protocol with optimal modulation variance. The upper dashed
line (purple) denotes the four-state protocol with fixed Vm = 0.3 and
the lower dashed line (yellow) denotes the eight-state protocol with
fixed Vm = 0.35. Inset shows the optimal modulation variance as a
function of transmission distance. The parameters of this paper are
set to μ = 0.6, vel = 0.05, reconciliation efficiency β = 0.98, and
excess noise ε = 0.01.

is very similar to the performance of the protocols with
optimized Vm, which is quite different from the Gaussian-
modulated CVQKD protocol [26]. Therefore, we can use
these fixed values to perform the following numeric experi-
ments:

Heterodyne-detection case. Figure 4 shows the perfor-
mance of the DM CVQKD with an untrusted entanglement
source using heterodyne detection. We find that both four-
state protocol and eight-state protocol can still generate posi-
tive secret key rate in certain distance range between Alice and
the untrusted source. However, their performance is remark-
ably reduced when compared with the original DM CVQKD
protocol. In particular, the maximal transmission distance is
immediately decreased to approximately 20 km for the four-
state protocol and 25 km for the eight-state protocol, once the
source is just moved out of the sender’s protection (but very
close to the sender, LAlice → 0 km). As shown in Fig. 5, the
definition of the notation LAlice → 0 km is not equivalent to
that of LAlice = 0 km. The former denotes that the source is
placed at the port of Alice’s side without protection so that
we have VA1 = lim a = V + ε, while the latter denotes that the
source is placed inside the sender, which returns to the original
DM CVQKD protocol, so we have VA1 = V . Since the security
of the DM CVQKD under quantum collective attack can only
be guaranteed by the small modulation variance shown in the
inset of Fig. 3, the negative impact of excess noise on the
DM CVQKD system is larger than that on the GM CVQKD
system for short-distance transmission. On the other hand, as
shown in Fig. 6, the Holevo information of the protocols with
LAlice → 0 km is more than that of the protocols with LAlice =
0 km (original DM CVQKD protocol), while their Shannon
mutual information does not change regardless of LAlice →
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FIG. 4. Performance of (a) four-state protocol with untrusted
entanglement source and (b) eight-state protocol with untrusted
entanglement source using heterodyne detection. LAlice is the distance
between Alice and the signal source. From left to right (main figure)
and from top to bottom (inset), the solid lines denote LAlice → 0 km,
LAlice = 0.1 km, LAlice = 0.3 km, LAlice = 0.5 km and (a) LAlice =
0.7 km or (b) LAlice = 0.6 km.

0 km or LAlice = 0 km. This illustrates that the untrusted
source can enhance the power of Eve’s quantum collective
attack. As a result, the performance is fast reduced when
the untrusted source is very close to the sender. However,
the maximal transmission distance can be increased as the
source slowly moves far away from the sender. The reason
is that the Holevo information S(B2 : E ) decreases rapidly as
the risen distance LAlice, which is shown in the insets of Fig. 4.

Homodyne-detection case. Figure 7 shows the performance
of the DM CVQKD with an untrusted entanglement source
using homodyne detection. Both the four-state protocol and
the eight-state protocol can also generate a positive secret
key rate, and their maximal transmission distances are even
longer than those in heterodyne-detection case. For instance,
the maximal transmission distance of the eight-state protocol
with LAlice = 0.6 km in the homodyne-detection case is nearly
70 km, while it is close to 50 km with heterodyne detection.
The probable reason is that heterodyne detection is more noisy

FIG. 5. Different definition of the notations LAlice = 0 and
LAlice → 0. (left) LAlice = 0 denotes that the signal source is placed
in the Alice side and cannot be compromised, so that the source
is trusted. (right) LAlice → 0 denotes that the signal source is very
close to Alice but not protected by the sender, so that the source is
untrusted.

than homodyne detection in a realistic scenario (μ = 0.6 and
vel = 0.05), this part of the noise can be counted on as a part of
Eve’s intercepted information, thereby resulting the obvious
increase of Holevo bound, which is shown in Fig. 8. However,
the change of Shannon mutual information between Alice and
Bob is quite slight (shown in the inset of Fig. 8), therefore,
the overall performance of the DM CVQKD with an untrusted
entanglement source in the heterodyne-detection case is worse
than that in the homodyne-detection case.

In addition, we also investigate another situation where
the untrusted source is close to Bob’s side. We find that
the result has symmetrical characteristics. That is to say, the
performance can be obtained in both the heterodyne-detection
case and the homodyne-detection case by simply replacing the
notation LAlice with LBob.

It is worth noting that the above asymptotic performance
of the DM CVQKD with an untrusted source is based on
the technique developed in Ref. [16], which proved the
asymptotic security of the DM CVQKD against collective
attacks under a linear quantum channel. Very recently, the

FIG. 6. Holevo bounds of DM CVQKD protocols as a function
of transmission distance in different LAlice (heterodyne detection).
From top to bottom (main figure), the dotted lines denote the four-
state protocol with LAlice = 0, the eight-state protocol with LAlice = 0,
the four-state protocol with LAlice → 0, and the eight-state protocol
with LAlice → 0, respectively. From top to bottom (inset), the solid
lines denote the four-state protocol and the eight-state protocol.
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FIG. 7. Performance of (a) four-state protocol with untrusted
entanglement source and (b) eight-state protocol with untrusted
entanglement source using homodyne detection. From left to right
(main figure) and from top to bottom (right side of the inset), the
solid lines denote LAlice → 0 km, LAlice = 0.1 km, LAlice = 0.3 km,
LAlice = 0.5 km and (a) LAlice = 0.7 km or (b) LAlice = 0.6 km.

asymptotic security of the original DM CVQKD against ar-
bitrary collective attacks has been proven [17,18], so that one
can obtain a tighter asymptotic bound of the DM CVQKD
with an untrusted source by removing the hidden linear-
channel assumption.

Moreover, the above analysis considers the security of a
protocol in the asymptotic regime of infinity many signals
exchanged by Alice and Bob. However, the realistic secu-
rity of all QKD implementations realized until now is in
fact jeopardized due to the finite length of the data blocks
exchanged by the legitimate users [8]. Therefore, it is nec-
essary to consider the impact of finite-size effects on the
DM CVQKD with an untrusted entanglement source. In the
finite-size scenario, the secret key rate of Eq. (20) is modified
as

Kfini = n

N
[βI (A1 : B2) − SεPE (B2 : E ) − �(n)], (37)

FIG. 8. Holevo bounds of eight-state protocol with LAlice =
0.6 km as a function of transmission distance in different detection
technologies. From top to bottom in both the main figure and the
inset, the lines denote heterodyne detection and homodyne detection,
respectively.

where N denotes the total number of the exchanged sig-
nals and n denotes the number of signals used for shar-
ing the key between Alice and Bob. The remaining N −
n signals is used for parameter estimation with the fail-
ure probability εPE . The parameter �(n) is related to
the security of the privacy amplification, which is given
by

�(n) = (2dimHB + 3)

√
log2(2/ε̄)

n
+ 2

n
log2(1/εPA), (38)

where ε̄ is a smoothing parameter, εPA is the failure proba-
bility of privacy amplification, and HB is the Hilbert space
corresponding to Bob’s raw key. Since the raw key is usually
encoded on binary bits, we have dimHB = 2. We do not
proceed a detailed derivation for the finite-size calculation
here, since it can be found in our previous work [15]. As
an example, Fig. 9 shows the performance of the eight-state
protocol with LAlice = 0.6 km using homodyne detection in
the finite-size regime. Although the maximal transmission
distance decreases as the reduction of the data-block length,
it can still generate a positive secret key rate when the
block length N = 107. A similar trend also occurred in other
situations. Therefore, the DM CVQKD with an untrusted
entanglement source is available for practical transmission
with a finite secret key.

Finally, let us consider the performance of the DM
CVQKD with an untrusted source in composable security
framework. The composable security, which takes every step’s
failure probability of the CVQKD system into account, is the
strictest theoretical security analysis of the CVQKD system so
that one can obtain a more practical secure bound. Figure 10
depicts the composable secret key rate of the eight-state
protocol with LAlice = 0.6 km using homodyne detection as
a function of total exchanged signals N (other situations have
a similar trend); its calculation is presented in the Appendix.
We find that the performance is more pessimistic than that
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FIG. 9. Finite-size secret key rate of eight-state protocol with
LAlice = 0.6 km using homodyne detection as a function of transmis-
sion distance. From left to right, dashed lines correspond to block
lengths of N = 107, N = 108, N = 1010, N = 1012, and N = 1014.
Parameters are set to n = N/2, ε̄ = εPE = εPA = 10−10.

obtained in the finite-size regime. For example, the positive
secret key rate exists in finite-size regime but vanishes in a
composable security framework when the block length N =
1012 and the transmission distance is 60 km. It is worth men-
tioning that the technique we used for analyzing composable
security is developed in Ref. [9], which mainly focuses on
the composable analysis of the GM CVQKD. Fortunately,
it can also be used for the composable analysis of the DM
CVQKD with the linear quantum channel [15]. Most recently,
a latest study on the composable security of the DM CVQKD
against collective Gaussian attacks has been proposed (but
has not been officially published yet) [27], so that one may
obtain a more precise composable security bound of the DM

FIG. 10. Composable secret key rate of eight-state protocol with
LAlice = 0.6 km using homodyne detection as a function of number
of exchanged signals. From left to right, lines correspond to trans-
mission distances of 10, 20, 40, and 60 km. See the Appendix for the
settings of parameters.

CVQKD with an untrusted source by taking advantage of their
techniques in the future.

V. CONCLUSION

In this paper, we have thoroughly investigated the DM
CVQKD with a special configuration in which the signal
source is placed at the untrusted quantum channel. By moving
the entanglement source out of Alice’s side, the source is
no longer protected by the trusted sender but is exposed to
the vulnerable environment. Specifically, we have considered
two typical DM CVQKD protocols, which are the four-
state protocol and the eight-state protocol, and two classic
coherent detection technologies, i.e., heterodyne detection
and homodyne detection. A security analysis based on the
linear bosonic channel shows that the DM CVQKD with an
untrusted entanglement source is able to defend itself against
the most powerful quantum collective attack when the source
is close to one of the legitimate users, thereby discarding
the necessity of the security assumption that signal source
cannot be compromised. Moreover, by taking account of the
finite-size effect and composable security, the DM CVQKD
with an untrusted entanglement source can still generate a pos-
itive secret key rate. Although its performance is degenerated
without the assumptions of the security source and the infinite
length of secret key, this work evaluates the performance of
the DM CVQKD in realistic conditions, thereby providing a
theoretical ground for applying the DM CVQKD system to a
real environment.
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APPENDIX: COMPOSABLE SECRET KEY RATE OF
DISCRETELY MODULATED CONTINUOUS-VARIABLE

QUANTUM KEY DISTRIBUTION WITH
UNTRUSTED SOURCE

Before we detail the calculation of the composable secret
key rate for the DM CVQKD with an untrusted source, several
parameters need to be defined at first.

Let d be the number of bits on which each coherent state
is encoded, so we have d = 2 for the four-state protocol and
d = 3 for the eight-state protocol. Let lEC be the size of Bob’s
communication to Alice during the error-correction step, εPE

be the maximum failure probability of parameter estimation
step, εcor be the small probability of the failure that the keys
of Alice and Bob are not identical and the protocol did not
abort, nPE be the number of bits that Bob sends to Alice during
the parameter-estimation step, and �max

a , �max
b , �min

c be the
bounds on covariance matrix elements, which must be apt in
the realization of the protocol.

Assuming ε = 2εsm + ε + εPE/ε + εcor/ε + εent/ε, a
CVQKD protocol is ε secure against collective attacks when
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the final key length n is selected such that

n � 2NĤMLE (U ) − NF
(
�max

a , �max
b , �min

c

)
− lEC − �AEP − �ent − 2 log2

1

2ε
, (A1)

where ĤMLE (U ) is the empiric entropy of U , and F is the
function computing the Holevo information between Eve and
Bob, and

�AEP =
√

N (d + 1)2 +
√

16N (d + 1) log2
2

ε2
sm

+
√

4N log2
2

ε2εsm
− 4

εsmd

ε
, (A2)

�ent = log2
1

ε
−

√
4N log2 (2N ) log2 (2/εsm). (A3)

Since the calculation is based on a linear quantum channel
with transmissivity T = T1T2 and excess noise ε, we have the
following model to describe the error correction:

βI (A : B) = 2ĤMLE (U ) − 1

2n
lEC . (A4)

For simplicity, we only consider homodyne detection, so that
I (A : B) can be further expressed as

I (A : B) = 1

2
log2 (1 + SNR)

= 1

2
log2

(
1 + TVM

2 + T ε

)
. (A5)

In addition, we assume that the robustness of the protocol is
εrob � 10−2, rendering the probability of passing the param-
eter estimation to no less than 0.99. This can be achieved by
taking values for �max

a , �max
b , �min

c differing by three standard
deviations from the expected values. After doing that, the

values of random variables ||X ||2, ||Y ||2, and 〈X,Y 〉 satisfy
the following restraints:

||X ||2 � T1(N + 3
√

N )(X + χline1 ), (A6)

||Y ||2 � T2(N + 3
√

N )(Y + χline2 ), (A7)

〈X,Y 〉 � (N − 3
√

N )
√

T Z. (A8)

Note that the above restraints can be acquired from the co-
variance matrix 
A1B2 of the DM CVQKD with an untrusted
entanglement source. According to these bounds, we can
derive

�max
a = ||X ||2

N

[
1 + 2

√
log2 (36/εPE )

N/2

]
− 1, (A9)

�max
b = ||Y ||2

N

[
1 + 2

√
log2 (36/εPE )

N/2

]
− 1, (A10)

�min
c = 〈X,Y 〉

N
− 5

(||X ||2 + ||Y ||2)
√

log2 (8/εPE )

(N/2)3 . (A11)

With all the equations, the composable secret key rate of the
DM CVQKD with an untrusted entanglement source can be
calculated by

Kcomposable = (1 − εrob)

{
βI (A : B)

−F
(
�max

a ,�max
b ,�min

c

)
− 1

N

(
�AEP + �ent + 2 log2

1

2ε

)}
. (A12)

It is worth noting that the parameters have to be optimized to
satisfy ε = 10−20, but to simplify the data process, we make
the following suboptimized choices:

εsm = ε = 10−21,

εPE = εcor = εent = 10−41.
(A13)
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