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Noise-resistant phase gates with amplitude modulation
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We propose a simple scheme for implementing fast arbitrary phase gates and employ pulse modulation to
improve the gate robustness against different sources of noise. Parametric driving of a cavity is introduced to
induce Rabi interactions between the cavity and qutrits, and then a two-qubit arbitrary phase gate is constructed
by designing proper logical states. On this basis, we implement amplitude-shaped gates to obtain enhanced
resilience to control errors in gate time and frequency detuning. By virtue of specifically designed logical states,
the scheme displays intrinsic resistance to the energy relaxations of qutrits. Furthermore, we show that the gate
robustness against cavity decay can be enhanced significantly with amplitude modulation.

DOI: 10.1103/PhysRevA.102.032601

I. INTRODUCTION

Constructing a quantum computer requires sequences of
accurate gate operations on a large number of quantum bits
(qubits) [1]. Any unitary transformation, including multiqubit
gates, can be decomposed into a series of elementary two-
qubit gates together with single-qubit operations in principle
[2]. Recently, much attention has been attracted to realizing
universal two-qubit controlled-NOT gates and controlled-
phase gates in various physical systems including trapped ions
[3–8], neutral atoms [9–14], linear optics [15,16], and super-
conducting circuit quantum electrodynamics (QED) [17–21].
In addition to these atom-based (both natural and artificial
atoms) gates, photon-based gates enabled by atom-mediated
interactions have also been extensively studied. Recent exam-
ples include the designs of single-photon Hadamard gates [22]
and two-photon controlled-phase gates [21,23] on the solid-
state platforms. Among various physical architectures, circuit
QED has recently become a leading platform for quantum
computing as well as quantum information processing (QIP).
One of the outstanding features of the superconducting circuit
is that the coupling strength between a superconducting qubit
and a microwave field can be artificially engineered [24]. On
this basis, tunable qubit-resonator coupling has been realized
experimentally using a tunable mutual inductance between a
phase qubit and a lumped-element resonator [25], or using
a three-island transmon qubit with a tunable dipole moment
[26–28]. Based on the context of circuit QED, high two-qubit
gate fidelity above 99% has been demonstrated in recent ex-
periments [29,30].

Despite rapid progress in realizing high-fidelity gate over
the years, gate fidelity remains a major bottleneck for scalable
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QIP as well as fault-tolerant quantum computation. The gate
fidelity is generally limited by two sources of noise, namely
control errors in gate parameters and decoherence induced by
noisy environment. The former can arise due to slow drifts
in experimental parameters such as the resonator frequency,
or imperfections in the control apparatus as well as imperfect
operations. The latter is caused by the inevitable interaction
between the system and environment [31,32], which will
collapse the quantum state and make the quantum informa-
tion no longer correct, thereby compromising the power of
quantum computation [33,34]. Although fault-tolerant quan-
tum error correcting is capable of counteracting a certain
degree of errors or decoherence, it cannot be brought into
play unless the underlying error rates are small to begin with
[35,36]. Therefore, seeking high-fidelity gate operations that
are robust in the presence of noises or errors becomes an
imperative.

In this article, we present a simple and experimentally
feasible method to implement fast arbitrary phase gates in a
qutrit-cavity coupled system, introducing amplitude modula-
tion to make the operation more resilient to the two sources
of noise described above. Specifically, the features and ad-
vantages of the present work are summarized as follows. The
scheme employs a parametric drive to squeeze the cavity
mode, which induces Rabi interactions between the qutrits
and cavity with exponentially improved effective coupling
strength. Then two-qubit arbitrary phase gates can be im-
plemented by designing proper logical states and parameter
conditions. Since the gate time is inversely proportional to
the effective qubit-cavity coupling, it can be shortened sig-
nificantly by employing strong parametric drive. In contrast
to previous gate schemes based on the dispersive regime
where the desired effective interactions are derived using
perturbation theory with large-detuning conditions [17,37–
40], this proposal enables faster implementation of the phase
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FIG. 1. (a) Schematic diagram of a potential realization of the
proposed scheme in circuit QED where two flux qutrits are coupled
to a coplanar waveguide (CPW) resonator via the induced magnetic
field. A flux-pumped superconducting quantum interference device
(SQUID) connected to the resonator implements the parametric
drive. (b) Energy-level structure and transitions in a qutrit.

gates. Besides, we show that the gate robustness against pa-
rameter errors, including gate timing error and frequency
detuning error, can be increased by shaping the qutrit-cavity
coupling strength with time-dependent amplitude modulation.
In principle, the error suppression is achieved by means of
optimizing the phase-space trajectory of the cavity mode for
minimizing residual qubit-cavity entanglement in case of er-
rors. Furthermore, the proposed amplitude-shaped gates are
robust to the energy relaxations of qutrits due to the coding
of quantum imformation on the qutrits’ ground states and, in
particular, exhibit significantly enhanced robustness against
cavity decay compared to the unshaped gate.

The remainder of the paper is structured as follows. In
Sec. II, we describe the physical model and demonstrate in
detail how to implement the two-qubit arbitrary phase gate.
We then take the π -phase gate as an example for numerical
simulations to verify the gate performance. In Sec. III, we
propose to use amplitude modulation to improve the gate
robustness against parameter errors. Then, the effects of de-
coherence caused by the energy relaxations of qutrits and
cavity decay on the shaped gates are discussed. Finally, we
briefly discuss the possible experimental implementation and
summarize our conclusions in Sec. IV.

II. CONSTRUCTION OF TWO-QUBIT ARBITRARY
PHASE GATE

We consider a system containing two qutrits coupled to
a single-mode cavity that is subjected to a parametric drive.
Figure 1(a) illustrates a potential implementation of the sys-
tem in the context of circuit QED [41–43]. The two qutrits
have identical level structure, i.e., an excited state |e〉 and
two ground states |g〉 and | f 〉 [see Fig. 1(b)]. The transitions
between |e〉 and |g〉 are coupled to the cavity mode with
coupling strength g. A classical field (with frequency ω) is
imposed on the qutrits to drive the transitions between |e〉 and
|g〉 with Rabi frequency �. The state | f 〉 is not affected during
the interaction. Particularly, a parametric (two-photon) driving
field of frequency ωp and amplitude �p is introduced to drive
the cavity, which produces a nonlinear process equivalent to
degenerate parametric amplification. For the current model
we assume a sufficiently narrow bandwidth of the generated
photon pair centered on the cavity frequency, which is much
less than the scale of amplitude �p to ensure that the model
is valid. As shown in Fig. 1(a), this parametric drive of the

resonator can be implemented by modulating the flux �ext (t )
threading the SQUID loop connected to the middle of the
transmission line [44–46].

A direct effect of the parametric drive is that it will result
in exponentially enhanced qutrit-cavity interactions that can
be well described by a usual Rabi Hamiltonian [47–50]. To be
more specific, the Hamiltonian of the system described above
in a proper observation frame is given by (h̄ = 1, hereinafter)

H = �ca†a +
∑
j=1,2

[
�q|e〉 j〈e| + g(|e〉 j〈g|a + a†|g〉 j〈e|)

− �

2
(|e〉 j〈g| + |g〉 j〈e|)

]
− �p

2
(a2 + a†2). (1)

Here, a†(a) is the creation (annihilation) operator of the cavity
mode with frequency ωa. The detunings are �c = ωa − ωp/2
and �q = ωe − ωg − ωp/2, where ωz is the frequency asso-
ciated with level |z〉 (z = e, g). We have also assumed ω =
ωp/2. By diagonalizing the cavity-only part in H with unitary
Us = exp[rp(a2 − a†2)/2], where the squeeze parameter rp is
defined via rp = (1/2)arctanh(�p/�c), the Hamiltonian (1)
is rewritten as

Hs = �a†a +
∑
j=1,2

[
g

2
erp (a + a†)(|e〉 j〈g| + |g〉 j〈e|)

− g

2
e−rp (a† − a)(|e〉 j〈g| − |g〉 j〈e|)

− �

2
(|e〉 j〈g| + |g〉 j〈e|)

]
, (2)

where � = �csech(2rp) and we have set �q = 0 for sim-
plicity. Apparently, the first term in the summation has
the form of a Rabi Hamiltonian. The second term HErr ≡∑

j [− g
2 e−rp (a† − a)(|e〉 j〈g| − |g〉 j〈e|)], indicating the devia-

tion from an ideal Rabi Hamiltonian, could be neglected in
a large amplification limit erp → ∞ (which requires rp to be
sufficiently large; see the Appendix for detailed discussion),
such that Hs after moving to the interaction picture with re-
spect to H0 = �a†a is transformed to

H ′
s = gsSx(a e−i�t + a†ei�t ) − �Sx, (3)

where gs = gerp and Sx = ∑
j (|e〉 j〈g| + |g〉 j〈e|)/2.

The coupled system described by H ′
s undergoes a

unitary evolution with the propagator being U (t ) =
e−iF (t )Sxae−iG(t )Sxa†

e−iA(t )S2
x e−iB(t )Sx , where we have

F (t ) = gs

∫ t

0
e−i�t ′

dt ′ = igs

�
(e−i�t − 1),

G(t ) = gs

∫ t

0
ei�t ′

dt ′ = igs

�
(1 − ei�t ),

A(t ) = igs

∫ t

0
F (t ′)ei�t ′

dt ′ = −g2
s

�

(
t − ei�t

i�
+ 1

i�

)
,

B(t ) = −
∫ t

0
� dt ′ = −�t . (4)

As can be inferred from U (t ), a maximally two-qubit entan-
gled state emerges in the Sz basis for �t = 2π , A(t ) = π/2,
and � = 0, which corresponds to the Mølmer-Sørensen gate
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operation [51–53]. In the Sx basis, U (t ) could implement
a two-qubit phase gate coded via proper logical states. To
this end, we assume that the ground state | f 〉 of qutrits is
coded to carry the logical state 0 and superposition state
|+〉 = (|e〉 + |g〉)/

√
2 to carry the logical state 1. By setting

�τ = 2k1π (where τ is the gate time and k1 a positive inte-
ger), we have F (τ ) = G(τ ) = 0. Then the propagator can be
written as merely acting in the qubit subspace, which is re-
duced to U (τ ) = e−iA(τ )S2

x e−iB(τ )Sx , with A(τ ) and B(τ ) being
A(τ ) = −2k1πg2

s/�
2 and B(τ ) = −2k1π�/�, respectively.

It can be easily found that

| f 〉1| f 〉2
U (τ )−→ | f 〉1| f 〉2,

| f 〉1|+〉2
U (τ )−→ e−i A(τ )

4 e−i B(τ )
2 | f 〉1|+〉2,

|+〉1| f 〉2
U (τ )−→ e−i A(τ )

4 e−i B(τ )
2 |+〉1| f 〉2,

|+〉1|+〉2
U (τ )−→ e−iA(τ )e−iB(τ )|+〉1|+〉2. (5)

Further, we demand that A(τ )/4 + B(τ )/2 = −2k2π and
A(τ ) + B(τ ) = −(2k3π + ϕ), where k2 and k3 are integers
and satisfy k3 � 2k2 − 1/2 (see below). In this case, Eq. (5)
becomes

| f 〉1| f 〉2
U (τ )−→ | f 〉1| f 〉2,

| f 〉1|+〉2
U (τ )−→ | f 〉1|+〉2,

|+〉1| f 〉2
U (τ )−→ |+〉1| f 〉2,

|+〉1|+〉2
U (τ )−→ eiϕ |+〉1|+〉2, (6)

which conducts a two-qubit arbitrary phase gate. In the fol-
lowing, we take the gate with ϕ = π as an example to discuss
in detail the gate performance. The corresponding constraints
become A(τ ) = −(2k3 + 1 − 4k2)π and B(τ ) = (2k3 + 1 −
8k2)π , which result in � = gs/

√
(2k3 + 1 − 4k2)/k1 and � =

−(2k3 + 1 − 8k2)�/2k1, respectively. The gate time is thus
inversely proportional to the effective coupling gs, i.e., τ ∼
1/gs. Since gs increases significantly with enhancing the para-
metric drive, which could be orders of magnitude larger than
the original coupling, the gate operation could be attained at a
very short time.

To show clearly the gate operation, we plot in Fig. 2(a) the
evolutions of the four computational states’ population and the
gate fidelity [54,55], which are obtained by numerically solv-
ing the Liouville equation with respect to the full Hamiltonian
given by Eq. (2). Here we choose the initial state of the system
to be |ψ0〉 = 1

2 (| f f 〉 + | f +〉 + | + f 〉 + | + +〉) ⊗ |0〉, where
the latter state refers to the initial cavity vacuum. The gate
fidelity is defined via F = 〈ψτ |ρq(t )|ψτ 〉, in which |ψτ 〉 =
U (τ )|ψ0〉 and ρq(t ) is the reduced density operator of the
system after tracing out the cavity degree of freedom. Also,
we plot the phase evolutions of the four computational states
in Fig. 2(b). It can be found in Fig. 2 that the populations
of the four computational states remain unchanged during
the gate evolution, while | + +0〉 obtains an accumulated
phase of π at the gate time τ = 2π/� (k1 = 1 and k2 = k3 =
0). Correspondingly, the gate fidelity reaches above 0.9999
at the instant τ . For an experimentally feasible coupling

FIG. 2. (a) Evolutions of the four computational states’ popula-
tion and initial-state-specified (average) gate fidelity F (F̄ ). (b) Phase
evolutions of the four computational states. Parameters used here:
rp = 2.5, � = gs, and � = −�/2.

g/2π = 50 MHz [56], the gate time is estimated approxi-
mately as 0.16 ns.

In the numerical simulations above, we assume a particu-
lar two-qubit superposition state to evaluate the gate fidelity.
Strictly speaking, using only a specific initial state is in-
sufficient to test the gate performance. In view of this, we
introduce the average fidelity metric that takes into account
all possible initial inputs, which is defined based on a trace-
preserving quantum operator, as [57]

F̄ (ε,U ) =
∑4N+1

l=1 tr[Uu†
l U

†ε(ul )] + d2

d2(d + 1)
, (7)

where ul is the tensor of Pauli matrices II, Iσx, . . . , σzσz in
the computational basis {| f 〉, |+〉}, U is the perfect phase
gate, d = 2N+1 for a (N + 1)-qubit gate, and ε is the trace-
preserving quantum operation obtained through solving the
master equation. Based on Eq. (7), we plot the average gate
fidelity using the same set of parameters as above, as depicted
by the hollow squares in Fig. 2(a). One can clearly see that
the average fidelity at the gate time is also close to unity
(precisely, above 0.9999). For simplicity, we use the initial-
state-specified gate fidelity F to characterize the gate against
noises in the following sections.
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III. ROBUSTNESS AGAINST CONTROL ERRORS
AND DECOHERENCE

A. Amplitude-shaped phase gates

For implementing quantum gates in practice, perfect con-
trol of experimental operations is desired for achieving high
fidelity, which requires accurate calibration and short-term
stability of the gate parameters. This is obviously difficult
in real experiments due to imprecise apparatus and imperfect
operations. For our scenario, a conspicuous drop of the fidelity
can be observed for slight drifts in gate time τ , as depicted
in Fig. 2(a). In addition to the gate time, inaccuracies and
drifts of other gate parameters (e.g., the detuning �) will also
reduce the gate fidelity. Therefore, seeking effective schemes
to improve gate robustness against control errors is of growing
significance.

Inspired by pulse shaping or modulation techniques em-
ployed extensively in recent studies [39,58–64], we herein
propose to use shaped time-dependent coupling g(t ) to replace
the constant g, which is designed as g(t ) = gm sin2(αt ), with
gm and α being maximum amplitude and suitable constants,
respectively. Experimentally, amplitude modulation of the
qubit-cavity coupling has been demonstrated in a circuit QED
system [65,66]. At the gate time τ , a “soft” end is desirable
[60], which signifies ατ = mπ for an integer m identifying
the number of pulses present in the envelope of g(t ). Without
loss of generality, we pick up the case with m = 1 in what
follows, i.e., ατ = π . Then, by substituting g(t ) into Eq. (4)
and solving analytically the integrals, we obtain

F ′(t ) = erp

∫ t

0
g(t ′)e−i�t ′

dt ′ = i2 erpgmα2(e−i�t − 1)

�(4α2 − �2)
,

G′(t ) = erp

∫ t

0
g(t ′)ei�t ′

dt ′ = i2 erpgmα2(1 − ei�t )

�(4α2 − �2)
,

A′(t ) = i erp

∫ t

0
F ′(t ′)g(t ′)ei�t ′

dt ′ = e2rpg2
mÃ(t )

8(�3 − 4�α2)2
, (8)

with

Ã(t ) = 3�5t − 20�3α2t + i32α4(ei�t − i�t − 1). (9)

In Eq. (8) one finds that multiple sets of � and τ (or
α) can produce the required gate phase A′(τ ) = −2π , each
of which satisfies �kτk = 2(k + 1)π , where k is a positive
integer defined herein as the order of the shaped gate and τk

the gate time for this order. In addition, the other constraint
B(τ ) = π requires �k = −�k/2(k + 1). It is not difficult to
see that τk and �k will increase synchronously with increasing
k. Generally, the extension of gate time is undesirable for fast
implementation of the operation. Nevertheless, in our scheme,
the gate time can be controlled by adjusting the value of
squeezing parameter rp. That is to say, the reduction in gate
time is expectable, which comes at a price of a corresponding
increase in the parametric driving strength. By choosing sep-
arate squeezing parameters for the shaped gates of different
orders, the corresponding gate times can be adjusted to be
very close. Then, increasing k can only result in the increase in
�k , according to �k = 2(k + 1)π/τk . Note that this increased
detuning can suppress effectively the excitation of a photon
during the gate evolution. This is verified in Fig. 3(a), where

FIG. 3. (a) Time evolutions of the mean photon number and
(b) phase-space trajectories during the unshaped gate (with constant
g) and the shaped gates [with time-dependent g(t )] operations. The
parameters used for the unshaped gate are the same as in Fig. 2. The
parameters used for the shaped gates: gm = g; �k , αk , and �k satisfy
the constraints given in the text; to make the shaped gate times close
to that for the unshaped gates, rp for k = 1, 4, and 19 are set as 3.28,
3.78, and 4.49, respectively. The common initial state of the system
is |ψ0〉.

we plot the time evolution of the mean photon number 〈a†a〉
for both the unshaped gate and the shaped gates with k = 1,
4, and 19. Apparently, a significant reduction in 〈a†a〉 can be
observed with increasing k. What is more intriguing is that
the shaped gates display flatter evolutions of 〈a†a〉 around the
gate time in comparison with the unshaped gate. This stable
and near-zero evolution of 〈a†a〉 existing only in the shaped
gates will decrease directly residual qutrit-cavity coupling that
is caused by, e.g., gate timing error.

A more intuitive understanding may be gained by exam-
ining the effect of using an amplitude-shaped gate on the
phase-space trajectory. The propagator U (t ) leads to time-
varying qubit-state-dependent displacement in the xp phase
space of the cavity mode, and ideally (without errors) the tra-
jectory closes at the gate time where the cavity and the qubits
are disentangled, as shown in Fig. 3(b). Unlike the trajectory
for the unshaped gate, with increasing k the shaped-gates’
trajectories display more windings with a reduced radius and
become more centered around the origin. This effectively
shortens the distance between the origin and the point in the
phase space where the gate terminates in case of errors, thus
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FIG. 4. Population and fidelity evolutions (a) and phase evo-
lutions (b) for the shaped gates with k = 1 and 19. In (a), the
initial-state-specified (average) gate fidelity for k = 1 is marked with
a finer blue curve (hollow squares), while the initial-state-specified
(average) gate fidelity for k = 19 is marked with a thicker red curve
(hollow circles); the four straight lines representing population evo-
lutions of different states overlap entirely. The common parameters
used here are the same as in Fig. 3.

mitigating the impact of errors due to residual entanglement
between the cavity and the qubits.

B. Control error in gate parameters

To begin with, we briefly verify the validity of the proposed
shaped gates. Taking the shaped gates with k = 1 and 19 as
examples, we plot in Fig. 4 the corresponding population and
phase evolutions of the computational states, as well as the
evolutions of initial-state-specified and average fidelities. The
introduction of the sin2 amplitude modulation results in a flat-
ter response of fidelities around the gate time τk compared to
the unshaped gate (see Fig. 2). Also, increasing k will flatten
the fidelity within a wider range, accompanied by smaller
phase fluctuations around the gate time.

The above results show that stronger robustness against the
gate timing error is achievable. To be more clear, in Fig. 5 we
plot the gate fidelity as a function of four potential parameter
errors for the unshaped gate and the shaped gates with k = 1
and 19. The relative error of the parameter x is defined as

FIG. 5. Gate fidelities versus control errors in (a) gate time τ ,
(b) detuning �, (c) classical-field amplitude �, and (d) maximum
amplitude of qutrit-cavity coupling strength gm. The common param-
eters used here are the same as in Fig. 3.

δx = (x′ − x)/x, in which x′ denotes the actual value and x
the ideal value. As seen in Fig. 5(a), the shaped gates dis-
play flatter response to δτ , indicating significant improvement
of the gate robustness to the gate timing error. Increasing
k can hardly improve the gate robustness against δτ within
the given error range, but improve prominently the gate ro-
bustness against detuning error δ�, as depicted in Fig. 5(b).
For the amplitude error of the classical field δ�, all three
curves corresponding to different gates almost overlap en-
tirely, and the identical fidelities keep always over 0.987 for
δ� ∈ [−0.1, 0.1]. This manifests that slight deviation in � has
small influence on our scheme. When considering the error in
the maximum amplitude of the shaped coupling strength δgm ,
we find that even the fidelities of the shaped gates are also
susceptible to δgm . High fidelity with F > 0.99 is achievable
provided that δgm can be restrained in [−0.02, 0.02].

C. Effects of decoherence induced by dissipation

We now take the effects of decoherence on the gate per-
formance into account. Consider two dominant channels of
decoherence induced by the dissipation of the system: (i) en-
ergy relaxations of excited state of the qutrits; (ii) decay of the
cavity mode. Note that as we introduce a parametric driving
to squeeze the cavity mode for achieving the Rabi model,
the squeezing also inputs thermal noise and two-photon cor-
relation noise into the cavity [48–50,67–69]. This results in
dissipative dynamics that have a similar form to thermal dissi-
pation. To eliminate completely these noises, we assume that
the cavity is driven by a squeezed vacuum field, which can be
implemented experimentally in a circuit QED system using,
e.g., a Josephson parametric amplifier [45,70,71]. In doing so,
the dynamics of the system could be described by the standard
master equation

ρ̇ = i[ρ, Hs] +
∑
z,k

L(Lzk )ρ + L(La)ρ, (10)
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FIG. 6. Effects of cavity and qutrit decays on the gate fidelity for
the unshaped gate (straight lines) and shaped gate with k = 1 (hollow
markers) and k = 19 (solid markers). The common parameters used
here are the same as in Fig. 3.

where ρ is the density operator of the system, Hs the full
Hamiltonian given by Eq. (2), Lzk = √

γ |z〉k〈e| (z = g, f )
the Lindblad operators describing the energy relaxations of
excited states with identical rate γ , La = √

κa the Lindblad
operator describing the cavity decay with rate κ , and L(o)ρ =
oρo† − (o†oρ + ρo†o)/2.

Figure 6 shows the gate fidelity (at the gate time) as a
function of cavity or qutrit decay rate. It is shown that the three
lines for γ corresponding respectively to the unshaped and
shaped gates almost overlap and the fidelities can still keep
over 0.963 even for a large γ of 0.1g. The good robustness
against qutrits’ decay is a consequence of coding quantum
information on the qutrits’ ground states. In contrast, we find
that the cavity decay influences less the gate fidelities. Partic-
ularly, for the shaped gate with a larger k the gate fidelity is
hardly reduced with increasing κ: the fidelity of the shaped
gate with k = 19 keeps over 0.9997 for κ � 0.1g. This re-
markable enhancement of the gate robustness against cavity
decay is because less excitation of the cavity mode occurs for
the shaped gates with larger k.

IV. DISCUSSION AND CONCLUSION

As discussed above, a most promising pathway for im-
plementing our proposal could be the current circuit QED
platform. The proposed amplitude-shaped gates are realized
based on a unitary U (t ) with a specific evolution period. This
requires the control of the time-dependent qutrit-resonator
coupling g(t ), the classical field drives on the qutrits �, and
the parametric drive of the resonator �p, when consider-
ing the practical implementation in a superconducting circuit
architecture. Specifically, the classical field drives could be
implemented by introducing square microwave pulses with
sine ramp-up and ramp-down edges and specific pulse length
[72,73], while the parametric drive could be implemented
through modulating the magnetic flux threading the SQUID
loop connected to the resonator [45,46]. Regarding the time-
dependent coupling g(t ), there has been both theoretical

FIG. 7. First-order shaped gate fidelity versus time t and detun-
ing �1. The parameters are as follows: for the upper surface (S.I),
gm/2π = 50 MHz, �1/2π = −139.01 MHz; for the lower surface
(S.II), gm/2π = 50.5 MHz, �1/2π = −140.4 MHz. Other common
parameters are κ/2π = γ /2π = 0.5 MHz.

[74,75] and experimental [25,26] research concerning co-
herent tunable qubit-resonator coupling. Experimentally, the
desired amplitude modulation on g(t ) could be implemented
directly by adopting controlled voltage pulses generated by an
arbitrary waveform generator (AWG) to tune the flux thread-
ing the SQUID loop of each qutrit [66]. All drives on qutrits
could be set to respective pulse envelopes and be performed
synchronously for a specific duration.

We next give a brief evaluation of the gate performance
using experimentally accessible parameters. For a flux qubit
coupled to a CPW resonator, it is demonstrated that the
coupling strength up to several hundreds of MHz is achiev-
able [56]. As an example, we assume a coupling strength
of g/2π = 50 MHz, which gives approximately �1/2π =
556.05 MHz and �1/2π = −139.01 MHz for our first-order
(k = 1) shaped phase gate when considering a squeezing
parameter of rp = 2.5, and the corresponding gate time is
calculated as τ1 = 3.6 ns. In addition, for the parameters as-
sumed above, the other system parameters could be chosen
as ωa/2π = 43.76 GHz, ωp/2π = 5 GHz, (ωe − ωg)/2π =
2.5 GHz, and ω/2π = 2.5 GHz. Based on the above parame-
ters, together with an assumption of experimentally feasible
decay rates κ/2π = γ /2π = 0.5 MHz [76,77], the shaped
gate fidelity could reach above 0.99 at the gate time of about
3.6 ns.

Regarding the effects of the potential errors in real exper-
iments on the gate, we simulate the first-order shaped gate
fidelity versus varying actual values of t and �1, as plot-
ted in Fig. 7. The upper surface (labeled “S.I”) corresponds
to the case with perfect control of the pulse amplitude and
the classical field amplitude, i.e., {gm,�1}, precisely equals
2π × {50,−139.01} MHz, while the lower surface (labeled
“S.II”) depicts the case with slight deviation in these two
amplitudes. Apparently, in the absence of all control errors,
the shaped gate fidelity could achieve 0.9906, as marked by
the square dot on S.I. When different control errors exist
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FIG. 8. Evolution of the fidelity between the exact state ψ (t ) and
the ideal Rabi-model state ψRabi(t ), which are obtained by solving
the exact Hamiltonian (Hs) and the ideal Rabi Hamiltonian (Hs in the
absence of HErr). The parameters are � = gerp and � = −�/2.

simultaneously, e.g., t = 3.69 ns and {�1, gm,�1} = 2π ×
{569.95, 50.5,−140.4} MHz, the corresponding gate fidelity
would be reduced to 0.9851.

In conclusion, we have proposed a theoretical method for
implementing fast two-qubit arbitrary phase gates and intro-
duced amplitude modulation to improve the gate robustness
against control errors and decoherence. The shaped gates pro-
vide enhanced robustness to errors in gate time and frequency
detuning compared to the standard gate without amplitude-
shaped coupling. In addition, the scheme presents intrinsic
robustness against energy relaxations of the qutrits and, in
particular, significantly enhanced robustness against cavity

decay is achieved with the shaped gates. Further improve-
ment of the gate robustness would be possible by designing
suitable pulse shapes with modulated amplitude and phase.
We anticipate that our proposal could be helpful for future
studies on this field and offer a feasible method for im-
plementing efficient gate operations in quantum information
protocols.
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APPENDIX: EFFECTIVENESS OF THE IDEAL
RABI HAMILTONIAN

As seen in Eq. (2), the error term HErr = g
2 e−rp (a† −

a)(|e〉k〈g| − |g〉k〈e|) describes undesired corrections to the
ideal Rabi Hamiltonian. In principle, HErr can be neglected
completely for a large rp satisfying erp → ∞. Here we
demonstrate numerically that a modest rp is able to suppress
HErr sufficiently. To be specific, we plot in Fig. 8 the dy-
namical evolution of the fidelity between the exact state ψ (t )
and the ideal Rabi-model state ψRabi(t ) for several values
of rp, where ψ (t ) and ψRabi(t ) are obtained by solving the
Hamiltonian (2) with and without HErr, respectively. Appar-
ently, the fidelity keeps near unity over long time scales for
rp = 2.5, which implies that the system described by the exact
Hamiltonian faithfully reproduces the ideal Rabi-model evo-
lution. This allows us to choose rp = 2.5 in the simulations,
as shown in Fig. 2, where a high-fidelity gate can be achieved
correspondingly.
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