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Generalization of Pauli channels through mutually unbiased measurements
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(Received 3 July 2020; accepted 25 August 2020; published 3 September 2020)

We introduce a generalization of the Pauli channels using the mutually unbiased measurement operators. The
resulting channels are bistochastic, but their eigenvectors are not unitary. We analyze the channel properties, such
as complete positivity, entanglement breaking, and the multiplicativity of maximal output purity. We illustrate
our results with the maps constructed from the Gell-Mann matrices and the Heisenberg-Weyl observables.
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I. INTRODUCTION

The concept of mutual unbiasedness was first considered
in regard to orthonormal vector bases. Two orthonormal bases
are called mutually unbiased if the probability of transition
between any of their vectors is constant. The d-dimensional
Hilbert space admits at most d + 1 mutually unbiased bases
(MUBs), and the maximum is reached for d being a prime
power [1,2]. In any dimension d , one can always construct
at least three MUBs [3]. A new approach to unbiasedness was
introduced by Kalev and Gour [4], who generalized the notion
of mutually unbiased bases to the mutually unbiased mea-
surements (MUMs). These are the sets of positive operators
that sum up to identity and contain the projectors onto MUB
vectors as a special case of projective measurements. Interest-
ingly, one can always construct d + 1 MUMs, regardless of
the dimension d .

The applications of mutually unbiased measurements have
been widely studied in uncertainty relations and entangle-
ment detection. In particular, the MUMs were used to derive
state-dependent [5], state-independent [6], and fine-grained
[7] entropic uncertainty relations. The last type helped in
finding new separability conditions for bipartite systems [8].
Moreover, it was shown that there is an equality between
the amounts of uncertainty for MUMs and entanglement
of the measured states quantified by the conditional colli-
sion entropy [9]. New separability criteria were given for
arbitrary d-dimensional bipartite [10–12] and multipartite
systems [13,14]. Liu et al. [15] provided the criteria whose
experimental implementation does not require full-state to-
mography. In another paper [16], they also presented the
conditions for k-nonseparability detection of multipartite qu-
dit systems. Graydon and Appleby generalized projective
two-designs to conical t-designs [17] and applied them to
describe a connection between designs and entanglement [18].
Recently, the MUMs were also used to find more operational
Einstein-Podolsky-Rosen steering inequalities [19]. Finally,
Li et al. [20] used the MUMs to introduce new positive quan-
tum maps and entanglement witnesses, which generalize the
constructions from [21].

In this paper, we construct a class of bistochastic quantum
channels. These channels generalize Nathanson and Ruskai’s

diagonal Pauli channels constant on axes (also known as
generalized Pauli channels), whose definition includes the
mutually unbiased bases. Our construction method uses the
mutually unbiased measurement operators. It is valid for any
finite dimension d , as one can always find the maximal num-
ber of d + 1 MUMs. We find the necessary and sufficient
conditions for complete positivity of the channels. We also an-
alyze how the properties of Nathanson and Ruskai’s channels
change after replacing the MUBs with MUMs. Finally, we
provide examples of bistochastic channels whose eigenvectors
are not unitary operators.

II. MUTUALLY UNBIASED MEASUREMENTS

Following the work by Kalev and Gour [4], let us introduce
the notion of mutually unbiasedness for measurement oper-
ators. In quantum mechanics, a measurement is determined
by a set of measurement operators [positive operator-valued
measures (POVMs)] Mk that are positive and sum up to iden-
tity, {Mk|Mk � 0,

∑
k Mk = Id}. The probability of the kth

outcome is Tr(Mkρ), where ρ is the density operator of a
quantum system. As a special case, one considers the pro-
jective measurement, where the measurement operators Mk

are orthogonal projectors. Clearly, mutually unbiased bases
can be used to perform projective measurements. Consider
N orthonormal bases {ψ (α)

k , k = 0, . . . , d − 1} in Cd that are
numbered by α = 1, . . . , N . These bases are mutually unbi-
ased if and only if |〈ψ (α)

k |ψ (β )
l 〉|2 = 1/d for α �= β. Therefore,

the set of projectors P(α)
k = |ψ (α)

k 〉〈ψ (α)
k | onto the αth basis

forms a measurement with the following properties:

Tr
(
P(α)

k

) = 1,

Tr
(
P(α)

k P(β )
l

) = δαβδkl + 1

d
(1 − δαβ ).

(1)

Note that P(α)
k can be regarded as either states or measure-

ment operators. Therefore, two projective measurements are
mutually unbiased if the probability of measuring one with the
other is constant. This notion can be generalized to POVMs.
Namely, the measurements {P(α)

k |P(α)
k � 0,

∑d−1
k=0 P(α)

k = Id}
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are mutually unbiased if and only if [4]

Tr
(
P(α)

k

) = 1,

Tr
(
P(α)

k P(β )
l

) = 1

d
+ dκ − 1

d − 1
δαβ

(
δkl − 1

d

)
, (2)

where 1/d < κ � 1. For κ = 1, the above conditions repro-
duce Eq. (1). It is important to note that one can always
construct the maximal number of d + 1 mutually unbiased
measurements. Moreover, MUMs form an informationally
complete set, and any state can be written as

ρ = 1

d
Id + d − 1

dκ − 1

d+1∑
α=1

d−1∑
k=0

P(α)
k

[
Tr

(
ρP(α)

k

) − 1

d

]
. (3)

In their seminal paper, Kalev and Gour [4] proposed a
method of constructing d + 1 MUMs from an orthonor-
mal basis {Id/

√
d, Fα,k|α = 1, . . . , d + 1, k = 1, . . . , d − 1},

where Fα,k are traceless Hermitian operators. Namely, one has

P(α)
k = 1

d
Id + tF (α)

k , (4)

where

F (α)
k =

{∑d−1
l=1 Fα,l − √

d (1 + √
d )Fα,k, k �= 0,

(1 + √
d )

∑d−1
l=1 Fα,l , k = 0,

(5)

and t �= 0 is a free real parameter such that P(α)
k � 0. The

relation between t and κ reads

κ = 1

d
+ (d − 1)t2(1 +

√
d )2. (6)

III. GENERALIZATION OF PAULI CHANNELS

A mixed unitary evolution of a qubit is described by the
Pauli channel

�[ρ] =
3∑

α=0

pασαρσα, (7)

which is the most general form of a bistochastic quantum
channel [22,23]. In the above formula, pα denote the proba-
bility distribution, and σα are the Pauli matrices. One has

�[σα] = λασα, (8)

where λ0 = 1 and

λα = 2(p0 + pα ) − 1 (9)

for α = 1, 2, 3. Now, � is completely positive if and only
if its eigenvalues λα satisfy the Fujiwara-Algoet conditions
[22,24,25]

−1 �
3∑

α=1

λα � 1 + 2 min
α

λα. (10)

An interesting feature of the Pauli channels is that the
eigenvectors of their Kraus operators σα are mutually unbi-
ased. This property was used by Nathanson and Ruskai [26]
to introduce the generalized Pauli channels

� = d p0 − 1

d − 1
1l + d

d − 1

d+1∑
α=1

pα�α, (11)

where pα is the probability distribution, 1l denotes the identity
map, and

�α[X ] =
d−1∑
k=0

P(α)
k Tr

(
XP(α)

k

)
(12)

are the quantum-classical channels constructed from the pro-
jectors P(α)

k onto the MUB vectors. It has been shown that [27]

�α�β = �0, α �= β,

�α�α = �α,

d+1∑
α=1

�α = d�0 + 1l, (13)

where �0[X ] = Id Tr(X )/d is the completely depolarizing
channel. Now, the eigenvalue equations for � read �[Id ] =
Id and

�[Uα,k] = λαUα,k (14)

with the unitary operators

Uα,k =
d−1∑
l=0

ωkl P(α)
l , ω = e2π i/d . (15)

This indicates that � is a bistochastic channel. It is also self-
dual (� = �†), so its (d − 1)-times degenerated eigenvalues

λα = 1

d − 1
[d (pα + p0) − 1] (16)

are real. Note that the generalized Pauli channels can be equiv-
alently written as

� = p01l + 1

d − 1

d+1∑
α=1

pαUα, (17)

where

Uα[X ] =
d−1∑
k=1

Uα,kXU †
α,k (18)

satisfies Uα = d�α − 1l. The complete positivity conditions
for � are the generalized Fujiwara-Algoet conditions [26]

− 1

d − 1
�

d+1∑
α=1

λα � 1 + d min
α

λα. (19)

Our goal is to generalize the generalized Pauli channels
from Eq. (11). We achieve this by replacing the mutually
unbiased bases with mutually unbiased measurements. After
this procedure, the bistochastic quantum-classical channels
from Eq. (12) no longer satisfy properties (13) but instead

�α�β = �0, α �= β,

�α�α

[
P(β )

l

] = �0, α �= β,

�α�α

[
P(α)

l

] = dκ − 1

d − 1
�α

[
P(α)

l

] + d (1 − κ )

d − 1
�0

[
P(α)

l

]
,

d+1∑
α=1

�α = d (d − κ )

d − 1
�0 + dκ − 1

d − 1
1l. (20)
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The generalized Pauli channel has the form (11), and its eigen-
vectors are again Uα,k defined in Eq. (15), as

�α[Uβ,l ] = dκ − 1

d − 1
δαβUβ,l . (21)

This time, however, there is no simple relation between Uα

and �α . Now, Uα,k form an orthogonal basis with

Tr[Uα,kU
†
β,l ] = d (dκ − 1)

d − 1
δαβδkl . (22)

Observe that, in terms of the Hermitian orthonormal basis,
these operators read

Uα,k =
√

dt
d−1∑
l=1

Fα,l [1 − (
√

d + 1)ωkl ], (23)

and they are no longer unitary by definition. Therefore,
our method allows one to construct bistochastic channels
whose eigenvectors are not unitary. The eigenvalues of � are
given by

λα = 1

d − 1

[
d

(
p0 + dκ − 1

d − 1
pα

)
− 1

]
, (24)

where the inverse relation is

p0 = 1

d2(d − κ )

[
(d − 1)2

d+1∑
α=1

λα − d (dκ − 1) + d2 − 1

]
,

pα = (d − 1)2

d2(dκ − 1)(d − κ )

[
dκ − 1 + d (d − κ )λα

− (d − 1)
d+1∑
β=1

λβ

]
.

Sufficient complete positivity conditions for the generalized
Pauli channels read p0 � 1/d and pα � 0, which is equi-
valent to

dκ − 1

d − 1
�

d+1∑
α=1

λα � 1

d − 1

[
dκ − 1 + d (d − κ ) min

β
λβ

]
.

(25)

Remark 1. Note that the operators Uα,k can be used to
generate d + 1 mutually unbiased measurements. Namely, let
us take any orthogonal basis {Id ,Uα,k} with U †

α,k = Uα,d−k , a
normalization given by Eq. (22), and satisfying an additional
condition, Id + ∑d−1

l=1 ω−klUα,l � 0. Then, by inverting for-
mula (15), we get

P(α)
k = 1

d

[
Id +

d−1∑
l=1

ω−klUα,l

]
. (26)

It is straightforward to check that such P(α)
k form a POVM and

satisfy conditions (2). If for Uα,k one chooses the operators
that form a cyclic subgroup, then Uα,k are linearly proportional
to the Weyl operators Wkl = ∑d−1

m=0 ωmk|m + l〉〈m|, and P(α)
k

are rank-1 projectors onto the mutually unbiased bases.

IV. PROPERTIES

In this section, we show which properties of the gener-
alized Pauli channels constructed from MUBs transfer over
after one replaces MUBs with MUMs. First, in general, the
generalized Pauli channels � are no longer covariant with
respect to all Uα,k [28], which means that

�[Uα,kXU †
α,k] = Uα,k�[X ]U †

α,k (27)

does not hold for an arbitrary operator X [29]. However,
one still has ��α = �α� for every α = 1, . . . , d + 1. Next,
the necessary and sufficient conditions

∑d+1
α=1 λα � 1 for en-

tanglement breaking of � with λα � 0 [26] become only
necessary. New sufficient conditions are established in the
following theorem.

Theorem 1. The generalized Pauli channel with λα � 0 is
entanglement breaking if

∑d+1
α=1 λα � dκ−1

d−1 .
Proof. Recall that a quantum channel � is entanglement

breaking if and only if it can be written in the Holevo form
�[X ] = ∑

j R jTr(ρEj ), where Rj are density operators and
{Ej} form a POVM [30]. Observe that the generalized Pauli
channels can be equivalently rewritten as

� =
(

1 −
d+1∑
α=1

μα

)
�0 +

d+1∑
α=1

μα�α, (28)

with

μα = d − 1

dκ − 1
λα. (29)

Now, it is easy to show that

� =
d+1∑
α=1

d−1∑
k=0

P(α)
k Tr[XEk,α], (30)

with

Ek,α = 1 − ∑d+1
β=1 μβ

d (d + 1)
Id + μαP(α)

k . (31)

By definition, P(α)
k is a density operator, and Ek,α is a sum of

two positive operators, so it is also positive. Finally,

d+1∑
α=1

d−1∑
k=0

Ek,α = Id , (32)

and hence, {Ek,α} form a POVM.
There are several important measures that have been ana-

lyzed for Nathanson and Ruskai’s generalized Pauli channels.
One of them is the minimal and maximal channel fidelity
fmin / max(�) on pure states [31,32] that measures the distance
between the input P and the output state �[P]. Unluckily, the
formulas for fmin / max(�) do not carry over to the general-
ized Pauli channels constructed from MUMs. The reason is
that the extremal fidelities for the channels constant on axes
are reached on the projectors onto MUB vectors. However,
the mutually unbiased measurements are not projectors, and
the formula for the channel fidelity on mixed states is much
more complicated than on pure states [33]. Another important
measure is the maximal output p-norm νp(�) that measures
optimal output purity. In other words, νp(�) determines how
close the channel output �[ρ] is to a pure state. If � is
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constructed from MUBs, the analytical formulas for ν2(�)
and ν∞(�) are known [26,32]. However, only the former
generalizes in a straightforward manner.

Theorem 2. The maximal output two-norm of � is equal to

ν2
2 (�) = 1

d

[
1 + (dκ − 1) max

α
λ2

α

]
. (33)

Proof. Starting from Eq. (28), we calculate the Frobenius
norm

‖�[ρ]‖2
2 = Tr(�[ρ]2)

= 1

d
+ d − 1

dκ − 1

d+1∑
α=1

λ2
α

[
d−1∑
k=0

(
TrρP(α)

k

)2 − 1

d

]
.

Observe that ‖�[ρ]‖2
2 achieves its maximal value for ρ =

P(α∗ )
l , where λα∗ = √

maxα λ2
α . We find that

d−1∑
k=0

(
TrP(α)

k P(β )
l

)2 = 1

d

[
1 + (dκ − 1)2

d − 1
δαβ

]
, (34)

and hence, Eq. (33) follows.
By definition, the maximal output two-norm of � is

strongly multiplicative if ν2(� ⊗ �) = ν2(�)ν2(�) for any
quantum channel �. From the theorem by Fukuda, Holevo,
and Nathanson [34,35], it follows that ν2(�) is strongly mul-
tiplicative if and only if

ν2
2 (�) = 1

d

[
1 + (d − 1) max

α
|λα|2

]
. (35)

Observe that ν2(�) in Eq. (33) satisfies the above condition
only for κ = 1.

V. EXAMPLES

A. Pauli matrices

Let us consider d = 2 and construct the mutually unbi-
ased measurements from the rescaled Pauli matrices F1,α =
σα/

√
2. Now, using Eq. (23), we find that the MUMs are

given by

P(α)
k = 1

d
Id + (−1)kt

1 + √
2√

2
σα, (36)

where

−
√

2 − 1√
2

� t � 1

2 + √
2

(37)

and t �= 0. Interestingly, the corresponding parameter κ be-
longs to the full range 1/2 < κ � 1. The channel eigenvectors
Uα,1 are again rescaled Pauli matrices,

Uα,1 = P(α)
0 − P(α)

1 = 2t
1 + √

2√
2

σα. (38)

Therefore, regardless of the choice of κ , � is the Pauli
channel.

B. Gell-Mann matrices

Now, consider the higher-dimensional (d � 3) Hermitian
generalization of the Pauli matrices, known as the Gell-Mann
matrices. They are defined as follows:

σkl := 1√
2

(|k〉〈l| + |l〉〈k|), (39)

σlk := i√
2

(|k〉〈l| − |l〉〈k|), (40)

σkk :=
√

1

k(k + 1)

(
k−1∑
j=0

| j〉〈 j| − k|k〉〈k|
)

(41)

for all 0 � k < l � d − 1 and 0 � k � d − 1, respectively.
Together with σ00 = Id/

√
d , they form an orthonormal Her-

mitian operator basis. After Kalev and Gour [4], we group the
operators into the following sets:

{Fα,k|k = 1, . . . , d − 1} = {σk,α−1|k �= α − 1},
{Fd+1,k|k = 1, . . . , d − 1} = {σkk|k = 1, . . . , d − 1}.

In the next step, we construct

F (d+1)
0 = (

√
d + 1)

d−1∑
l=1

σll , (42)

F (d+1)
k = −

√
d (

√
d + 1)σkk +

d−1∑
l=1

σll (43)

for k = 1, . . . , d − 1, as well as

F (α)
k = −

√
d (

√
d + 1)σk,α−1 +

∑
l �=α−1

σl,α−1, (44)

F (α)
α−1 = (

√
d + 1)

∑
l �=α−1

σl,α−1 (45)

for k �= α − 1 and α = 1, . . . , d . The corresponding MUMs
are given by

P(α)
k = 1

d
Id + tF (α)

k , (46)

where t is a free parameter such that P(α)
k � 0. Let us take the

optimal

t =
√

2

d (
√

d + 1)
√

d − 1
, (47)

which follows from the optimal κ = d+2
d2 via Eq. (6) and

guarantees that P(α)
k � 0 [4]. One easily finds

Ud+1,k =
√

dt
d−1∑
l=1

σll [1 − (
√

d + 1)ωkl ], (48)

Uα,k =
√

dt
α−2∑
l=0

σl,α−1[1 − (
√

d + 1)ωk(l+1)]

+
√

dt
d−1∑
l=α

σl,α−1[1 − (
√

d + 1)ωkl ]. (49)
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For d = 3, these operators explicitly read

U1,1 = U †
1,2 = 3

2
√

2
(1 +

√
3)t

⎛
⎝ 0 −1 − i 1 − i

1 + i 0 0
−1 + i 0 0

⎞
⎠,

(50)

U2,1 = U †
2,2 = 3

2
√

2
(1 +

√
3)t

⎛
⎝ 0 1 − i 0

1 − i 0 1 − i
0 −1 + i 0

⎞
⎠,

(51)

U3,1 = U †
3,2 = 3

2
√

2
(1 +

√
3)t

⎛
⎝ 0 0 1 + i

0 0 1 − i
1 + i 1 − i 0

⎞
⎠,

(52)

U4,1 = U †
4,2 =

√
3t diag

⎛
⎝ 2 + √

3 − i
i(2 + √

3 + i)
−(1 + i)(1 + √

3)

⎞
⎠

T

. (53)

Observe that, among the above Uα,k , the only operators that
become unitary after rescaling are U4,1 and U4,2. These are
also the only ones that mutually commute. Therefore, the
generalized Pauli channel � constructed from the Gell-Mann
matrices is an example of a bistochastic channel whose eigen-
vectors are not unitary.

C. Heisenberg-Weyl observables

An alternative generalization of the Pauli matrices is pro-
vided by the Weyl operators

Wkl =
d−1∑
m=0

ωkm|m + l〉〈m|. (54)

They form an orthogonal unitary operator basis, so they can-
not be used to generate mutually unbiased measurements.
However, it is possible to use Wkl in order to introduce a
Hermitian basis. Consider the case with d = 3 and let us
define, after [36], the Heisenberg-Weyl observables

Vkl = 1 − i

2
√

d
Wkl + 1 + i

2
√

d
W †

kl , k � l, (55)

Vkl = 1 + i

2
√

d
Wkl + 1 − i

2
√

d
W †

kl , k > l. (56)

Notably, such defined Vkl are orthonormal traceless Hermitian
operators. Now, in analogy to the previous example, we group
Vkl into the sets

{Fα,k|k = 1, . . . , d − 1} = {Vk,α−1|k �= α − 1},
{Fd+1,k|k = 1, . . . , d − 1} = {Vkk|k = 1, . . . , d − 1},

so that Eqs. (42)–(45) still apply if one replaces σkl with Vkl .
Numerical calculations show that the optimal values of t and
κ read

t 
 0.112, κ 
 0.522. (57)

For comparison, the optimal κ for the MUMs constructed
from the Gell-Mann operators in d = 3 is κ = 5/9 
 0.556.

Therefore, the Heisenberg-Weyl operators are a worse choice
for the operator basis, as their optimal parameter κ is further
from its maximal value κ = 1.

The mutually unbiased measurements are again given by
Eq. (46), and the associated operators Uα,k in d = 3 read

U1,1 = U †
1,2 =

√
3(1 +

√
3)t

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, (58)

U2,1 = U †
2,2 =

√
3

2
(1 +

√
3)t

×
⎛
⎝ 0 iω2(

√
3 − 1) ω(2i − ω)

−ω2(1 + i) 0 −iω2

−i(ω2 + √
3) −(ω2 + i) 0

⎞
⎠,

(59)

U3,1 =U †
3,2 =

√
3

2
(1 +

√
3)t

×
⎛
⎝ 0 −ω2 i(

√
3 − 1)ω2

−i(ω2 + √
3) 0 −(ω2 + √

3)
(
√

3 − 1)ω2 −iω2 0

⎞
⎠, (60)

U4,1 = U †
4,2 =

√
3

2
(1 +

√
3)t

⎛
⎝ 0 −ω

√
3ω√

3ω2 0 −1
−ω2

√
3 0

⎞
⎠. (61)

Once again, there are only two operators Uα,k that become
unitary after rescaling: U1,1 and U1,2. Moreover, U1,1 and U1,2

are linearly proportional to the Weyl operators W10 and W20,
respectively. This time, however, there are two pairs of mu-
tually commuting operators: the aforementioned {U1,1,U1,2}
and also {U4,1,U4,2}. Therefore, the generalized Pauli chan-
nel � constructed from the Heisenberg-Weyl observables is
another example of a bistochastic channel with nonunitary
eigenvectors.

VI. CONCLUSIONS

We introduced a generalization of the Pauli channels whose
construction is based on the concept of mutually unbiased
measurements. The resulting channels are bistochastic, but
they do not necessarily have unitary eigenvectors. We found
sufficient conditions for the generalized Pauli channels to be
completely positive, as well as the conditions under which
they break quantum entanglement. Further work is needed to
establish the necessary and sufficient conditions for complete
positivity. Also, we showed that their maximal output two-
norm is strongly multiplicative if and only if the MUMs are
rank-1 projectors onto the MUB vectors. The next step is to
analyze the evolution of open quantum systems provided by
the generalized Pauli dynamical maps. It would be interesting
to check the κ dependence of quantum Markovianity.
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