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Interplay between charge and spin thermal entanglement in Hubbard dimers
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We study quantum entanglement in half-filled Hubbard dimers at finite temperatures under an external
magnetic field. Due to the itinerant nature of the electrons and their fundamental indistinguishability, we employ
a site-based evaluation of entanglement via the concurrence in three distinct sectors of the Hilbert space, namely
the charge, zero-, and single-spin subspaces. At zero temperature these measures can be combined to produce
an accurate estimate of the entanglement entropy. For finite temperatures we show that those concurrences
display reentrant behavior upon varying the magnetic field. Furthermore, we unveil that charge and spin quantum
correlations are quite distinctly degraded by thermal fluctuations.
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I. INTRODUCTION

Quantum entanglement, a peculiar trait of composite quan-
tum systems, is a key resource in many quantum information
processing protocols, such as quantum key distribution and
teleportation, and also plays a significant role in the behavior
of many-body systems, which is tightly connected to quan-
tum phase transitions [1–3]. Its proper characterization has
thus been the subject of intensive research activity. Basically,
entanglement quantifiers must be able to assess the degree
of quantum correlations available in nonseparable multiparty
quantum systems and return a number, which is not straight-
forward in general [4]. The entanglement properties of bipar-
tite pure states with distinguishable parties (say, two qubits)
are, on the other hand, fairly well understood via the Schmidt
decomposition of the state or, alternatively, via calculation of
the von Neumann entropy of either of the reduced density ma-
trices. (It is worth pointing out that the usefulness of the spec-
tral properties of the reduced statistical operators goes way
beyond entropic measures to provide relevant information
regarding the underlying entanglement Hamiltonian [5–8].)

Subsystems of a many-body pure state are mixed states
in general. In this situation, it is a challenging task to find a
practical quantifier able to discriminate genuine bipartite en-
tanglement from correlations shared with the external degrees
of freedom. This is of paramount importance, for instance,
when dealing with systems in equilibrium with a thermal
bath, where the so-called thermal entanglement sets about
[2,9,10]. For the evaluation of the pairwise entanglement of
mixed states, a frequently used measure is the entanglement
of formation [11] which, given a density matrix operator ρ,
calls for the amount of pure-state entanglement necessary to
form it and takes the minimum over all pure-state decom-
positions of ρ (a null outcome means that ρ can be created
locally without any entangled pure states). The downside is
that there are infinitely many decompositions of ρ, turning
the evaluation of the entanglement of formation into a very
difficult problem. For two qubits, fortunately, there exists an

analytic solution, often expressed in terms of a quantity called
concurrence [12,13], which is monotonically related to the
former. It is thus not surprising that concurrence became a
powerful tool to quantify entanglement in a wide range of
contexts. Despite being very practical to handle, concurrence,
as originally conceived [12,13], is suited for quantum states
having each partition featuring a bidimensional Hilbert space,
such as spatially separated (meaning distinguishable) spin-
1/2 particles. In fact, our standard knowledge of entanglement
is well established only in the case of distinguishable particles,
which underlies the majority of quantum information process-
ing schemes. This scenario is nicely justified when then the
single-particle wave functions of the quantum registers barely
overlap with each other. If they do, then the exchange symme-
try comes into play, for identical particles are fundamentally
indistinguishable.

The entanglement of identical particles is a very sub-
tle concept. The issue manifests already from the lack of
a simple tensor product structure for the composite system
as (fermions) bosons must obey the (anti)symmetrization
postulate. As a consequence, states accounting for identical
particles display intrinsic correlations by construction, and
thus long-standing topics of debate are whether or not those
states are entangled (cf. Refs. [14,15] for pertinent advances
on that matter), how to partition them, and how to quantify it
[14–39]. The search for entanglement measures for systems of
identical particles is also timely for the proper characterization
of several classes of condensed matter models. In particu-
lar, much attention has been given to quantum entanglement
in strongly correlated lattice systems with itinerant elec-
trons [21,22,27,40–45]. In doing so, a convenient approach is
to quantify entanglement between the modes [21–23,25,31–
33,35–37] rather than between the particles as many-body
models rely on the second-quantization language, and it is
desirable to deal with subsystems which can be operationally
distinguished (that is, easily accessible by measurements). In
the case of delocalized electrons in a lattice, the partitions may
be chosen to be sites [23].
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TABLE I. Eigenenergies and eigenvectors of the Hubbard-dimer Hamiltonian. � = U 2 + 16t2; α1 = (U − √
�)/4t ; α2 = (U + √

�)/4t ;

a = 2t/
√

� − U
√

�; b = 2t/
√

� + U
√

�. |λ2〉 and |λ5〉 are the two possible ground states.

Eigenenergy Eigenvector

λ1 = U+√
�

2 |λ1〉 = a(| ↑↓〉 ⊗ |0〉 + |0〉 ⊗ | ↑↓〉 − α1| ↑〉 ⊗ | ↓〉 − α1| ↓〉 ⊗ | ↑〉)
λ2 = U−√

�

2 |λ2〉 = b(| ↑↓〉 ⊗ |0〉 + |0〉 ⊗ | ↑↓〉 − α2| ↑〉 ⊗ | ↓〉 − α2| ↓〉 ⊗ | ↑〉)
λ3 = U |λ3〉 = 1√

2
(| ↑↓〉 ⊗ |0〉 − |0〉 ⊗ | ↑↓〉)

λ4 = 0 |λ4〉 = 1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉)

λ5 = −2H |λ5〉 = | ↑〉 ⊗ | ↑〉
λ6 = 2H |λ6〉 = | ↓〉 ⊗ | ↓〉

The entanglement-of-modes approach, as put forward by
Zanardi [21], is based on the mapping of the Fock space into
a state space of qubits. Following that, we can then proceed
with standard measures of entanglement, such as concurrence
[12]. However, even in the simplest case of lattice sites hav-
ing a single orbital supporting at most two electrons (with
opposite spins), the local Hilbert space is four dimensional,
thus apparently ruling out the use of concurrence measures.
Despite that, concurrence has been explored in judiciously
restricted Hilbert subspaces, thereby giving partial informa-
tion regarding to underlying quantum entanglement [46–52].
For instance, single-site entanglement has been addressed in
Ref. [46] and partial fermionic concurrences defined for spe-
cific degrees of freedom (charge and spin) have been studied
in Ref. [51]. Here, we build on the latter and contribute to the
characterization of quantum entanglement in strongly corre-
lated electron systems by introducing a full set of concurrence
measures for two-site entanglement. As a prototype model,
we consider a Hubbard dimer in thermal equilibrium with a
heat bath and under the action of an external magnetic field.
We show that partial concurrences, defined through proper
mappings of the local modes of the system into effective
qubits in three distinct sets, namely polarized charge, zero-,
and single-spin subspaces, provide a rich description of the
entanglement. Further, we find out that those three contribu-
tions display quite distinct sensitivities to thermal fluctuations.
We consider a Hubbard dimer only for the sake of simplicity.
The whole method described in this paper is easily extended
to N-site Hubbard lattices.

II. HUBBARD-DIMER: EIGENSTATES AND VON
NEUMANN ENTROPIES

We consider a half-filled Hubbard dimer under a finite
magnetic field as a prototype model to study site entanglement
in a system of itinerant electrons. Let us start by reviewing
some basic aspects related to the model Hamiltonian and its
spectral properties. Considering c†

i,γ and ci,γ the fermionic
creation and annihilation operators for an electron with spin
γ =↑,↓ at site i = 1, 2, with ni,γ = c†

i,γ ci,γ being the respec-
tive number operator, and Sz

i accounting for the z component
of the total spin operator at site i, the Hubbard Hamiltonian
reads

H = t
∑

γ=↑,↓
(c†

1,γ c2,γ + H.c.) +
2∑

i=1

(
Uni,↑ni,↓ − HSz

i

)
, (1)

where t is the hopping amplitude associated with the mo-
bility of electrons between the lattice sites. Note that this
process is restricted to electrons in distinct spin states due
to the Pauli’s exclusion principle. H is an external mag-
netic field and U is the on-site Hubbard interaction, which
can be taken to assume positive (negative) values account-
ing for an effective repulsive (attractive) electron-electron
interaction. In the half-filled configuration with just two
electrons, the Hilbert space is spanned by six possible configu-
rations, {|↑↓; 0〉, |0; ↑↓〉, |↑; ↓〉, |↓; ↑〉, |↑; ↑〉, |↓; ↓〉}, where,
e.g., | ↑↓; 0〉 is short for | ↑↓〉 ⊗ |0〉. The stationary Hamil-
tonian eigenstates |λi〉 and their respective eigenenergies λi

are listed in Table I. There are two-possible ground states. For
large magnetic fields, the fully polarized separable |λ5〉 gets
the minimal energy. On the other hand, the nonseparable state
|λ2〉 becomes the ground state at low fields. For finite mag-
netic fields, there is a critical Hubbard coupling U ∗ separating
these two ground states given by U ∗/t = 2(t/H − H/t ). The
ground-state phase diagram is illustrated in Fig. 1.

Out of the six Hamiltonian eigenstates, the first four with
electrons in distinct spin states are nonseparable. To quantify
the degree of quantum entanglement in these pure states, one
can simple evaluate the von Neumann entropy of entangle-
ment for state |λi〉 given by Si = −Tr ρ1 ln ρ1, where ρ1 is

FIG. 1. Ground-state phase diagram for the half-filled Hubbard
dimer in U/t vs H/t parameter space. The fully polarized state that
overcomes at large magnetic fields is separable while the quantum
entangled state |λ2〉 predominates at low fields.
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TABLE II. Expectation values of the dimer correlations associated with the density matrix elements of Eq. (3) in each two-qubit sector,
namely charge (X = C), single-spin (X = 1), and zero-spin (X = 0) sectors. Note that the resulting density matrices for sectors X = 1 and
X = 0 are not normalized since both consist of parts (projections) of the full one with 16 × 16 entries, unlike the one corresponding to X = C,
which is normalized as the projection operators (diagonal entries) form a complete space on their own. This and other details over the derivation
of those matrices can be found in the Appendix.

ρX element X = C X = 1 X = 0

u+ 〈(1 − n1↑)(1 − n2↑)〉 〈n1↑(1 − n1↓)n2↑(1 − n2↓)〉 〈(1 − n1↑)(1 − n2↑)(1 − n1↓)(1 − n2↓)〉
u− 〈n1↑n2↑〉 〈(1 − n1↑)n1↓(1 − n2↑)n2↓〉 〈(n1↑n1↓)(n2↑n2↓)〉
z 〈c†

1↑c2↑〉 〈c†
2↑c2↓c†

1↓c1↑〉 〈c†
1↑c†

1↓c2↓c2↑〉
x 〈n1↑(1 − n2↑)〉 〈n1↑(1 − n1↓)(1 − n2↑)n2↓〉 〈(1 − n1↑)(1 − n1↓)(n2↑n2↓)〉
y 〈(1 − n1↑)n2↑〉 〈(1 − n1↑)n1↓n2↑(1 − n2↓)〉 〈(n1↑n1↓)(1 − n2↑)(1 − n2↓)〉

the partial density matrix obtained after performing the partial
trace of ρ = |λi〉〈λi| over the degrees of freedom associated
with the dimer site 2. Both states |λ3〉 and |λ4〉 have entan-
glement entropy S3 = S4 = ln 2 as they are of the Bell type.
In contrast, the degree of entanglement in states |λ1〉 and |λ2〉
depends on the ratio U/t . Direct algebra provides

S1 = S2 = −2a2
[
ln(a2) + α2

1 ln
(
a2α2

1

)]
, (2)

where the coefficients a and α1 are given in the caption of
Table I. For noninteracting electrons (U = 0) one has S1 =
S2 = ln 4, because, after the partial trace, each site features
an even mixing among its four possible configurations. The
entanglement entropy of these states continuously decreases
as stronger electron-electron couplings set in, converging to
S1 = S2 = ln 2 for infinite Hubbard coupling. In this limit,
Bell-type forms are recovered.

III. CHARGE AND SPIN QUANTUM
ENTANGLEMENT MEASURES

The above entanglement picture based on the von Neu-
mann entropy does not allow for the identification of which
degrees of freedom of the interacting electrons are actually
quantum correlated. Along this direction, one can quantify
the degree of entanglement in specific sectors of the Hilbert
space [46–52]. The charge degrees of freedom are associated
to each site allowing for basis vectors |0〉 and | ↑〉 within each
dimer site. In this sector, the resulting reduced Hilbert space is
{|0; 0〉, |0; ↑〉, | ↑; 0〉, | ↑; ↑〉}. The entanglement between the
spin degrees of freedom can be evaluated in two other distinct
sectors. Allowing for |0〉 and | ↑↓〉 locally, we build the zero-
spin sector spanned by {|0; 0〉, |0; ↑↓〉, | ↑↓; 0〉, | ↑↓; ↑↓〉}.
The last sector involves a single spin in each site, | ↑〉 and
| ↓〉, resulting in {| ↑; ↑〉, | ↑; ↓〉, | ↓; ↑〉, | ↓; ↓〉} overall. In
all those sectors, the dimer effectively behaves as two dis-
tinguishable qubits for which the quantum concurrence can
be used as an accurate measure of entanglement. The density
matrix in any of these three sectors can be put in the general
form

ρX =

⎛
⎜⎝

uX
+ 0 0 0
0 xX zX 0
0 (zX )∗ yX 0
0 0 0 uX

−

⎞
⎟⎠,

where X = C, 0, 1 stands for charge, zero-spin, and single-
spin sectors, respectively, and the elements are given in terms
of expectations values of distinct correlations between the
dimer sites. These are given in Table II for each one of the
above sectors (see the Appendix for details).

From the density matrix in these two-qubit sectors, one can
readily compute the quantum concurrence in each subspace
following the standard prescription found in Refs. [12,13].
The resulting expression for the partial concurrence reads

CX = 2 max{0, |zX | −
√

uX+uX−}, (3)

The outcomes for each one of the four entangled eigenstates
are summarized in Table III so as to provide a general picture
of how entanglement is weighted over those sectors. Note
that for eigenstate |λ3〉 the entanglement is fully manifested
as quantum correlations in the zero-spin sector. Its Bell-type
shape results in maximal two-qubit entanglement with C0 = 1
and S = ln 2, whereas there are no correlations in the charge
and single-spin subspaces, in contrast with |λ4〉, for which
entanglement is restricted to a single-spin sector.

Entanglement is distributed in all three sectors for |λ1〉 and
|λ2〉 eigenstates. Both have identical quantum correlations in
the charge sector but distinct correlations in the zero- and
single-spin counterparts. The dependence of these partial con-
currences on the Hubbard coupling is shown in Fig. 2 for
eigenstate |λ2〉, in comparison with its entanglement entropy.
Notice that in the strongly repulsive limit (U → ∞) the con-
tribution to entanglement comes solely from the single-spin
sector, which is maximum as accounted for by the partial
concurrence. In the opposite limit of a strongly attractive
electron-electron interaction, entanglement results exclusively
from correlations taking place in the zero-spin sector. Charge

TABLE III. Charge, single-, and zero-spin concurrences for each
one of the entangled eigenstates of the Hubbard dimer. Terms a, b,
α1, and α2 are available in the caption of Table I.

|λi〉 Cc C1 C0

|λ1〉 4a2α1 2a2α2
1 2a2

|λ2〉 4b2α2 2b2α2
2 2b2

|λ3〉 0 0 1
|λ4〉 0 1 0

032421-3



SOUZA, ALMEIDA, LYRA, AND PEREIRA PHYSICAL REVIEW A 102, 032421 (2020)

FIG. 2. Charge Cc, single-spin C1, and zero-spin C0 concurrences
as a function of the Hubbard coupling U/t for |λ2〉 alongside its
entanglement entropy S2. For large positive (negative) values of U ,
entanglement is concentrated in the single- (zero-) spin sector. For
U = 0 there is full entanglement in the charge sector and partial
entanglement in each spin sector. The entanglement entropy is a para-
metric monotonic function of the sum of these partial concurrence
measures.

entanglement overcomes in the noninteracting regime U = 0,
reaching its maximum degree. However, there persists some
degree of spin entanglement in both corresponding sectors.
It is clear in Fig. 2 that the zero- and single-spin curves
are interchanged with respect to the reversal of the Hubbard
coupling from a repulsive to an attractive nature while the
charge concurrence is an even function of U . For eigenstate
|λ1〉 the above picture is quite similar, only with C0 and C1

featuring inverted roles. It is interesting that the sum of all
three partial concurrences gives the same value for both |λ1〉
and |λ2〉 states, as does the entanglement entropy [cf. Eq. (2)].
Even more remarkable is the fact that the total concurrence,
Cc + C1 + C0, is a monotonic function of the entanglement
entropy. As such, the partial concurrences are able to provide
a detailed description of the underlying quantum correlations
and that can be applied to mixed (thermal) states as we are
about to cover in the following section.

IV. PARTIAL CONCURRENCES AT FINITE
TEMPERATURES

We now focus on the influence of temperature and mag-
netic field on the quantum entanglement of Hubbard dimers in
equilibrium with a heat bath at temperature T . In this case, the
system is in a mixed quantum state due to its weak coupling
with the degrees of freedom of the heat reservoir. Therefore,
the expectation values of the dimer correlations needed to
evaluate the elements of ρX [Eq. (3)] as listed in Table II must
incorporate both quantum and thermal averages. Within the
canonical ensemble framework, given the expectation value

FIG. 3. (a) Charge Cc, (b) single-spin C1, and (c) zero-spin C0

concurrences as a function of the Hubbard coupling U/t for some
representative values of temperature at null magnetic field. The
degrading effect of temperature is stronger for positive U . Charge
and single-spin concurrences vanish above typical values of U that
decrease as temperature is raised.
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TABLE IV. Thermal averages of the relevant dimer correlations (density matrix elements) in each sector. The partition function Z is given
by Eq. (4) and � = U 2 + 16t2.

Sector 〈u+〉T 〈u−〉T 〈z〉T

Charge e−2βH

Z
e2βH

Z [−4te
−βU

2 sinh ( β
√

�

2 )]/Z
√

�

Single spin e2βH

Z
e−2βH

Z
e

−βU
2

2Z�
[� cosh ( β

√
�

2 ) + U
√

� sinh ( β
√

�

2 )] − 1
2Z

Zero spin 0 0 e
−βU

2

2Z�
[� cosh ( β

√
�

2 ) − U
√

� sinh ( β
√

�

2 )] − e−βU

2Z

〈O〉i of a given quantum operator O in eigenstate |λi〉, its ther-
mal average can be written as 〈O〉 = (

∑
i〈O〉ie−λi/kBT )/Z ,

where Z = ∑
i e−λi/kBT is the partition function, here

resulting in

Z = 2e− βU
2 cosh

(
β
√

�

2

)
+ e−βU + 1 + 2 cosh (2βH ).

(4)
Following the above prescription, we can obtain closed

forms for the thermal averages of the relevant dimer corre-
lations in each sector, as given in Table IV, from which the
temperature dependence of the partial concurrences can be
addressed.

We start off our analysis by plotting each partial concur-
rence as a function of the Hubbard coupling U for distinct
temperatures in the absence of an external field, as reported
in Fig. 3. For the charge sector, one notices that thermal
fluctuations have a stronger degrading effect for large re-
pulsive Hubbard couplings [Fig. 3(a)]. Actually, the charge
quantum concurrence vanishes above a characteristic value of
the Hubbard coupling that continuously decreases as temper-
ature is raised. A similar trend occurs with concurrence in
the single-spin sector [Fig. 3(b)], although it vanishes for a
distinct Hubbard coupling value as compared with the charge
concurrence at the same temperature. We get a rather different
picture for the zero-spin partial concurrence [Fig. 3(c)]. In this
case, although thermal fluctuations still act to spoil quantum
correlations, the concurrence remains finite for any strength
of the Hubbard interaction, vanishing only in the limit of
|U | → ∞ at finite temperatures. This feature is directly re-
lated to the fact that 〈u+〉T = 〈u−〉T = 0 in this sector, so that
the contribution to quantum entanglement comes exclusively
from 〈z〉T .

The explicit dependence of partial concurrences over tem-
perature is shown in Fig. 4 for some representative values
of the Hubbard coupling and H/t = 1. We recall that for
negative U the ground state is |λ2〉 which has maximum
zero-spin concurrence, with residual single-spin and charge
contributions. For positive U the ground state is the nonen-
tangled saturated paramagnetic state. At U = 0 these states
are degenerated. Thermal fluctuations reduce the degree of
quantum entanglement in all sectors when the ground state
features entanglement (U � 0). However, as discussed above,
it vanishes at distinct threshold temperatures in the charge
and single-spin sectors while it decreases continuously with
rising temperatures as 1/T 2 at the zero-spin sector. On the
other hand, thermal fluctuations can induce some degree of
quantum entanglement above the nonentangled ground state
(U > 0). This is due to thermally induced mixing of excited
entangled dimer states. However, this process is only effective

in the regime of low temperatures, for quantum entanglement
is ultimately spoiled as the temperature is further increased.

The effect of the external magnetic field is reported in
Fig. 5 for different temperatures. In all sectors, the magnetic
field acts by reducing the degree of quantum entanglement.
Here, we can also see that when the ground state is entangled,
as it occurs for weak fields, thermal fluctuations deteriorate
quantum correlation entanglement while thermally induced
entanglement is developed at strong fields for which the
ground state is nonentangled. The charge and single-spin con-
currences vanish for any value of the magnetic field strength
above the distinct characteristic temperatures.

Finally, we determine the threshold temperatures above
which the concurrence in the charge and single-single spin
sectors vanishes. These also depend on the Hubbard cou-
pling, which splits the T -U parameter space into four regions,
as depicted in Fig. 6. At low temperatures, quantum en-
tanglement is distributed in all three sectors while at high
temperatures there is some degree of quantum entanglement
only in the zero-spin sector that fades away as 1/T 2. However,
the distinct values of the threshold temperature for which
concurrence vanishes in the charge and single-spin sectors
allows for the identification of two intermediate entanglement
regimes. In one of them only the charge concurrence is zero
while the single-spin concurrence vanishes in the other region.
There is a specific value of the Hubbard coupling U ∗/t �
5.53 for which both concurrences vanish exactly at the same
temperature. Therefore, charge entanglement is more robust
against thermal fluctuations than single-spin entanglement for
U < U ∗, with reverse behavior taking place for U > U ∗.

V. SUMMARY AND CONCLUSIONS

In summary, we have provided a detailed study of quan-
tum entanglement in the half-filled Hubbard dimer in thermal
equilibrium with a heat bath. An arbitrary dimer state belongs
to a six-dimensional Hilbert space which restricts the use of
standard entanglement measures. By mapping the local (site)
modes into qubit state spaces, we were able to evaluate the
effective concurrence in the charge, single-, and zero-spin
sectors so as to discriminate how those degrees of freedom
contribute to the overall entanglement. As a matter of fact,
we found out that these partial concurrences can be added
to provide a measure parametrically monotonic to the von
Neumann entanglement entropy.

We went further to provide exact expressions for con-
currence as a function of temperature, Hubbard coupling,
and magnetic field strengths. At zero temperature and in the
absence of magnetic field for strongly repulsive (attractive)
Hubbard couplings, U → ∞ (U → −∞), entanglement is
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FIG. 4. (a) Charge Cc, (b) single-spin C1, and (c) zero-spin C0

concurrences as a function of temperature for representative val-
ues of U/t and H/t = 1. For positive U , temperature leads to an
overall degrading effect. For negative U , thermal fluctuations in-
duce the emergence of some degree of quantum entanglement above
the nonentangled ground state. Charge and single-spin concurrences
strictly vanish above distinct threshold temperatures while the zero-
spin concurrence continuously fades away as 1/T 2.

FIG. 5. (a) Charge Cc, (b) single-spin C1, and (c) zero-spin C0

concurrences as a function of the magnetic field for some represen-
tative values of temperature and U = 0. Below the critical magnetic
field H/t = 1.0, thermal fluctuations are harmful to entanglement.
Above the critical field, some degree of quantum entanglement is
thermally induced.
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FIG. 6. Entanglement regimes in the temperature T vs Hubbard
coupling U parameter space. At low finite temperatures, there is
entanglement in all sectors. At high temperatures, entanglement per-
sists only in the zero-spin sector, although it is proportional to 1/T 2.
There are also intermediate regions where entanglement in either
charge or single-spin sectors persists while the other vanishes.

maximum and fully due to the zero-spin (single-spin) sector
of degrees of freedom. In the noninteracting regime (U =
0) entanglement is maximum in the charge sector, featuring
residual contributions from the zero- and single-spin sectors
by the same amount.

We showed that thermal fluctuations have the expected
damaging influence on quantum entanglement whenever the
ground state is nonseparable. On the other hand, some degree
of quantum concurrence can actually be induced by thermal
fluctuations on a separable ground state due to the thermally
induced occupation of excited entangled states. Quantum con-
currences in the charge and single-spin sectors vanish above
characteristic U -dependent temperatures while the zero-spin
concurrence decays continuously as 1/T 2 when temperature
is raised. It is worth pointing out that spin chains usually
present a threshold temperature for concurrence (see, e.g.,
Ref. [53]). On the other hand, concurrence was shown to
decay continuously with temperature in a dimer model [54].

Putting it all together, we were able to address distinct
regions in the T × U parameter space related to how quantum
entanglement is distributed among the underlying degrees of
freedom. The method used for evaluating the quantum concur-
rence in effective two-qubit sectors built out of local modes of
itinerant electron systems [46,47,52] can be readily applied to
larger Hubbard clusters and is not restricted to the half-filling
condition. This is also particularly useful when one cannot
have full access to the Hilbert space. Therefore, it proves to be
a convenient tool to quantify quantum entanglement in other
classes of strongly correlated many-body systems.
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APPENDIX: OBTAINING ELEMENTS OF THE
TWO-QUBIT SECTOR DENSITY MATRICES ρX

We show how to build the density matrices of Eq. (3) for
each two-qubit sector in terms of the expectation values of
fermionic operators as displayed in Table II. (This procedure
can also be found in Ref. [51].) To begin with, we shall write
down the density matrix associated with an arbitrary pure state
|ψ〉 = ∑

i vi|i〉, with {|i〉} being a complete basis set, as

ρ =
∑
i, j

viv
∗
j |i〉〈 j|. (A1)

Each element of ρ thus reads ρi, j ≡ 〈i|ρ| j〉 = viv
∗
j . At this

point we define projection operators Pi|v j〉 = δi, j |vi〉 so that
Pi|ψ〉 = vi|i〉 (P2

i = Pi as usual). We then write

ρi, j = 〈ψ |PjTj,iPi|ψ〉, (A2)

with Tj,i ≡ | j〉〈i| = T †
i, j being a transfer operator. Now it all

comes down to expressing the projection and transfer opera-
tors in terms of fermionic annihilation and creation operators.
The first step in this direction is to define the vacuum projec-
tor, above which everything else is generated [55],

|0; 0〉〈0; 0| = N
(∏

μ

exp(−c†
μcμ)

)
, (A3)

where N stands for normal ordering and μ specify the
fermionic modes.

To illustrate how it works, let consider the
charge sector first, spanned by {|1〉, |2〉, |3〉, |4〉} ⇔
{|0; 0〉, |0; ↑〉, | ↑; 0〉, | ↑; ↑〉}. The projection operators
are given by

P1 ⇔ |0; 0〉〈0; 0|, (A4)

P2 ⇔ c†
2↑|0; 0〉〈0; 0|c2↑, (A5)

P3 ⇔ c†
1↑|0; 0〉〈0; 0|c1↑, (A6)

P4 ⇔ c†
1↑c†

2↑|0; 0〉〈0; 0|c2↑c1↑. (A7)

In this case, note that there are only two modes involved,
namely μ = c1↑, c2↑. By expanding the vacuum projector ac-
cordingly [see Eq. (A3)], we end up with

PC = {(1 − n1↑)(1 − n2↑), (1 − n1↑)n2↑, n1↑(1 − n2↑),

n1↑n2↑}, (A8)

where it is straightforward to spot that
∑

i Pi = 1
(completeness).

Due to total spin and charge conservation (cf. Table I), the
only off-diagonal terms in Eq. (3) different from zero are zX ≡
ρ2,3 and (zX )∗. Then we only need to evaluate one transition
operator, namely

T3,2 ⇔ c†
1↑|0; 0〉〈0; 0|c2↑. (A9)

In general those can be written in the form Ti, j = PiT̃i, j . For
the charge sector, T̃3,2 = c†

1↑c2↑. We are now ready to build
ρC by plugging the expressions we have just worked out into
Eq. (A2), thereby obtaining the elements listed in Table II.
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Note that as the modes μ = 1 ↓, 2 ↓ were ruled out when
expanding the vacuum projector in Eq. (A3), the resulting set
of projection operators was complete, entailing a normalized
density matrix in the charge sector. Now, for the two remain-
ing sectors, {| ↑; ↑〉, | ↑; ↓〉, | ↓; ↑〉, | ↓; ↓〉} (single spin; X =
1) and {|0; 0〉, |0; ↑↓〉, | ↑↓; 0〉, | ↑↓; ↑↓〉} (zero spin; X = 0),
the vacuum projector must take all four fermionic modes
into account. Following the same procedure as above, we
obtain

P1 = {n1↑(1 − n1↓)n2↑(1 − n2↓), n1↑(1 − n1↓)(1 − n2↑)n2↓,

(1 − n1↑)n1↓n2↑(1 − n2↓), (1 − n1↑)n1↓(1 − n2↑)n2↓},
(A10)

P0 = {(1 − n1↑)(1 − n1↓)(1 − n2↑)(1 − n2↓),

(1 − n1↑)(1 − n1↓)n2↑n2↓,

n1↑n1↓(1 − n2↑)(1 − n2↓), n1↑n1↓n2↑n2↓}. (A11)

The transfer operators T3,2 = P3T̃3,2 are such that

T̃3,2 = c†
2↑c2↓c†

1↓c1↑ (for X = 1), (A12)

T̃3,2 = c†
1↑c†

1↓c2↓c2↑ (for X = 0). (A13)

And once again, we substitute everything back into Eq. (A2)
to complete Table II.

The resulting density matrices for those two sectors are no
longer normalized as one may have guessed by examining P1

and P0. Although each set is effectively complete when only
the states belonging to the corresponding sector are involved,
it is not when the expectation values are taken in the states
listed in Table I, for example. This is so because ρ1 and ρ0

are projections of the full density matrix with 16 × 16 entries.
Still, that does not prevent us from evaluating the correlations
within the density matrices and, as a matter of fact, they
do account for genuine partial entanglement as they can be
added with the charge-sector concurrence to provide us with
a measure that behaves monotonically with the von Neumann
entanglement entropy.
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