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Data representation is crucial for the success of machine-learning models. In the context of quantum machine
learning with near-term quantum computers, equally important considerations of how to efficiently input
(encode) data and effectively deal with noise arise. In this paper, we study data encodings for binary quantum
classification and investigate their properties both with and without noise. For the common classifier we consider,
we show that encodings determine the classes of learnable decision boundaries as well as the set of points which
retain the same classification in the presence of noise. After defining the notion of a robust data encoding, we
prove several results on robustness for different channels, discuss the existence of robust encodings, and prove a
lower bound on the number of robust points in terms of fidelities between noisy and noiseless states. Numerical
results for several example implementations are provided to reinforce our findings.
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I. INTRODUCTION

Fault-tolerant quantum computers which can efficiently
simulate physics [1] and factor prime numbers [2] lie on an
unclear timeline. Current quantum processors in laboratories
or in the cloud [3] contain fewer than 100 qubits with short
lifetimes and noisy gate operations. Such devices cannot yet
implement fault-tolerant procedures and are said to belong to
the noisy, intermediate scale quantum (NISQ) era [4]. While
the gap between NISQ capabilities and required resources
for, e.g., factoring 2048-bit integers is large [5], recent hard-
ware advancements have led to the first quantum computation
which classical computers cannot emulate [6]. This combi-
nation of improved hardware and unclear timeline for fault
tolerance makes the question “What (useful) applications can
NISQ computers implement?” both interesting and important
to consider.

A leading candidate for NISQ applications is a class of
algorithms known as variational quantum algorithms (VQAs)
[7]. VQAs use a NISQ computer to evaluate an objective
function and a classical computer to adjust input parameters to
optimize the function. VQAs have been proposed or used for
many applications including quantum chemistry [8], approx-
imate optimization [9], quantum state diagonalization [10],
quantum compilation [11,12], quantum field theory simula-
tion [13,14], linear systems of equations [15–17], and even
quantum foundations [18]. More fundamental questions about
the computational complexity [7,19], trainability [20–22], and
noise resilience [23] of VQAs have also been considered.

Variational quantum algorithms have strong overlap with
machine-learning algorithms which seek to train a computer
to recognize patterns by designing and minimizing a cost
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function defined over an input data set [24]. In this context,
VQAs can be considered quantum neural networks (QNNs)
[25,26], and a multitude of applications from classical ma-
chine learning can be realized with (simulated) quantum
computers. Such applications include generative modeling
[27–31], transfer learning [32], and classification [25,33–
38]. These QNN applications, along with additional tech-
niques and applications based on quantum kernel methods
[39–42], define the emerging field of quantum machine learn-
ing (QML)1 [34,43].

Despite these applications, several fundamental questions
lie at the forefront of QML. Perhaps the most pressing ques-
tion is whether quantum models can provide any advantages
over classical models. While some (generally) negative the-
oretical results have been shown for sampling complexity
[45] and information capacity [46], other (generally) posi-
tive results have been shown for expressive power [30,47]
and problem-specific sampling complexity [48,49], and the
question is largely open. Any practical experiments toward
demonstrating advantage give rise to additional crucial ques-
tions. One question, general to all NISQ applications, is how
to deal with noise present in NISQ computers. A second
question, specific to QML applications, is how to (effi-
ciently) input or encode data into a quantum state such that
it can be processed by a QML model. This encoding en-
compasses both how to best represent data (a consideration
also present in classical machine learning, e.g., in support
vector machines) as well as how to practically create the
quantum state by means of a state preparation unitary or other
procedure.

1Although quantum machine learning is generally considered an
emerging field, foundational ideas were published more than two
decades ago [44].
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For the first question, several general-purpose strategies
for dealing with noise such as dynamical decoupling [50],
probabilistic error cancellation [51], zero-noise extrapolation
[51,52], and quantum subspace expansion [53] have been
proposed. However, the robustness (resilience) of particular
VQAs in the presence of noise has not been thoroughly
investigated, with the exception of very recent studies in quan-
tum compiling [11,23] and approximate optimization [54–56].
Understanding robustness properties of VQAs is key to mak-
ing progress towards practical NISQ implementations. For
the second question on inputting data, most studies in QML
focus on the design of the QNN while assuming a full wave-
function representation of arbitrary data [25,33,57–61]. This
assumption is not suitable for practical implementations as
it is well known that preparing an arbitrary quantum state
requires a number of gates exponential in the number of qubits
[62].

In this paper, we study both of the above questions in
the context of binary quantum classification. In particular,
we define different methods of encoding data and analyze
their properties both with and without noise. For the noiseless
case, we demonstrate that different data encodings lead to
different sets of learnable decision boundaries for the quantum
classifier. For the noisy case, given a quantum channel, we
define the notion of a robust point for the quantum classifier—
a generalization of fixed points for quantum operations. We
completely characterize the set of robust points for example
quantum channels and discuss how encoding data into robust
points is a type of problem-specific error mitigation for quan-
tum classifiers.

To these ends, the rest of the paper is organized as follows.
Section II presents definitions which are used in the remain-
der to prove our results, including a formal definition of a
common binary quantum classifier we consider (Sec. II A),
definitions and examples of data encodings (Sec. II B), noise
channels we consider (Sec. II C), and definitions of robust
points and robust encodings (Sec. II D). After this, we present
analytic results and proofs for robustness in Section III. We
begin by showing that different encodings lead to different
classes of learnable decision boundaries in Sec. III A, then
characterize the set of robust points for example quantum
channels in Sec. III B. In Sec. III C, we state and prove ro-
bustness results, and in Sec. III E we discuss the existence
of robust encodings. Finally, we prove an upper bound on
the number of robust points in terms of fidelities between
noisy and ideal states in Sec. III F. Last, we include several
numerical results in Sec. IV that reinforce and extend our
findings, and finally conclude in Sec. V.

II. PRELIMINARY DEFINITIONS

A. Quantum classifiers

In classical machine learning, classification problems are a
subclass of supervised learning problems in which the com-
puter model is presented with labeled data and asked to learn
some pattern. For binary classification, the input is a set of
labeled feature vectors

{(xi, yi )}M
i=1,

where xi ∈ X is a feature vector, X is an arbitrary set 2 , and
yi ∈ {0, 1} is a binary label. Given this data, the goal of the
learner is to output a rule f : X → {0, 1} which accurately
classifies the data and can be used to make predictions on new
data. In practice, this is accomplished by defining a model
(e.g., a neural network) and cost function, then minimizing
this cost function by “training” the model over the input data.

In this paper, we restrict to binary (quantum) classifiers,
henceforth called simply (quantum) classifiers. We remark
that multilabel classification problems can be reduced to bi-
nary classification by standard methods.

A quantum classifier is essentially the same as a clas-
sical one, the key difference being the model (Ansatz) of
the classifier. As mentioned in the Introduction, many QML
architectures use a VQA, nominally consisting of parame-
terized one- and two-qubit gates, which is a QNN in the
context of machine learning. QNNs can be considered func-
tion approximators analogous to classical neural networks
(e.g., feedforward neural networks [63]), and the procedure
for training the QNN consists of adjusting gate parameters
such that this function approximator outputs good predictions
for the input data.

While the use of QNNs as machine-learning models may
present the possibility of advantage for particular problems
[30,47], QNNs also present key challenges for machine learn-
ing. For nearly all QML problems, a pressing challenge is
inputting (arbitrary) data to the model such that the QNN can
process it. We refer to this input process as data encoding,
and discuss it in detail in Sec. II B. Another potential chal-
lenge with QNNs is outputting information, since the data
propagated through the QNN is a quantum state. For machine-
learning applications, this means that the output feature vector
(amplitudes of the quantum state) cannot be accessed effi-
ciently. Rather, as is usual in quantum mechanics, quantities
of the form Tr[ρÔ], where ρ is the quantum state and Ô is
some Hermitian operator, can be efficiently estimated to a set
precision.

For quantum classification, outputting information (predic-
tions) can be done in a relatively straightforward manner. As
several authors have noted [25,33–37], it is natural to use the
measurement outcome of a single qubit, which produces a
binary outcome, as a class prediction. We adopt this strategy
in our paper.

Informally, we define a (binary) quantum classifier as a
procedure for encoding data into a quantum circuit, processing
it through trainable QNN, and outputting a (binary) predicted
label. Given a feature vector x ∈ X , a concise description of
such a classifier can be written

x �→ ρx (encoding), (1)

�→ ρ̃x (processing), (2)

�→ ŷ[ρ̃x] (prediction). (3)

Several remarks are in order. First, a given data point x
in the training set (Sec. II A) is encoded in a quantum state

2In practice, we typically have X = RN , but other sets—e.g., X =
ZN or X ∈ ZN

2 —are possible, so we write X for generality.

032420-2



ROBUST DATA ENCODINGS FOR QUANTUM CLASSIFIERS PHYSICAL REVIEW A 102, 032420 (2020)

FIG. 1. A common architecture for a binary quantum classifier
that we study in this paper. The general circuit structure is shown in
(a) and the structure for a single qubit is highlighted in (b). In both, a
feature vector x is encoded into a quantum state ρx via a “state prepa-
ration” unitary Sx. The encoded state ρx then evolves to UρxU † =: ρ̃x

where U (α) is a unitary Ansatz with trainable parameters α. A single
qubit of the evolved state ρ̃x is measured to yield a predicted label ŷ
for the vector x.

ρx ∈ Dn via a state preparation unitary Sx (see Fig. 1 ).
Throughout the paper, we use Dn ⊂ C2n×2n

to denote the
set of density operators (matrices) on n qubits. We remark
that each x in the training set leads to a (unique) Sx, so the
state preparation unitary can be considered a parameterized
family of unitary Ansätze. We discuss encodings in detail in
Sec. II B.

For the processing step (2), there have been many proposed
QNN architectures in recent literature, including quantum
convolutional neural networks [64,65], strongly entangling
Ansätze [33], and more [35,66]. In this paper, we allow for
a general unitary evolution U (α) such that

ρ̃x = U (α)ρxU
†(α). (4)

We remark that some QNN architectures involve intermediate
measurements and conditional processing (notably, Ref. [64])
and so do not immediately fit into (4). Our techniques for

FIG. 2. A visual representation of data encoding (7) for a sin-
gle qubit. On the left is shown a set of randomly generated points
{xi, yi}M

i=1 normalized to lie within the unit square, (xi = [x1,i, x2,i]T ),
separated by a true decision boundary shown by the dashed black
line. A data encoding maps each xi ∈ R2 to a point on the Bloch
sphere ρxi ∈ C2, here using the dense angle encoding (14). The
dashed black line on the Bloch sphere shows the initial decision
boundary of the quantum classifier. During the training phase, unitary
parameters are adjusted to rotate the dashed black line to correctly
classify as many training points as possible. Different data encodings
lead to different learnable decision boundaries and different robust-
ness properties, as discussed in the main text.

showing robustness could be naturally extended to such
architectures, however, and so we consider (4) as a simple
yet general model. We also note that training the classifier via
minimization of a well-defined cost function is an important
task with interesting questions, but we primarily focus on data
encodings and their properties in this paper. For this reason,
we often suppress the trainable parameters α and write U for
U (α).

Finally, the remaining step is to extract information from
the state ρ̃x to obtain a predicted label. As mentioned, a natural
method for doing this is to measure a single qubit which
yields a binary outcome 0 or 1 taken as the predicted label ŷ.
Since measurements are probabilistic, we measure Nm times
and take a majority vote. That is, if 0 is measured N0 times
and N0 � Nm/2, we take 0 as the class prediction, otherwise
1. Generalizing the finite statistics,3 this condition can be
expressed analytically as

ŷ[ρ̃x] =
{0 if Tr[�c

0ρ̃x] � 1/2
1 otherwise, (5)

where

�c
0 := |0〉〈0|c ≡ |0〉〈0|c ⊗ Ic̄ (6)

is the projector onto the ground state of the classification
qubit, labeled c, and the remaining qubits are labeled c̄. For
brevity, we often omit these labels when it is clear from
context. Throughout the paper, we use ŷ for predicted labels
and y for true labels, and we refer to (5) as the decision rule
for the classifier. Equation (5) is not the only choice for such
a decision rule. In particular, one could choose a different
“weight” λ such that ŷ = 0 if Tr[�0ρ̃x] � λ as in Ref. [36],
add a bias to the classifier as in Ref. [33], or measure the
classification qubit in a different basis (e.g., the Hadamard
basis instead of the computational basis).

Our techniques for showing robustness (Sec. III C) could
be easily adapted for such alternate decision boundaries.

The preceding discussion is summarized in the following
formal definition of a quantum classifier.

Definition 1 (Quantum classifier). A (binary) quantum
classifier consists of three well-defined functions:

(i) an encoding function

E : X → Dn, (7)

E (x) = ρx, (8)

(ii) a function which evolves the state

U : C2n×2n → C2m×2m
, (9)

U (ρx) = ρ̃x, (10)

and (iii) a decision rule:

ŷ : C2m×2m → {0, 1}. (11)

3We discuss details arising from finite statistics in Sec. III D. The
results we prove can be easily modified to incorporate finite statistics
as shown in this section, but they are simpler to state in terms of
probabilities.
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Note that we have not included training data or a cost
function in this definition, so a quantum classifier can be
considered a hypothesis family. We can distinguish between
the hypothesis family and the trained model—in which opti-
mization has been performed to minimize a cost function over
a specified training data set—by referring to the latter as the
realized quantum classifier if it is not clear from context.

In the remainder, we study the effects of different encoding
functions (7), which we now discuss in more detail.

B. Data encodings

An encoding can be thought of as “loading” a data point
x ∈ X from memory into a quantum state so it can be
processed by a QNN. This loading is accomplished by an
encoding function (7) from the data set X to n-qubit quantum
states Dn. As mentioned, many QML papers [57–61] assume
a full amplitude encoding with n = log2 N . This provides an
exponential saving in “space” at the cost of an exponential in-
crease in “time.” That is, a quantum state of n = log2 N qubits
can represent a data point with N features, but in general such
a quantum state takes time O(2n) to prepare [62].

In practice, data is encoded via a state preparation circuit
(unitary) Sx—written in terms of one- and two-qubit gates—
which acts on an initial state |φ〉, nominally the all-zero state
|φ〉 = |0〉⊗n. This realizes the encoding

x �→ E (x) = Sx|φ〉〈φ |S†
x = |x〉〈x| =: ρx.

For Sx to be useful for a data encoding, it should have several
desirable properties. First, Sx should have a number of gates
which is at most polynomial in the number of qubits as well as
the size of the data set, dimension of the data to be encoded,
and all other relevant input parameters. For machine-learning
applications, we want the family of state preparation unitaries
to have enough free parameters such that there is a unique
quantum state ρx for each feature vector x—i.e., such that
the encoding function E is bijective. Additionally, for NISQ
applications, subpolynomial depth is even more desirable, and
we want Sx to be hardware efficient—meaning that the one-
and two-qubit gates comprising Sx can be realized without too
much overhead due to, e.g., compiling into the computer’s na-
tive gate set and implementing swap gates to connect disjoint
qubits.

Motivated by such NISQ limitations, some recent authors
[34,35,66,67] have considered a qubit encoding,

|x〉 =
N⊗

i=1

cos(xi )|0〉 + sin(xi )|1〉, (12)

for the feature vector x = [x1, ..., xN ]T ∈ X N . (Note that for
pure state encodings, we often write only the wave function
|x〉 ∈ C2n

, from which the density matrix ρx = |x〉〈x| ∈ Dn is
implicit.) We will also refer to (12) as an angle encoding. The
angle encoding uses N qubits with a constant depth quantum
circuit and is thus amenable to NISQ computers. The state
preparation unitary is Sx j = ⊗N

i=1 Ui where

Ui :=
[

cos(x(i)
j ) − sin(x(i)

j )
sin(x(i)

j ) cos(x(i)
j )

]
,

a strategy which encodes one feature per qubit.

This encoding can be slightly generalized to encode two
features per qubit by exploiting the relative phase degree of
freedom. We refer to this as the dense angle encoding and
include a definition below.

Definition 2 (Ddense angle encoding). Given a feature
vector x = [x1, ..., xN ]T ∈ RN , the dense angle encoding
maps x �→ E (x) given by

|x〉 =

N/2�⊗
i=1

cos(πx2i−1)|0〉 + e2π ix2i sin(πx2i−1)|1〉. (13)

For some of our analytic and numerical results, we high-
light the dense angle encoding for two-dimensional data x ∈
R2 with a single qubit given by

|x〉 = cos(πx1)|0〉 + e2π ix2 sin(πx1)|1〉, (14)

which has density matrix

ρx =
[

cos2 πx1 e−2π ix2 cos πx1 sin πx1

e2π ix2 cos πx1 sin πx1 sin2 πx1

]
.

Although the angle encoding (12) and dense angle encod-
ing (13) use sinuosoids and exponentials, there is nothing
special about these functions (other than, perhaps, they appear
in common parametrizations of qubits and unitary matrices
[68]). We can easily abstract these to a general class of qubit
encodings which use arbitrary functions.

Definition 3 (Ggeneral qubit encoding). Given a feature
vector x = [x1, ..., xN ]T ∈ RN , the general qubit encoding
maps x �→ E (x) given by

|x〉 =

N/2�⊗
i=1

fi(x2i−1, x2i )|0〉 + gi(x2i−1, x2i )|1〉. (15)

where f , g : R × R → C are such that | fi|2 + |gi|2 = 1 ∀i.
We remark that a similar type of generalization was used

in Ref. [36] with a single qubit classifier that allowed for
repeated application of an arbitrary state preparation unitary.

While (15) is the most general description of a qubit
encoding—and is the encoding we primarily focus on in this
paper—it is of course not the most general encoding (7). The
previously mentioned amplitude encoding maps N features
into n = log2 N qubits as follows.

Definition 4 (Aamplitude encoding). The amplitude en-
coding of a vector x ∈ RN is

|x〉 := 1

||x||22

N∑
i=1

xi|i〉, (16)

where xi is the ith feature of x.
As with the dense angle encoding, we highlight the ampli-

tude encoding for x = [x1 x2]T with ||x||2 = 1:

ρx =
[

x2
1 x1x2

x1x2 x2
2

]
. (17)

We note that the amplitude encoding can be slightly gener-
alized to allow for parametrizations of features (amplitudes).

Definition 5 (Ggeneralized amplitude encoding). For x ∈
RN , the generalized amplitude encoding maps x �→ E (x) is
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given by

|x〉 =
N∑

i=1

fi(x)|i〉,

where
∑

i | fi|2 = 1.
The functions fi could only act on the ith feature, e.g.,

fi(x) = sin xi, or could be more complicated functions of sev-
eral (or all) features.

Thus far, we have formally defined a data encoding (15)
and its role in a quantum classifier (Def. 1), and we have
given several examples. While we have discussed different
properties of state preparation circuits which implement data
encodings (depth, overhead, etc.), we have not yet discussed
the two main properties of data encodings we consider in this
paper: learnability and robustness. By learnability, we mean
the expressive power [69] of a given hypothesis family in
its ability to find a set of parameters such that the realized
quantum classifier can (optimally) separate the data classes.
In other words, learnability measures the extent to which the
quantum classifier can represent certain functions. We show
in Sec. III A that different data encodings lead to different
classes of learnable decision boundaries. For robustness, we
show that different data encodings lead to different sets of
robust points (to be defined) in Sec. III B—Sec. III E. For the
latter results which constitute the bulk of our work, we first
need to introduce the noise channels we consider and define
the notion of a robust point, which we do in the following two
sections.

C. Noise in quantum systems

In this section, we introduce our notation for the common
quantum channels we use in this paper. While we provide brief
exposition on quantum noise, we refer the reader desiring
more background to the standard references [68,70,71].

Noise occurs in quantum systems due to interactions with
the environment. Letting ρ denote the quantum state of in-
terest and ρenv the environment, noise can be characterized
physically by the process

ρ �→ Trenv[U (ρ ⊗ ρenv)U †],

where U is a unitary on the composite Hilbert space. This can
be written in the equivalent, often more convenient, operator-
sum representation

ρ �→
K∑

k=1

EkρE†
k , (18)

where the Kraus operators Ek satisfy the completeness relation

K∑
k=1

E†
k Ek = I.

Equation (18) is known as a quantum operation or quantum
channel. Physically, it can be interpreted as randomly replac-
ing the state ρ by the (properly normalized) state EkρE†

k with
probability Tr[EkρE†

k ].
We note that random and systematic coherent errors (de-

fined by K = 1 unitary Kraus operators) can be accounted
for in the training of variational circuits [11,23,72]. For this

reason, we primarily focus on incoherent errors defined below.
The quantum channels we study here are standard and often
used in theoretical work as reasonable noise models [68]. For
readers familiar with these channels, the following definitions
are solely to introduce our notation.

A commonly used noise model is the Pauli channel.
Definition 6. The Pauli channel maps a single qubit state ρ

to EP
p (ρ) defined by

EP
p (ρ) := pIρ + pX XρX + pY Y ρY + pZ ZρZ, (19)

where pI + pX + pY + pZ = 1.
While the Pauli channel acts on a single qubit, it can be

generalized to a d-dimensional Hilbert space via the Weyl
channel,

EW
p (ρ) :=

d−1∑
k,l=0

pklWklρW †
kl , (20)

where pkl are probabilities and the Weyl operators are

Wkl :=
d−1∑
m=0

e2π imk/d |m〉〈m + 1|.

For d = 2, Eq. (20) reduces to Eq. (19).
Two special cases of the Pauli channel are the bit-flip and

phase-flip (dephasing) channel.
Definition 7. The bit-flip channel maps a single qubit state

ρ to EBF
p (ρ) defined by

EBF
p (ρ) := (1 − p)ρ + pXρX (21)

where 0 � p � 1.
While a bit-flip channel flips the computational basis state

with probability p, the phase-flip channel introduces a relative
phase with probability p.

Definition 8. The phase-flip (dephasing) channel maps a
single qubit state ρ to Edeph

p (ρ) defined by

Edeph
p (ρ) := (1 − p)ρ + pZρZ, (22)

where 0 � p � 1.
Another special case of the Pauli channel is the depolar-

izing channel which occurs when each Pauli is equiprobable
pX = pY = pZ = p and pI = 1 − 3p. This channel can be
equivalently thought of as replacing the state ρ by the max-
imally mixed state I/2 with probability p.

Definition 9. The depolarizing channel maps a single qubit
state ρ to Edepo

p (ρ) defined by

Edepo
p (ρ) := (1 − p)ρ + pI/2, (23)

where 0 � p � 1.
The d = 2n-dimensional generalization of Def. 9 is

straightforward.
Definition 10. The global depolarizing channel maps an n-

qubit state ρ to EGD
p (ρ) defined by

EGD
p (ρ) := (1 − p)ρ + pI/d, (24)

where 0 � p � 1, d = 2n, and I ≡ Id is the d-dimensional
identity.
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(b)(a) (c)

FIG. 3. Cartoon illustration of robust points for a single qubit classifier. In panel (a), input training data points xi with classes yi ∈
{yellow, blue} are mapped into quantum states ρxi according to some encoding function E . The dashed line through the Bloch sphere indicates
the initial decision boundary. Points with a green outline are classified correctly, while points with a red outline are misclassified. In (b), data
points are processed by the QNN with optimal unitary parameters (after minimizing a cost function to find such parameters). For clarity, we
keep data points fixed and adjust the location of the decision boundary, which is now rotated to correctly classify more points (fewer points
with red outlines). In (c), a noise process E occurs which shifts the location of the final processed points (or location of decision boundary),
causing some points to be misclassified. The set of points which maintain the same classification in (b) and (c) are the robust points. Example
points x1 and x2 are correctly classified in (a) and (b) then misclassified in (c) due to the noise. Example point x3 is incorrectly classified in (a),
correctly classified in (b) after propagating through the QNN, and remains correctly classified in (c).

Finally, we consider amplitude damping noise which mod-
els decay from the excited state to the ground state via
spontaneous emission of a photon.

Definition 11. The amplitude damping channel maps a sin-
gle qubit state ρ to EAD

p (ρ) defined by

EAD
p (ρ) :=

[
ρ00 + pρ11

√
1 − pρ01√

1 − pρ10 (1 − p)ρ11

]
, (25)

where 0 � p � 1.
Now that we have introduced quantum noise and several

common channels, we can define robust data encodings for
quantum classifiers. We remark that we also consider mea-
surement noise in Appendix B but omit the definition and
results from the main text for brevity.

D. Robust data encodings

In this section, we define robust points and robust data en-
codings of quantum classifiers. Informally, the intuition is as
follows: the quantum classifier with decision rule (5) requires
only a “coarse-grained” measurement to extract a predicted
label. For example, with a single qubit classifier, all points in
the “top” hemisphere of the Bloch sphere are predicted to have
label 0, while all points in the “bottom” hemisphere are pre-
dicted to have label 1. The effect of noise is to shift points on
the Bloch sphere, but certain points can get shifted such that
they get assigned the same labels they would without noise.
This is the idea of robustness, represented schematically in
Fig. 3 . For classification purposes, we do not require
completely precise measurements, only that the point remain
in the same hemisphere to get the same predicted label.

Formally, we define a robust point as follows.
Definition 12 (Rrobust point). Let E be a quantum chan-

nel, and consider a (binary) quantum classifier with decision
rule ŷ as defined in (5). We say that the state ρx ∈ Dn encoding
a data point x ∈ X is a robust point of the quantum classifier
if and only if

ŷ[E (ρ̃x)] = ŷ[ρ̃x], (26)

where ρ̃x is the processed state via (9).

As mentioned, for the purpose of classification, Eq. (26)
is a well-motivated and reasonable definition of robustness.
We remark that (26) is expressed in terms of probability; in
practice, additional measurements may be required to reli-
ably determine robustness. We discuss this point further in
Sec. III D.

Further, we note that (26) assumes that noise occurs only
after the evolution ρx �→ ρ̃x. While this may be a useful the-
oretical assumption, in practice, noise happens throughout a
quantum circuit. We can therefore consider robustness for an
ideal data encoding as in Def. 12, or for a noisy data encoding
in which some noise process E1 occurs after encoding and
another noise process E2 occurs after evolution:

ŷ[E2(U (E1(ρx)))] = ŷ[ρ̃x]. (27)

For our results, we primarily consider (26), although we show
robustness for (27) in some cases.

Robust points (26) are related but not equivalent to (density
operator) fixed points of a quantum channel and can be con-
sidered an application-specific generalization of fixed points.
In Sec. III B, we characterize the set of robust points for
example channels, and in Sec. III E we use this connection
to prove the existence of robust data encodings.

For classification, we are concerned with not just one data
point, but rather a set of points [e.g., the set X or training set
(Sec. II A)]. We therefore define the set of robust points, or
robust set, in the following natural way.

Definition 13 (Rrobust set). Consider a (binary) quantum
classifier with encoding E : X → Dn and decision rule ŷ as
defined in (5). Let E be a quantum channel. The set of robust
points, or simply robust set, is

R(E, E , ŷ) := {x ∈ X : ŷ[E (ρ̃x)] = ŷ[ρ̃x]}, (28)

where ρ̃x is the processed state via (9) and ρx = E (x).
While the robust set generally depends on the encoding

E , there are cases in which R is independent of E . In this
scenario, we say all encodings are robust to this channel.
Otherwise, the size of the robust set (i.e., number of robust
points) can vary based on the encoding, and we distinguish
between two cases. If the robust set is the set of all possible

032420-6



ROBUST DATA ENCODINGS FOR QUANTUM CLASSIFIERS PHYSICAL REVIEW A 102, 032420 (2020)

points, we say that the encoding is completely robust to the
given noise channel.

Definition 14 (Ccompletely robust data encoding).
Consider a (binary) quantum classifier with encoding E
and decision rule ŷ as defined in (5). Let x ∈ X and let E be
a quantum channel. We say that E is a completely robust data
encoding for the quantum classifier if and only if

R(E, E , ŷ) = X . (29)

We note that in practice (e.g., for numerical results), com-
plete robustness is determined relative to the training set (Sec.
II A). That is, we empirically observe that E is a completely
robust data encoding if and only if

R(E, E , ŷ) = {xi}M
i=1. (30)

Complete robustness can be a strong condition, so we also
consider a partially robust data encoding, defined as follows.

Definition 15 (Ppartially robust data encoding). Consider
a (binary) quantum classifier with encoding E and decision
rule ŷ as defined in (5). Let x ∈ X and let E be a quantum
channel. We say that E is a partially robust data encoding for
the quantum classifier if and only if

R(E, E , ŷ) � X . (31)

Similar to complete robustness, partial robustness is deter-
mined in practice relative to the training set. For 0 � δ � 1,
we say that E is a δ-robust data encoding if and only if

|R(E, E , ŷ)| = δM, (32)

where | · | denotes cardinality so that |R(E, E , ŷ)| ∈ [M].

III. ANALYTIC RESULTS

Using the definitions from Sec. II, we now state and prove
results about data encodings. First, we show that different
encodings lead to different classes of decision boundaries in
Sec. III A. Next, we characterize the set of robust points for
example quantum channels in Sec. III B. In Sec. III C, we
prove several robustness results for different quantum chan-
nels, and in Sec. III E we discuss the existence of robust
encodings as well as an observed tradeoff between learnability
and robustness. Finally, in Sec. III F, we prove an upper bound
on the number of robust points in terms of fidelities between
noisy and noiseless states.

A. Classes of learnable decision boundaries

We defined several different encodings in Sec. II B and
discussed differences in the state preparation circuits which
realize the encodings. Here, we show that different encodings
lead to different sets of decision boundaries for the quantum
classifier, thereby demonstrating that the success of the quan-
tum classifier in Def. 1 depends crucially on the data encoding
(15).

The decision boundary according to the decision rule (5) is
implicitly defined by

Tr[�0ρ̃x] = 1/2. (33)

Consider a single qubit encoding (15) so

ρx =
[

f (x1, x2)2 f (x1, x2)g(x1, x2)∗

f (x1, x2)g(x1, x2) |g(x1, x2)|2
]
,

where we assumed without loss of generality that f is real
valued. Let the unitary U such that ρ̃x = UρxU † have matrix
elements Ui j . Then, one can write the decision boundary (33)
as (see Appendix A 1)

|U00|2 f 2 + 2Re[U ∗
00U01 f g] + |U01|2|g|2 = 1/2, (34)

where we have let f = f (x1, x2) and g = g(x1, x2) for brevity.
Equation (34) implicitly defines the decision boundary in
terms of the data encoding f and g. The unitary matrix el-
ements Ui j act as hyperparameters to define a hypothesis
family.

Equation (34) can be solved numerically for different en-
codings, and we do so in Sec. IV A (Fig. 4 ) to visualize
decision boundaries for single qubit classifiers. At present, we
can proceed further analytically with a few inconsequential
assumptions to simplify the equations.

For the amplitude encoding, we have f (x1, x2) = x1 and
g(x1, x2) = x2. Suppose for simplicity that matrix elements
U00 ≡ a and U01 ≡ b are real. Then, Eq. (34) can be written

(ax1 + bx2)2 = 1/2, (35)

which defines a line x2 = x2(x1) with slope −a/b and inter-
cept 1/

√
2b. Thus, a single qubit classifier in Def. 1 which

uses the amplitude encoding (16) can learn decision bound-
aries that are straight lines.

Now consider the dense angle encoding (13) on a sin-
gle qubit, for which f (x1, x2) = cos(πx1) and g(x1, x2) =
e2π ix2 sin(πx1). Supposing again that matrix elements U00 ≡ a
and U01 ≡ b are real, we can write (34) as

a2 cos2 πx1 + 2ab cos πx1 sin πx1 cos 2πx2

+ b2 sin2 πx1

= 1/2. (36)

This can be rearranged to

cos 2πx2 = 1 − 2a2 + (2a2 − 2b2) sin2 πx1

ab sin 2πx1
, (37)

which defines a class of sinusoidal functions x2 = x2(x1). (See
Sec. IV A and Fig. 4.)

The different decision boundaries defined by (35) and (37)
emphasize the effect that encoding has on learnability. A real-
ized classifier may have poor performance due to its encoding
and switching the encoding may lead to better results. We
note that a similar phenomenon occurs in classical machine
learning—a standard example being that a dot product kernel
cannot separate data on a spiral, but a Gaussian kernel can. It
may not be clear a priori what encoding to use (similarly in
classical machine learning with kernels), but different prop-
erties of the data may lead to educated guesses. We note that
Lloyd et al. [73] consider training over hyperparameters to
find good encodings, and we introduce a similar idea in Sec.
IV C to find good robust encodings.

In Sec. IV A, we numerically evaluate decision boundaries
for additional single-qubit encodings as well as two-qubit
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FIG. 4. Examples of learnable decision boundaries for a single qubit classifier with the (a) dense angle encoding, (b) amplitude encoding,
and (c) superdense angle encoding where θ = π and φ = 2π . Colors denote class labels. The QNN used here consisted of an arbitrary single
qubit rotation (see Fig. 13) with random parameters.

encodings to further illustrate the differences that arise from
different encodings.

B. Characterization of robust points

For a given quantum channel E , it is a standard exercise to
characterize the set of density operator fixed points, i.e., states
ρ ∈ Dn such that

E (ρ) = ρ. (38)

In this section, we characterize the set of robust points, for
example, quantum channels. This demonstrates the relation-
ship between robust points and fixed points which we further
elaborate on in Sec. III E. We remark that the characterizations
similar to the ones in this Section may be of independent inter-
est from a purely theoretical perspective, as robust points can
be considered a type of generalized fixed point, or symmetry,
of quantum channels.

The pure states which are fixed points of the dephasing
channel (22) are �0 := |0〉〈0| and �1 := |1〉〈1|, and

ρ = a�0 + b�1, (39)

with a + b = 1 is the general mixed-state density operator
fixed point. In contrast, let us now consider the robust points
of the same dephasing channel, which satisfy

ŷ
[
Edeph

p (ρ)
] = ŷ[ρ] (40)

instead of (38). Certainly the state in Eq. (39) will satisfy
(40)—i.e., any fixed point is a robust point—but the set of
robust points may contain more elements. To completely char-
acterize the robust set, we seek the set of ρ ∈ D2 such that

Tr[�0ρ] � 1/2 ⇒ Tr
[
�0Edeph

p (ρ)
]
� 1/2 (41)

and

Tr[�0ρ] < 1/2 ⇒ Tr
[
�0Edeph

p (ρ)
]

< 1/2. (42)

Using simple properties of the trace and Pauli matrices (see
Appendix A if desired), we can write

Tr
[
�0Edeph

p (ρ)
] = (1 − p)Tr[�0ρ] + pTr[�0ZρZ]

= Tr[�0ρ].

Thus (41) and (42) are satisfied for all density operators
ρ ∈ D2. That is, every data point x ∈ X is a robust point of
the dephasing channel (independent of the encoding) for the
quantum classifier in Def. 1.

Consider now an amplitude damping channel (25) with
p = 1, for which the only fixed point is the pure state �0.
By evaluating

Tr
[
�0EAD

p (ρ)
] = (1 − p)Tr[�0ρ] + p,

we see that a robust point σ must satisfy Tr[�0σ ] = 1. That
is, the only robust point is �0, and in this case the set of robust
points is identical to the set of fixed points.

The previous two examples illustrate how to find the robust
points of a quantum channel, and the relationship between
robust points and fixed points for the given channels. As
expected from (26) and (38), these examples confirm that

F (E ) ⊆ R(E , E, ŷ), (43)

where F (E ) denotes the set of fixed points of E . In Sec. III E,
we use this connection to generalize the above discussion and
prove the existence of robust data encodings.

C. Robustness results

In this section, we state and prove results on robust en-
codings. We first show robustness results for single qubit
classifiers with several channels in Sec. III C 1. Then, we state
and prove a robustness result for multiqubit classifiers with
(global) depolarizing noise in Sec. III C 2.

1. Single qubit classifier

First, we consider when robustness can be achieved for a
Pauli channel.

Theorem 1. Let EP
p be a Pauli channel (19) and consider

a quantum classifier on data from the set X . Then, for any
encoding E : X → D2, we have complete robustness

R
(
EP

p , E , ŷ)
) = X

if pX + pY � 1/2. (Recall that p = [pI , pX , pY , pZ ].)
Proof. The predicted label in the noisy case is identical to

(5) with ρ̃x replaced by EP
p (ρ̃x). That is,

ŷ
[
EP

p (ρ̃x)
] =

{
0 if Tr[�0EP

p (ρ̃x)] � 1/2
1 otherwise.

By definition (19), we have

Tr
[
�0EP

p (ρ̃x)
] = pI Tr[�0ρ̃x] + pX Tr[�0X ρ̃xX ]

+ pY Tr[�0Y ρ̃xY ] + pZTr[�0Zρ̃xZ].

Using straightforward substitutions (Appendix A),
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we may write Sec. III C 1 as

Tr
[
�0EP

p (ρ̃x)
] = (pI + pZ )Tr[�0ρ̃x] + (pX + pY )Tr[�1ρ̃x].

By resolution of the identity

1 = Tr[ρ̃x] = Tr[�0ρ̃x] + Tr[�1ρ̃x],

we come to the simplified expression

Tr
[
�0EP

p (ρ̃x)
] = [1 − 2ν]Tr[�0ρ̃x] + ν.

where ν := pX + pY .
Suppose the noiseless classification is ŷ = 0 so

Tr[�0ρ̃x] � 1/2. Since ν � 1/2, we have

Tr
[
�0EP

p (ρ̃x)
]
� [1 − 2ν] 1

2 + ν = 1
2 .

Hence, classification of data points with label ŷ = 0 is
robust for any encoding. Suppose the noiseless classification
is ŷ = 1 soTr[�0ρ̃x] < 1/2. Since ν � 1/2, we have

Tr
[
�0EP

p (ρ̃x)
]

< [1 − 2ν] 1
2 + ν = 1

2 .

Hence, classification of data points with label ŷ = 1 is also
robust for any encoding. �

Returning to the condition, pX + pY � 1/2, one can imag-
ine a NISQ computer in which either pX or pY were large
enough such that this condition is not satisfied. In this regard,
we note two things. First, if this condition is not satisfied, then
not every encoding strategy will be robust to the Pauli channel
in this model. In particular, the set of robust points will now
be dependent on the encoding strategy. This is similar to
the behavior of the amplitude damping channel (which we
demonstrate shortly), and we illustrate in Sec. IV.

Second, the requirement pX + pY � 1/2 appears because
the decision rule uses a measurement in the computational
basis. We note that if we measure in the Hadamard basis
[by replacing the projector �0 in the decision rule (5) with
�+ := |+〉〈+|], then we get a modified robustness condi-
tion, namely, pY + pZ � 1/2. A similar conclusion can be
drawn from measurements in the Pauli-Y basis. These results
suggest that device-specific encoding strategies and decision
rules may be important for achieving robustness in practice on
NISQ computers.

Three robustness results for different channels can be
shown as corollaries of Theorem 1 as follows. We include
detailed proofs in Appendix B for completeness.

(1) By setting pX = pY = 0 in Theorem 1, it follows that
R(Edeph

p , E , ŷ) = X . That is, all encodings are uncondition-
ally robust to dephasing errors.

(2) By setting pZ = pY = 0 and using a modified decision
rule which measures in the Hadamard basis, it follows that
R(EBF

p , E , ẑ) = X . That is, all encodings are unconditionally
robust to bit-flip errors (using a modified decision rule).

(3) By setting pX = pY = pZ = p/4 and pI := (1 −
3p/4), it follows that R(Edepo

p , E , ŷ) = X . That is, all encod-
ings are unconditionally robust to depolarizing noise.

Interestingly, we remark that fact (3) holds with mea-
surements in any basis, not just the computational basis. In
Sec. III C 2, we generalize this result to multiqubit classifiers
and as well as noisy data encoding (27).

We now consider amplitude damping noise, for which the
robust set R depends on the encoding E . From the channel

definition (25), it is straightforward to see that

Tr
[
�0EAD

p (ρ̃x)
] = Tr[�0ρ̃x] + pTr[�1ρ̃x]. (44)

Suppose first that the noiseless prediction is ŷ = 0
soTr[�0ρ̃x] � 1/2. Then, certainly Tr[�0EAD

p (ρ̃x)] � 1/2
because p � 0 and Tr[�1ρ̃x] � 0. Thus, the noisy prediction
is always identical to the noiseless prediction when the noise-
less prediction is ŷ = 0. This can be understood intuitively
because an amplitude damping channel models the |1〉 �→ |0〉
transition [70] which only increases the probability of the
ground state.

Suppose now that the noiseless prediction is ŷ = 1. From
(44), we require that

Tr
[
�0EAD

p (ρ̃x)
] = Tr[�0ρ̃x] + pTr[�1ρ̃x] < 1/2

to achieve robustness. We use resolution of the identity

Tr[�1ρ̃x] = 1 − Tr[�0ρ̃x]

to arrive at the condition

Tr[�1ρ̃x] >
1

2(1 − p)
. (45)

Let ρx be given by the general qubit encoding (15) so (45) can
be written (see Appendix A 2)

|U10|2 f 2 + 2Re[U ∗
11U10 f g∗] + |U11|2|g|2 >

1

2(1 − p)
,

where Ui j denote the optimal unitary matrix elements.
We have thus shown the following.
Theorem 2. Consider a quantum classifier on data from the

set X , and let EAD
p denote the amplitude damping channel

(25). Then, for any qubit encoding E defined in (15) which
satisfies

|U10|2 f 2 + 2Re[U ∗
11U10 f g∗] + |U11|2|g|2 >

1

2(1 − p)
, (46)

we have

R(EAD
p , E , ŷ) = X .

If E is not completely robust, the set of points x such that
(46) holds define the partially robust set.

We note that (46) depends on the optimal unitary U as
well as the encoding E . This is expected as the final state
ρ̃x has been processed by the QNN. In practice, since we do
not know the optimal unitary parameters a priori, it remains a
question of how large the (partially) robust set will for a given
an encoding. To address this point, we discuss in Sec. IV C
how training over hyperparameters in the encoding function
can help find the robust region even after application of the
a priori unknown optimal unitary. Additionally, in the next
section we discuss whether we can find an encoding which
satisfies (46) or, more generally, whether a robust encoding
exists for a given channel.

Given the robustness condition (46) for the amplitude
damping channel, it is natural to ask whether such an encoding
exists. In Sec. III E, we show the answer is yes by demon-
strating there always exists a robust encoding for any trace
preserving quantum operation. This encoding may be trivial,
which leads to the idea of a tradeoff between learnability and
robustness. (See Sec. III E.)
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2. Multiqubit classifier

We now consider global depolarizing noise on a multiqubit
classifier. It turns out that any encoding is completely robust
to this channel applied at any point throughout the circuit. To
clearly state the theorem, we introduce the following notation.
First, let

Epi (ρ) = piρ + (1 − pi )Id/d (47)

be shorthand for a global depolarizing channel with probabil-
ity pi. (Note pi and 1 − pi are intentionally reversed compared
to Def. 10 to simplify the proof.) Then, let

ρ̃ (m)
x ≡

[
m∏

i=1

Ui ◦ Epi

]
◦ ρx (48)

denote the state of the encoded point ρx after m applications
of a global depolarizing channel and unitary channel. For
instance, m = 1 corresponds to

U1 ◦ Ep1 ◦ ρx ≡ U1(Ep1 (ρx))

and m = 2 corresponds to

U2 ◦ Ep2 ◦ U1 ◦ Ep1 ◦ ρx ≡ U2(Ep2 (U1(Ep1 (ρx)))).

We remark that Ui can denote any unitary in the circuit.
With this notation, we state the theorem as follows.
Theorem 3. Consider a quantum classifier on data from the

set X with decision rule ŷ defined in Eq. (B1). Then, for any
encoding E : X → Dn,

R
(
EGD

p , E , ŷ
) = X .

where EGD
p denotes the composition of global depolarizing

noise acting at any point in the circuit—i.e., such that the final
state of the classifier is given by (48).

To prove Theorem 3, we use the following lemma.
Lemma 1. The state in Eq. (48) can be written as (adapted

from Ref. [23])

ρ̃ (m)
x =

m∏
i=1

piUm · · ·U1ρxU
†
1 · · ·U †

m +
(

1 −
m∏

i=1

pi

)
Id

d
, (49)

where d = 2n is the dimension of the Hilbert space.
Proof. Using the definition of the global depolarizing

channel (47), it is straightforward to evaluate

ρ̃ (1)
x = U1 ◦ Ep1 ◦ ρx = p1U1ρxU

†
1 + (1 − p1)Id/d.

Thus (49) is true for m = 1. Assume (49) holds for m = k.
Then, for k + 1 we have

ρ̃ (k+1)
x = Uk+1 ◦ Epk+1 ◦ ρ̃ (k)

x

= pk+1Uk+1ρ̃
(k)
x U †

k+1 + (1 − pk+1)Id/d.

The last line can be simplified to arrive at

ρ̃ (k+1)
x =

k+1∏
i=1

piUk+1 · · ·U1ρxU
†
1 · · ·U †

k+1

+
(

1 −
k+1∏
i=1

pi

)
I/d,

which completes the proof. �

We can now prove Theorem 3 as follows. Let l denote
the total number of alternating unitary gates with depolarizing
noise in the classifier circuit so (49) can be written

ρ̃ (l )
x = p̄ρ̃x + (1 − p̄)I/d. (50)

Here, we have let p̄ := ∏l
i=1 pi and noted that

Ul · · ·U1ρxU
†
1 · · ·U †

l = ρ̃x is the final state of the noiseless
circuit before measuring. Eq. (50) is thus the final state of the
noisy circuit before measuring. We can now evaluate

Tr
[
�0ρ̃

(l )
x

] = p̄Tr[�0ρ̃x] + (1 − p̄)/2, (51)

where we have used Tr[�0Id ] = 2d−1. To prove robustness,
suppose that ŷ[ρ̃x] = 0 so Tr[�0ρ̃x] � 1/2. Then,

Tr
[
�0ρ̃

(l )
x

]
� p̄/2 + (1 − p̄)/2 = 1/2,

so ŷ[ρ̃ (l )
x ] = 0, similarly for the case ŷ[ρ̃x] = 1, which com-

pletes the proof of Theorem 3.
Thus, any encoding strategy exhibits complete robustness

to global depolarizing noise. We remark again that our def-
inition of robustness (Def. 12) is in terms of probabilities,
meaning that more measurements for sampling may be re-
quired to reliably evaluate robustness. With this remark, we
note an interesting connection to explain a phenomenon ob-
served in recent literature: In Ref. [35], the authors found
that classification accuracy decreased under the presence of
depolarizing noise. Theorem 3 implies this was exclusively
due to the finite shot noise used to obtain the predicted label.
We discuss errors due to finite sampling in more detail in
Sec. III D.

While global depolarizing noise admits a clean robustness
result for an arbitrary d-dimensional circuit, general channels
can lead to complicated equations which are best handled
numerically. We include several numerical results in Sec. IV,
and we discuss avenues for proving more analytical results
with certain classes of channels in future work in Sec. V.
To close the present discussion, we highlight the special case
of multiqubit classifiers with “factorizable noise,” for which
it is straightforward to apply previous results proved in this
section.

In particular, suppose that E : Dn → Dn is a noise channel
which factorizes into single qubit channels, e.g.,

E = E1 ⊗ · · · ⊗ En, (52)

where Ei : D2 → D2 for i ∈ [n]. Without loss of generality, let
the classification qubit be the nth qubit. Then, if the processed
state of the classification qubit is robust to the channel En, the
encoded state will be robust to the entire channel E in (52).
This result, which is precisely stated and proved in Appendix
B 2, also holds for general n − 1 qubit channels which act
on every qubit except the classification qubit. Although this
is relatively straightforward, the result could be used as a
building block to better understand more intricate robustness
properties of quantum classifiers.

D. Modifications for finite sampling

As mentioned in Sec. II A, the decision rule (5) is written
in terms of probabilities. In practical applications, we do not
have access to probabilities but rather samples from the un-
derlying distribution. Specifically, we sample a finite number
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N times from the state and get an estimate of the probabilities
in terms of recorded frequencies. In this section, we discuss
implications of this finite sampling error and show how to
modify results from the previous sections to account for finite
sampling.

The first modification is to the decision rule (5). Here, we
replace the true probability px := Tr[�c

0ρ̃x] with an unbiased
estimator p̄x(N ) obtained from N samples. The modified de-
cision rule is then

ŷN [ρ̃x] =
{0 if p̄x(N ) � 1/2

1 otherwise. (53)

Suppose we find that p̄x(N ) � 1/2. Then, for any ε > 0, we
know that px � 1/2 − ε with probability at least 1 − γ if we
take

N � Nc(ε, γ ) := 1/(2ε2) ln(1/γ ) (54)

samples from px. This follows by Hoeffding’s inequality,

Pr (| p̄x(N ) − px| � ε) � 1 − γ , (55)

which we can use since each measurement of the observable
gives a Bernoulli random variable with expectation Tr[�c

0ρ̃x].
We refer to 1 − γ as the confidence.

Before discussing robustness with finite sampling, we note
that it is in principle #P-hard to exactly determine the pre-
dicted class label since points could be within any ε > 0 from
the decision boundary. (In other words, there is no promised
gap.) In practice, we do not expect this to be a limiting issue
aside from pathological examples but it is important to note.
One could introduce a penalty term into the cost function such
that the distance ε between the boundary and the closest point
is maximized (as in support vector machines) to mitigate this
effect.

Let us now modify the definition of a robust point to ac-
count for errors due to finite sampling. As discussed, finite
sampling introduces uncertainty into the decision rule of the
classifier which carries through to robust points in the follow-
ing natural definition.

Definition 16 (ε, γ -robust point). Let 0 < ε < 1/2, 0 <

γ < 1, and E be a quantum channel. We say that the state
ρx ∈ Dn encoding a data point x ∈ X is an ε, γ -robust point
of the quantum classifier if and only if

ŷN [E (ρ̃x)] = ŷN [ρ̃x], (56)

with confidence 1 − γ . Explicitly, (56) gives two
conditions:

Tr
[
�c

0ρ̃x
]
� 1/2 − ε ⇒ Tr[�c

0E (ρ̃x)] � 1/2 − ε (57)

with confidence 1 − γ and

Tr
[
�c

0ρ̃x
]

< 1/2 + ε ⇒ Tr
[
�c

0E (ρ̃x)
]

< 1/2 + ε (58)

with confidence 1 − γ .
This is achieved using N � Nc(ε, γ ) := 1/(2ε2) log 1/γ

measurements in the decision rule (53).
Procedurally, we can think of this definition as follows. We

are provided with an 0 < ε < 1/2 which corresponds to how
close to the boundary we want to be able to distinguish robust
points (the farthest we can be from the boundary is 1/2), and
a 0 < γ < 1 which corresponds to how certain we want to be

about points within this region. Every point σ which satisfies

|Tr
[
σ�c

0

] − 1/2| < ε (59)

is classified correctly with confidence 1 − γ using at least
Nc(ε, γ ) measurements. Here, σ could be either ρ̃x or E (ρ̃x)
as in (56).

We can incorporate finite sampling considerations into ro-
bustness results in the following natural way. For example,
consider Corollary (3) of Theorem 1 which states that a single
qubit classifier is unconditionally robust to depolarizing noise.
The modified statement of this theorem which accounts for
finite sampling is as follows.

Theorem 4. Let Edepo
p be a single qubit depolarizing chan-

nel and consider a quantum classifier on the set X . For any
encoding E : X → D2, let x ∈ X and ε, γ be such that

p̄x(N (ε, γ )) � 1/2. (60)

Then, ρx = E (x) is an ε, γ -robust point.
Proof. Given x ∈ X and ε, γ such that

p̄x(N (ε, γ )) � 1/2, (61)

we have ŷN [ρ̃x] = 0 with confidence 1 − γ . This means
that

Tr
[
�c

0ρ̃x
]
� 1/2 − ε (62)

with confidence 1 − γ . It follows that

Tr
[
�c

0Edepo
p (ρ̃x)

] = p/2 + (1 − p)Tr
[
�c

0ρ̃x
]

� p/2 + (1 − p)(1/2 − ε)

� 1/2 − ε

with confidence 1 − γ . The analogous result can be shown
when p̄x(N (ε, γ )) < 1/2 which completes the proof. �

While the results outside of this section are stated in terms
of probabilities (i.e., without finite sampling), they can each
be modified to incorporate effects due to finite sampling in
the same manner as the above proof.

E. Existence of robust encodings

In Sec. III B, we considered example channels and charac-
terized their robust points and fixed points. We found that the
set of fixed points F (E ) is always a subset of the robust set
R(E, E , ŷ) in (43). Here, we use this connection to show that
there always exists a robust encoding for a trace-preserving
channel E [regardless of optimal unitary parameters which
may appear in the robustness condition, e.g. (46)].

Theorem 5. Existence of fixed points [68,74] . Any trace-
preserving quantum operation has at least one density operator
fixed point (38).

Using this and the observation that F (E ) ⊂ R(E, E , ŷ), we
have the following existence theorem for robust encodings.

Theorem 6. Given a data point x ∈ X , a trace-preserving
quantum channel E , and decision rule ŷ defined in (5), there
exists an encoding E such that

ŷ[E (E (x))] = ŷ[E (x)]. (63)

We note that the optimal unitary of the QNN affects the
location of the robust set but not the existence. We emphasize
that Theorem 6 is with respect to a single data point x ∈ X .
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As mentioned in Sec. II D, it is more relevant for applications
to consider the training set (Sec. II A) or entire set X .

Appropriately, one can ask whether a completely robust
encoding (Def. 14) exists for a given channel E . This answer
also turns out to be yes, but in a potentially trivial way.

In particular, suppose that there is a unique fixed point σ of
the channel E , e.g., depolarizing noise or amplitude damping
noise with p = 1. Then, consider the encoding

E (x) = σ

for all x ∈ X . From a robustness perspective, this has the
desirable property of complete robustness. From a machine
learning perspective, however, this has very few desirable
properties: all training data is mapped to the same point so
that it is impossible to successfully train a classifier.4

The previous example, while extreme, serves to illustrate
the trade-off between learnability (expressive power) and ro-
bustness. By expressive power, we mean the ability of the
classifier (hypothesis family) to predict correct labels with-
out regard to noise. By robustness, we mean the property of
retaining the same label (without regard to correctness) in the
presence of noise. These two properties can be schematically
connected as below:

y[x]
Learnability←−−−−−−−−−−−−→ ŷ[ρ̃x]

Robustness←−−−−−−−−−−→ ŷ[E (ρ̃x)].

The trade-off we observe is that it is possible to maintain
robustness by means of a certain encodings, but these encod-
ings generally reduce the expressive power of the classifier.
Succinctly, more robustness leads to less expressive power,
and vice versa. We discuss this point more in Sec. IV C.

F. Lower bounds on partial robustness

In this section, we consider a slightly modified binary
quantum classifier which embeds the cost function in the cir-
cuit and computes the cost by measuring expectation values.
In contrast to the classifier in Def. 1, the output of this circuit is
thus the cost C instead of an individual predicted label ŷ. Cor-
respondingly, the input to the circuit is all data points in the
training set (II A) (using a “mixed state encoding” discussed
below) instead of a single data point x. Such a classifier was
recently introduced by Cao et al. in Ref. [67] and presents an
interesting framework to analyze in the context of noise. In
the remainder of this section, we prove a lower bound on the
size of the robust set in terms of fidelities between noisy and
noiseless states.

Before precisely stating this theorem, we formally define
the mixed state encoding and cost function of this modified
classifier.

Definition 17 (mixed state encoding). Let {(xi, yi )}M
i=1 be a

data set and E be an encoding. For each feature vector xi, let

σxi := E (xi ) ⊗ |yi〉〈yi| = ρxi ⊗ |yi〉〈yi|. (64)

4In principle, one can achieve an encoding which is completely
robust and able to correctly classify all data if there are at least
two orthogonal fixed points in F (E ). For example, if E the bit
flip channel, the encoding xi �→ |0〉 + (−1)yi |1〉 is both completely
robust and completely learnable (the optimal unitary is a Hadamard
gate) but assumes the true labels yi are known.

The mixed state encoding is then defined by

σ := 1

M

M∑
i=1

σxi . (65)

We note that (65) may be realized by preparing one of the
pure states (64) with equal probability. The cost function we
use for this classifier is the indicator cost function given by

C := 1

M

M∑
i=1

1(ŷi(ρ̃xi ) �= yi ). (66)

Here, the indicator 1 evaluates to the truth value of its
argument—i.e., 1(ŷi �= yi ) = 0 if yi = ŷi, otherwise 1. We
note again that C = C(α) is parameterized by some angles
α which we omit for brevity. We now state and prove the
following theorem which provides an upper bound on the size
of the robust set.

Theorem 7. Consider a quantum classifier using the mixed
state encoding (65) and indicator cost function (66). Assum-
ing that a noise channel E acts only on the encoded feature
vectors ρxi (and not the encoded labels |yi〉〈yi|), then

|R(E, E , ŷ)| � M −
√

1 − F (E (σ̃ ), σ̃ ), (67)

where F is the fidelity

F (τ, ω) := Tr[
√√

τω
√

τ ]2 ∀ τ, ω ∈ Dn.

This theorem is useful since, if one has an expression for
the output fidelity of a quantum circuit after a noise channel
is applied, one can directly determine a bound on how the
classification results will be affected. To prove it, we relate
the difference between the noisy cost and the noiseless cost to
the size of the robust set.

Proof. Let the indicator cost (66) of the noisy classifier be
CE and the noiseless classifier be C. Define

�EC := |CE − C| (68)

to be the magnitude of the difference between noisy and
noiseless costs. Due to our choice of cost function (66), we
can relate �EC to the δ-robustness of the model in Def. 15 as
follows.

First, it is easy to see that the quantity 1 − �EC is the the
fraction δ of robust points (32) so

|R(E, E , ŷ)| = M(1 − �EC). (69)

Now the QNN acts only on the “data subsystem” of the
mixed state encoding (65) so the evolved state before mea-
surement is

σ̃ = 1

M

M∑
i=1

ρ̃xi ⊗ |yi〉〈yi|. (70)

By assumption, the channel E leaves the “label subsystem”
|yi〉〈yi| invariant so

E (σ̃ ) = 1

M

M∑
i=i

E (ρ̃xi ) ⊗ |yi〉〈yi |.
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Now, a related cost C′ can be evaluated by measuring the
expectation of

D := I⊗n−1 ⊗ Zc ⊗ Zl ,

where c and l denote classification and label qubits, respec-
tively [67]. That is, the noiseless cost is given by

C′ = Tr(Dσ̃ )

and the noisy cost is given by

C′
E = Tr(DE (σ̃ )).

Now, it is easy to see that 0 � �EC′ � 2. When all points
are robust, �EC′ = 0, and when a single point goes from
robust to not robust, �EC′ increases by at most 2/M. As such,
we can write down a corresponding inequality for the cost, C′,
as in (69) so that

|R(E, E , ŷ)| � M

(
1 − �EC′

2

)
. (71)

The difference in cost (68) due to noise is thus

�EC′ := |C′
E − C′|,

= |Tr[D(E (σ̃ ) − σ̃ )]|,
� ||D||∞||E (σ̃ ) − σ̃ ||1,

� 2
√

1 − F (E (σ̃ ), σ̃ ). (72)

The third line in this derivation follows from Hölders
inequality and the last line from the Fuchs-van de Graaf
inequality [75,76]. We also used the fact that ||D||∞ :=
max j |λ j (D)| = 1.

Substituting the inequality (71) in (72) completes the
proof. �

We can also show the following tighter bound based on the
average trace distance between the individual encoded states
(i.e., not using the mixed state encoding):

�EC′ � 2

M

M∑
i=1

√
1 − F (E (ρ̃xi ), ρ̃xi ). (73)

A proof is included in Appendix B.
In Sec. IV D, we use these inequalities to bound the size of

the robust set for several different encodings on an example
implementation.

IV. NUMERICAL RESULTS

In this section, we present numerical evidence to rein-
force the theoretical results proved in Sec. III and build on
the discussions. In Sec. IV A, we show classes of learnable
decision boundaries for example encodings, building on the
previous discussion in Sec. III A. We then plot the robust
sets for partially robust encodings in Sec. IV B to visualize
the differences that arise from different encodings. We also
generalize some encodings defined in Sec. II B to include hy-
perparameters and study the effects. This leads us to attempt to
train over these hyperparameters, and we present an encoding
learning algorithm in Sec. IV C to perform this task. Finally, in
Sec. IV D we compute upper bounds on the size of robust sets

based on Sec. III F. We note that we include code to reproduce
all results in this section in Ref. [77]. For all numerical results
in the following sections related to single qubit classifier, we
use three simple data sets; the first is the moons data set from
scikit-learn [78] and two we denote vertical and diagonal.
Representative examples can be found in Appendix C.

A. Decision boundaries and implementations

In Sec. II B, we defined an encoding (7) and gave several
examples. In Sec. III A, we showed that a classifier with the
amplitude encoding (17) can learn decision boundaries that
are straight lines, while the same classifier with the dense
angle encoding (14) can learn sinusoidal decision boundaries.
We show this in Fig. 4, and we build on this discussion in the
remainder of this section.

Figure 4(c) shows a striped decision boundary which was
learned by a superdense angle encoding, defined below. The
superdense encoding introduces a linear combination of fea-
tures into the qubit (angle) encoding (12).

Definition 18 (Ssuperdense angle encoding) Let x =
[x1, ..., xN ]T ∈ RN be a feature vector and θ,φ ∈ RN be
parameters. Then, the superdense angle encoding maps
x �→ E (x) given by

|x〉 =

N/2�⊗
i=1

cos(θix2i−1 + φix2i )|0〉 + cos(θix2i−1 + φix2i )|1〉.

(74)

For a single qubit, the superdense angle encoding
(SDAE) is

|x〉 := cos (θx1 + φx2)|0〉 + sin (θx1 + φx2)|1〉.
We observe that φ = 0 recovers the qubit (angle) encoding
(12) considered by [34,66,67] and (74) encodes two features
per qubit.

We note that Def. 18 includes hyperparameters θ and φ.
The reason for this will become clear in Sec. IV C when
we consider optimizing over encoding hyperparameters to
increase robustness. As previously mentioned, a similar idea
was investigated by Lloyd et al. in Ref. [73] for the purpose
of (in our notation) learnability.

As a final example to explore the importance of encodings,
we consider an example implementation on a standard data
set using different encodings. The data set we consider is the
Iris flower data set [79] in which each flower is described
by four features so x ∈ R4. The original data set includes
three classes (species of flower) but we only consider two
for binary classification. A quantum classifier using the qubit
angle encoding (12) and a tree tensor network (TTN) Ansatz
was considered in Ref. [35]. Using this encoding and QNN,
the authors were able to successfully classify all points in the
data set.

Since the angle encoding maps one feature into one qubit,
a total of four qubits was used for the example in Ref. [35].
Here, we consider encodings which map two features into one
qubit and thus require only two qubits. Descriptions of the
encodings, QNN Ansätze, and overall classification accuracy
are shown in Table I .
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TABLE I. Classification accuracy achieved on the Iris data set
using different encodings and QNNs in the quantum classifier. The
top row is from Ref. [35] and the remaining rows are from this paper.
The heading Np indicates number of parameters in the QNN and n
is the number of qubits in the classifier. The accuracy is the overall
performance using a train-test ratio of 80% on classes 0 and 2. (See
Ref. [77] for full implementation details.)

Encoding QNN NP n Accuracy

Angle TTN 7 4 100%
Dense angle U (4) 12 2 100%
Amplitude U (4) 12 2 100%
Superdense angle U (4) 12 2 77.6%

As can be seen, we are able to achieve 100% accuracy
using the amplitude and dense angle encoding. For the SDAE,
the accuracy drops. Because the SDAE performs worse than
other encodings, this implementation again highlights the im-
portance of encoding on learnability. Additionally, the fact
that we can use two qubits instead of four highlights the
importance of encodings from a resource perspective. Specifi-
cally, NISQ applications with fewer qubits are less error prone
due to fewer two-qubit gates, less crosstalk between qubits,
and reduced readout errors. The reduction in the number of
qubits here due to data encoding parallels, e.g., the reduction
in the number of qubits in quantum chemistry applications
due to qubit tapering [80]. For QML, such a reduction is not
always beneficial as the encoding may require a significantly
higher depth. For this implementation, however, the dense
angle encoding has the same depth as the angle encoding, so
the reduction in number of qubits is meaningful.

B. Robust sets for partially robust encodings

In Sec. III C, we proved conditions under which an encod-
ing is robust to a given error channel. Typically, in practice,
encodings may not completely satisfy such robustness cri-
teria but will exhibit partial robustness—i.e., some number
of training points will be robust but not all. In this section,
we characterize such robust sets for different partially robust
encodings. We emphasize two points: (i) the number of robust

points is different for different encodings and (ii) the location
of robust points is different for different encodings.

To illustrate the first point, we consider amplitude damping
noise—which has robustness condition (46)—for two differ-
ent encodings: the dense angle encoding and the amplitude
encoding. For each, we use a data set which consists of 500
points in the unit square separated by a vertical decision
boundary at x1 = 0.5.

The results for the dense angle encoding are shown in
Fig. 5 . Without noise, the classifier is able to reach an
accuracy of ∼99% on the training set. When the amplitude
damping channel with strength p = 0.2 is added, the test accu-
racy reduces to ∼78%. This encoding is thus partially robust,
and the set of robust points is shown explicitly in Fig. 5(c).

The results for the amplitude encoding are shown in Fig. 6
. Here, the classifier is only able to reach ∼82% test accuracy
without noise. When the same amplitude damping channel
with strength p = 0.4 is added, the test accuracy drops to
∼43%. We also consider the effect of amplitude damping
noise with strength p = 0.2 in Fig. 6, for which the classifier
achieves test accuracy ∼61%. The robust set for both channels
is also shown in Fig. 6.

C. Encoding learning algorithm

For this purpose, we introduce an encoding learning al-
gorithm to try and search for good encodings. The goal is
crudely illustrated in Fig. 7 . As mentioned above, Ref. [73]
trains over hyperparameters using the re-uploading structure
of Ref. [36] to increase learnability. Here, the encoding learn-
ing algorithm adapts to noise to increase robustness. We note
the distinction that in our implementations we train the unitary
in a noiseless environment and do not alter its parameters
during the encoding learning algorithm. By training the en-
coding, we change E and hence also the model family. This
is a desirable property for our purpose to search for robust
encodings, since as we have illustrated E directly impacts the
robustness of the model family. This could be incorporated
alongside training the unitary itself to deal with coherent
noise, for example as seen in Refs. [23,72].

The encoding learning algorithm is similar to the Rotose-
lect algorithm [81] which is used to learn circuit structure. For

FIG. 5. Partial robustness for the dense angle encoding. The data set consists of 500 points in the unit square separated by a vertical
decision boundary and we use a train-test split of 80%. Red crosses and green circles indicate decision boundary location. Orange circles and
blue crosses indicate points labeled as each class. Misclassified points have opposite color border. Panel (a) shows the classifier test accuracy
after optimizing the unitary without noise. Panel (b) shows the reduced accuracy after amplitude damping noise of strength p = 0.4 is added.
The robust set is at the far left and far right of the unit square, explicitly shown in panel (c). Here, blue circles indicates the robust set and black
crosses indicates its complement.
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FIG. 6. Partial robustness for the amplitude encoding. The data set consists of 500 points in the unit square separated by a vertical decision
boundary, and we use a train-test split of 80%. Panel (a) shows classifier test accuracy after optimizing the unitary without noise. Panel
(b) shows the reduced accuracy after adding amplitude damping noise with strength p = 0.4. The robust set is shown explicitly in panel
(c) where a blue circle indicates a robust point and a black cross indicates a misclassified point. Panel (d) is the same as (b) but with decreased
strength p = 0.2 of the amplitude damping channel. Test accuracy reduces from 81% to 60% in this case. Panel (e) shows the robust set
for (d).

each function pair ( f j, g j ) from a discrete set of parameterized
functions { fi(θi ), gi(θi )}K

i=1 we train the unitary U (α) to min-
imize the cost while keeping the encoding (hyper)parameters
θ j fixed. Next, we add a noise channel E which causes some
points to be misclassified. Now, we optimize the encoding
parameters θ j in the noisy environment. For this optimization,
the same cost function is used, and the goal is to further
decrease the cost (and hence increase the set of robust points)
by varying the encoding hyperparameters. Pseudocode for the
algorithm is shown in Appendix C.

(a)

(b)

FIG. 7. Cartoon illustration of the encoding learning algorithm
with a single qubit classifier. In (a), a preset encoding with no knowl-
edge of the noise misclassifies a large number of points. In (b), the
encoding learning algorithm detects misclassifications and tries to
adjust points to achieve more robustness, attempting to encode into
the robust set for the channel.

We test the algorithm on linearly separable and nonlinearly
separable data sets in Fig. 8 . In particular, we use three
different encodings on three data sets. The encodings used are
the dense angle encoding, superdense angle encoding, and a
specific instance of the generalized amplitude encoding from
Def. 5 given by

|x〉 :=
√

1 + θx2
2

||x||2 x1|0〉 +
√

1 − θx2
1

||x||2 x2|1〉,

where θ is a free parameter which is trained over.
Using these encodings and the data sets shown in

Appendix C, we study performance for the noiseless case,
noisy case, and the effect of the encoding learning algorithm.
We observe that the algorithm is not only capable of recov-
ering the noiseless classification accuracy achieved, but is
actually able to outperform it in some cases, as can be seen
in Fig. 8.

Finally, we consider the discussion in Sec. III E about the
trade-off between learnability (expressive power) and robust-
ness. We make this quantitative in Fig. 9 by plotting
accuracy (percent learned correctly) and robustness against
hyperparameters θ and φ in a generalized dense angle encod-
ing

|x〉 = cos(θx1)|0〉 + eiφx2 sin(θx1)|1〉.
More specifically, in Fig. 9, we illustrate how the noise affects
the hyperparameters, θ∗ and φ∗, which give maximal classifi-
cation accuracy in both the noiseless and noisy environments,
and also those which give maximal robustness (in the sense
of Def. 15). Figure 9(a) shows the percentage misclassified
in the noiseless environment, where red indicates the low-
est accuracy on the test set, and blue indicates the highest
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FIG. 8. Minimum cost achieved (vertical axis) from applying the encoding learning algorithm to three example data sets (each plot) using
three different encodings (horizontal axis). The blue crosses [×] show the minimum cost achieved when training over only unitary parameters
without any noise present (ideal). The green triangles [�] show the same case with the addition of amplitude damping noise of strength
p = 0.3. The orange circles [•] show minimum cost after applying the encoding learning algorithm. The dense angle encoding (DAE) is seen
to perform well on all data sets and is capable of adapting well to noise, even outperforming the ideal case without noise and fixed encoding.
The superdense angle encoding (SDAE) does not perform well on any shown data set since the generated decision boundary is highly nonlinear
and cannot correctly classify more than half the data set. The generalized amplitude encoding (GAE) performs well on the diagonal boundary,
since it generates a suitable decision boundary.

accuracy. We then repeat this in Figs. 9(b) and 9(c) to find
the parameters which maximize accuracy in the presence of
noise and the maximal robustness. As expected, for the am-
plitude damping channel, the best parameters (with noise) are
closer to the fixed point of the channel (i.e., θ∗ → 0 implies
encoding in the |0〉 state), thereby demonstrating the trade-off
between learnability and robustness.

D. Fidelity bounds on partial robustness

As a final numerical implementation, we compute the
upper bounds on partial robustness proved in Sec. III F for
several different encodings and error channels. The imple-
mentation we consider is the previously discussed Iris data
sest classification problem using two qubits. The results are
shown in Fig. 10. In this figure, each plot corresponds to a
different error channel with strength varied across the horizon-
tal axis. Each curve in the top row corresponds to the fidelity

FIG. 9. Learnability versus robustness on the “vertical” data set using the parameterized dense angle encoding. The horizontal and vertical
axes show the encoding hyperparameters φ and θ , respectively. Panels (a) and (b) show the classifier accuracy while panel (c) shows the
proportion of robust points. Panel (a) shows accuracy without noise as a function of encoding parameters. Panel (b) shows accuracy with the ad-
dition of an amplitude damping channel of strength p = 0.3. Panel (c) shows δ robustness for different parameter values. As expected, the robust
set is largest when all points are encoded into the zero state, i.e., θ = 0. This leads to all points labeled 1 being misclassified, with a resulting
accuracy of approximately 50%. The orange [ ] filled line indicates optimal θ parameters in each panel. From (a) to (b), the θ parameters
corresponding to highest accuracy are shifted towards the robust points (i.e., toward θ = 0) in (c). See Appendix C for the optimal parameters
found in each case.
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FIG. 10. Top row: Fidelity between noisy and noiseless states for different encodings on the Iris data set. Comparing average fidelity over
every encoded state in data set, versus fidelity of noisy and noiseless encoded mixed states. From left to right, the noise models are bit-flip
noise, amplitude damping noise, dephasing noise, and global depolarizing noise, with strengths varied across the horizontal axis. Bottom row:
Upper bounds on partial robustness in terms of fidelity using the bounds (72) and (73). For each plot (in both rows), three different data
encodings are considered—curves corresponds to three product qubit encodings: dense angle encoding, amplitude encoding, and superdense
angle.

of noisy and noiseless states using different encodings. Each
curve in the bottom row shows the upper bounds on partial
robustness proved in Sec. III F.

As can be seen in the bottom row of Fig. 10, upper
bounds on partial robustness are different for different encod-
ings, particularly at small noise values. (Recall that a trivial
upper bound on the size of partial robustness is one so that
curves at large channel strengths above one are mostly unin-
formative.) For such low values of noise, they give us some
information about the maximum cost function deviation we
can expect. Based on the average fidelity over the datas ets, in
Figs. 10(a)–10(d), all three encodings behave qualitatively the
same. However, the cost function error for the three encodings
is significantly different, especially for bit flip and dephasing
errors, Figs. 10(f) and 10(g). As expected, a depolarizing
channel causes no misclassification, as seen in Fig. 10(h),
despite the decrease in fidelity of the states. The apparent
erratic behavior of the cost function error is largely due to
the low number of samples in the Iris data set. [Recall that
the superdense angle encoding was not able to achieve perfect
classification accuracy on the Iris data set, so under ampli-
tude damping noise, e.g., the cost function error can only
decrease by about 25% (∼77% → 50%).] We can also ob-
serve that the dense angle encoding is less susceptible to
bit flip and phase errors than the amplitude encoding in
Figs. 10(f) and 10(g).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have formally defined a model for a
binary quantum classifier common in recent literature and
studied encoding functions in detail. In particular, we showed
that different encodings lead to different learnable decision
boundaries and thus have an important effect on the overall

success of the classifier. We introduced and formally de-
fined the concept of robust points as well as robust sets and
(completely) robust encodings. In addition to studying the
robustness criteria for several common noise models, we have
characterized robust sets, for example, channels and discussed
their relationship to the fixed points of the channels. We
used this connection to provide an existence proof of robust
encodings and discussed an empirically observed tradeoff be-
tween learnability (expressive power) and robustness. Finally,
we considered an embedded cost function classifier using an
indicator cost function and provided upper bounds on the
robustness of an encoding in terms of fidelities between ideal
and noisy evolution.

In addition to the above theoretical results, we performed
several numerical implementations to confirm and extend
our findings. Specifically, we numerically evaluated decision
boundaries for different encodings and performed example
implementations on standard datasets in machine learning.
Additionally, we used numerics to show that different encod-
ings lead to different robust sets, and quantified the size and
location of such sets for different encodings. Finally, we pre-
sented an encoding learning algorithm which optimizes over
hyperparameters in the encoding to attempt to find robust sets.
We provided proof of principle implementations on three data
sets to show the performance of this algorithm. Finally, we
showed upper bounds on partial robustness by computing the
fidelities between ideal and noisy final states for an example
implementation. We provide code to reproduce all numerical
results at Ref. [77].

Within QML, this paper adds to the growing body of
work studying encoding functions in detail. Our concept of
robust points and robust encodings and some of our ana-
lytical results help explain phenomena observed in recent
literature—namely, that misclassifications due to depolarizing
noise found in Ref. [35] are solely due to finite shot statistics.
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As this paper discusses a relatively understudied area in
QML, there are several avenues for future research. While
we have provided multiple analytic results, the framework
we introduced for proving these results is perhaps more im-
pactful. In future work, these ideas can be applied to prove
more robustness results for different channels and different
decision boundaries than the one we considered in this paper.
Specific tasks we leave to future work include generalizing
results to classes of quantum channels (e.g., unital channels),
quantifying the trade-off between learnability and robustness,
and characterizing the conditions under which a completely
robust encoding exists. It is also interesting from a purely
theoretical perspective to extend the notion of a robust point
to a generalized fixed point of a channel, i.e., points which
satisfy f (E (ρ)) = f (ρ) for some function f . (When f = ŷ,
the generalized fixed point is a robust point, but other arbitrary
functions f could be considered.) Finally, one could consider
data encodings using ideas from quantum error correction,
for example, by encoding into decoherence-free subspaces
[82,83].

From an applications perspective, a clear task for future
work is to test the ideas introduced here on a NISQ computer.
While the channels we considered are standard theoretical
tools for analyzing noise, more complicated effects such as
crosstalk occur in real devices. Implementations on NISQ
computers would assess our results in situ and potentially give
additional insight into how robust encodings can be designed.
Also, for future numerical work one could consider additional
data sets (e.g., the MNIST data set [84]) and test the perfor-
mance of different encodings both in terms of learnability and
robustness. Last, to further incorporate with recent literature,
one could consider robustness in the context of data reupload-
ing [36] or in the adversarial setting of Refs. [85,86].

More broadly for NISQ applications, our work introduces
a problem-specific strategy for dealing with errors. In con-
trast to error mitigation or even error correction techniques
which allow errors to occur then attempt to mitigate (correct)
them, our strategy of robust data encoding attempts to set
up the problem such that any errors which do occur have
no effect on the final result. We exploit the natural machine-
learning concept of data representation to achieve this effect,
but in principle a similar idea could be used in other settings.
This work defines fundamental concepts and proves several
results for important questions that must be addressed on
the path to practical applications with near-term quantum
computers.
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APPENDIX A: PRELIMINARIES AND
USEFUL FORMULAE

The single qubit Pauli operators are

I :=
[1 0
0 1

]
, X :=

[0 1
1 0

]
, Y :=

[0 −i
i 0

]
, Z :=

[1 0
0 −1

]
.

Let ρ be a single qubit state with matrix elements ρi j , i.e.,

ρ :=
[
ρ00 ρ01

ρ10 ρ11

]
.

Then

XρX =
[
ρ11 ρ10

ρ01 ρ00

]
,

Y ρY =
[

ρ11 −ρ10

−ρ01 ρ00

]
,

ZρZ =
[

ρ00 −ρ01

−ρ10 ρ11

]
.

Defining the projectors �0 = |0〉〈0| and �1 = |1〉〈1|, one
can show

Tr[�0XρX ] = Tr[�1ρ],

Tr[�0Y ρY ] = Tr[�1ρ],

Tr[�0ZρZ] = Tr[�0ρ],

For any Hermitian matrix A = [Ai j] and any unitary matrix
U = [Ui j], we have

Tr[�0UAU †]

= |U00|2A00 + 2Re[U ∗
00U01A10] + |U01|2A11. (A1)

Similarly, one can show that

Tr[�1UAU †]

= |U10|2A00 + 2Re[U ∗
11U10A01] + |U11|2A11. (A2)

If we further assume the single qubit parameterized
unitary, U (α), has the following decomposition:
Rz(2α1)Ry(2α2)Rz(2α3) (up to a global phase) [68], we
get

U (α) =
[

ei(−α1−α3 ) cos α2 −ei(−α1+α3 ) sin α2

ei(α1−α3 ) sin α2 ei(α1+α3 ) cos α2

]
. (A3)

Therefore, we get the various terms to be

|U00|2 = cos2(α2),

|U01|2 = |U10|2 = sin2(α2),

|U11|2 = cos2(α2),

U ∗
00U01 = −ei2α3 cos(α2) sin(α2) = − 1

2 ei2α2 sin(2α2),

U ∗
11U10 = e−i2α3 cos(α2) sin(α2) = 1

2 e−2iα3 sin(2α2).

So, the conditions ((A1), (A2)) become

Tr[�0UAU †]

= |U00|2A00 + 2Re[U ∗
00U01A10] + |U01|2A11

= cos2(α2)A00 + sin2(α2)A11 − Re[e2iα3 sin(α2)A10],
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Tr[�1UAU †]

= |U10|2A00 + 2Re[U ∗
11U10A01] + |U11|2A11

= sin2(α2)A00 + cos2(α2)A11 + Re[e−2iα3 sin(2α2)A01].

APPENDIX B: PROOFS AND ADDITIONAL RESULTS

Here we give the explicit proofs for the remaining theorems
(which we also repeat here for completeness) in the main text,
and some others introduced here.

First, we revisit Theorem 1 in the main text and elaborate
on the corollaries of it.

Theorem 8 (Theorem 1 in main text.). Let EP
p be a Pauli

channel (19) and consider a quantum classifier on data from
the set X . Then, for any encoding E : X → D2, we have
complete robustness,

R
(
EP

p , E , ŷ
) = X ,

if pX + pY � 1/2. (Recall that p = [pI , pX , pY , pZ ].)
As discussed, by changing the decision rule to one in the

Pauli-X basis, ẑ, we get the following.
Corollary 1. Consider a quantum classifier on data from

the set X with modified decision rule

ẑ[ρ̃x] =
{0 if Tr[�+ρ̃x] � 1/2

1 otherwise. (B1)

Here, �+ := |+〉〈+| is the projector onto the +1 eigenstate
|+〉 of Pauli X . Then, for any E : X → D2,

R
(
EP

p , E , ẑ
) = X ,

for a Pauli channel EP
p such that pY + pZ � 1/2.

The proof mimics that of Theorem 1. We note that the
analogous statement for measurements in the Y basis also
holds.

Theorem 1 also implies the following result for dephasing
noise, which is a Pauli channel with pX = pY = 0.

Theorem 9. Let Edeph
p be a dephasing channel (22), and

consider a quantum classifier on data from the set X . Then,
for any encoding E : X → D2,:

R
(
Edeph

p , E , ŷ
) = X .

This result follows immediately from the discussion of the
dephasing channel in the above Sec. III B.

Similar to Corollary 1, we can consider a modified decision
rule to achieve robustness for a bit-flip channel.

Corollary 2. Consider a quantum classifier on data from
the set X with modified decision rule ẑ defined in Eq. (B1).
Then, for any encoding E : X → D2:

R
(
EBF

p , E , ẑ
) = X .

We note that a decision rule which measures in the Y basis
yields robustness to combined bit/phase-flip errors. [That is,
the error channel E (ρ) = (1 − p)ρ + pY ρY .]

Finally, we revisit robustness for depolarizing noise (23).
A simple calculation shows that

Tr
[
�0Edepo

p (ρ̃x)
] = p/2 + (1 − p)Tr[�0ρ̃x]. (B2)

If ŷ = 0 so Tr[�0ρ̃x] � 1/2, then we have that
Tr[�0Edepo

p (ρ̃x)] � 1/2. Similarly for the case ŷ = 1. As

mentioned in the main text, this formulation is equivalent to
choosing pZ = pX = pY = p/4, pI = (1 − 3p/4) in the Pauli
channel, EP

p . Thus, we have shown the following.

Theorem 10. Let Edepo
p be a depolarizing channel (23), and

consider a quantum classifier on data from the set X . Then,
for any encoding E : X → D2,

R
(
Edepo

p , E , ŷ
) = X .

1. Robustness to measurement noise

Just as the case of quantum compilation [23], we can deal
with measurement noise in the classifier.

Definition 19. Measurement noise is defined as a modifica-
tion of the standard positive-operator valued measure (POVM)
basis elements, {�0 = |0〉〈0 |,�1 = |1〉〈1 |} by the channel
Emeas

p with assignment matrix p for a single noiseless qubit:

�0 = |0〉〈0 | Emeas
p→ �̃0 = p00|0〉〈0 | + p01|1〉〈1 |,

�1 = |1〉〈1 | Emeas
p→ �̃1 = p10|0〉〈0 | + p11|1〉〈1 |, (B3)

p :=
(p00 p01

p10 p11

)
,

where p00 + p10 = 1, p10 + p11 = 1, and hence pkl is the
probability of getting the k outcome given the l input. Fur-
thermore, we assume that pkk > pkl for k �= l .

The definition for the general case of n qubit measure-
ments can be found in Ref. [23] but we shall not need
it here, since we only require measuring a single qubit to
determine the decision function. More general classifiers
which measure multiple qubits (e.g., and then take a majority
vote for the classification) could also be considered but these

FIG. 11. Misclassification percentage as a result of (b) measure-
ment noise as a function of probabilities {p00, p11}. If either p00 or
p11 is less than 1/2, then half the correctly classified points will be
misclassified, with the probability increasing as expected, with the
number of misclassified points increasing as the of-diagonal terms,
p01, p10 → 1, as expected from Theorem 11. By classified correctly,
in this context, we mean the fraction of points which are classified
the same with and without noise.
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FIG. 12. Three single qubit (two dimensional) data sets which we use. (a) vertical, (b) diagonal, and (c) the moons data set from SCIKIT-
LEARN [78] rotated by 90◦ with a noise level of 0.05. 20% of each set is test data, indicated by the points circled with the opposite color. We
chose the latter two due to the fact that the moons and vertical data sets can be well classified by the dense angle encoding, while the diagonal
data set can be well classified by the amplitude encoding, which can be seen by studying the decision boundaries generated in Fig. 4.

are outside the scope of this paper. Now we can show the
following result in a similar fashion to the above proofs.

Theorem 11. Let Emeas
p define measurement noise acting on

the classification qubit and consider a quantum classifier on
data from the set X . Then, for any encoding E : X → D2, we
have complete robustness

R
(
Emeas

p , E , ŷ
) = X

if the measurement assignment probabilities satisfy p00 >

p01, p11 > p10.
Proof. We can write the measurement noise channel acting

on the POVM elements as

Emeas
p

(
�

(c)
0 ⊗ I⊗n−1

) = (p00|0〉〈0 | + p01|1〉〈1 |) ⊗ I⊗n−1.

Again, if we had correct classification before the noise,
Tr(|0〉〈0 |ρ̃x) � 1/2, then

Tr
[
Emeas

p (�(c)
0 ⊗ I⊗n−1)ρ̃x

]
= Tr[({p00|0〉〈0 | + p01|1〉〈1 |} ⊗ I⊗n−1)ρ̃x]

= p00Tr[(|0〉〈0| ⊗ I⊗n−1)ρ̃x] + p01Tr[(|1〉〈1| ⊗ I⊗n−1)ρ̃x]

= p00Tr[(|0〉〈0 | ⊗ I⊗n−1)ρ̃x]

+ p01(1 − Tr[(|0〉〈0 | ⊗ I⊗n−1)ρ̃x])

= (p00 − p01)Tr[(|0〉〈0 | ⊗ I⊗n−1)ρ̃x] + p01

� (p00 − p01)1/2 + p01 = 1/2(p00 + p01) = 1/2,

where in the last line, we used the fact that p00 + p01 = 1 and
our assumption that p00 > p01. The same result holds if the
vector was classified as 1, and hence the classifier is robust to
measurement noise. �

Just as above, we can replace the ideal state, ρ̃xi with
a noisy state, E (ρ̃xi ), where the operator accounts for other
forms of noise, not including measurement noise. We can
see this allows us to take a model which is robust without
measurement noise, and upgrade it to one which is. However,
we may be able to find looser restrictions by considering
different types of noise together rather than in this modular
fashion.

To illustrate the results of Theorem 11, we focus on
the dense angle encoding, which can achieve nearly 100%
accuracy on the “vertical” data set. We then compute the

percentage which would be misclassified as a function the as-
signment probabilities in the noisy projectors in (B3). The
results are seen in Fig. 11.

2. Robustness for factorizable noise

Theorem 12. If E is any noise channel which factorizes
into a single qubit channel, and a multiqubit channel as fol-
lows:

E (ρ) = Ec̄
(
ρ̃ c̄

x

) ⊗ Ec
(
ρ̃c

x

)
,

where without loss of generality Ec acts only on the clas-
sification qubit [ρ̃c

x = Trc̄(ρ̃x)] after encoding and unitary
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evolution, and Ec̄ acts on all other qubits arbitrarily, [ρ̃ c̄
x =

Trc(ρ̃x)]. Further assume the state meets the robust classifica-
tion requirements for the single qubit error channel Ec. Then
the classifier will be robust to E .

Proof. The correct classification again depends on the
classification qubit measurement probabilities: Tr(|0〉〈0 |(c) ⊗
I⊗n−1ρ̃x), Tr(|1〉〈1 |(c) ⊗ I⊗n−1ρ̃x). If ρ̃x is robust to the single
qubit error channel Ec, this means

Tr
(
�c

0ρ̃x
)
� 1/2 ⇒ Tr

(
�c

0Ec(ρ̃x)
)
� 1/2,

Tr
(
�c

1ρ̃x
)

< 1/2 ⇒ Tr
(
�c

1Ec(ρ̃x)
)

< 1/2.

Then WLOG, assume the point x classified as y(ρ̃x) = 0 be-
fore the noise, then

Tr
(
�c

0E (ρ̃x)
) = Tr

(
�c

0

[
Ec̄(ρ̃ c̄

x ⊗ Ec
(
ρ̃c

x

)])
= Trc̄

(
Ec̄(ρ̃ c̄

x )
)
Trc

(|0〉〈0 |Ec
(
ρ̃c

x

))
= Tr

(|0〉〈0 |Ec
(
ρ̃c

x

))
� 1/2.

�
The above theorem is a simple consequence of causality

in the circuit, only errors which have to happen before the
measurement can corrupt the outcome. As such, outside of
single qubit errors, we only need to consider errors before
the measurement which specifically involve the classification
qubit.

3. Fidelity bound

Here we derive the fidelity bound (73) in a similar fashion
to (72):

�EC := |CE − C|,
= |Tr[D(E (σ̃ ) − σ̃ )]|

� 1

M

M∑
i=1

|Tr(D[E (ρ̃xi ) ⊗ |yi〉〈yi | − ρ̃xi ⊗ |yi〉〈yi |])|

� 1

M

M∑
i=1

||D||∞||[E (ρ̃xi ) − ρ̃xi ] ⊗ |yi〉〈yi |||1

� 2

M

M∑
i=1

√
1 − F (E (ρ̃xi ), ρ̃xi ). (B4)

TABLE II. Optimal parameters [θ, φ] for dense angle encod-
ing (with parameters in U (α) trained in noiseless environment) in
(a) noiseless environment, (b) noisy environment (i.e., amplitude
damping channel is added), and (c) for maximal robustness. Optimal
parameters in noisy environment are closer to fixed point of ampli-
tude damping channel (|0〉, i.e., θ ≡ 0) and give a higher value of δ

robustness.

Parameters Accuracy Accuracy δ robustness
w/o noise w/noise

[θ, φ] = [2.9, 2.9] 100% 84% 70%
[θ, φ] = [1.6, 3.9] 49% 100% 81%
[θ, φ] = [0, 0] 43% 43% 100%

FIG. 13. Circuit diagrams for the QNN Ansätze we use to obtain
numerical results. (a) Ansatz for the single qubit classifier. Here, Rα

z

and Rβ
y denote rotations around the z axis and y axis with angles

α, β, respectively, of the Bloch sphere. We note that any element
of U (2) can be represented by this Ansatz [68]. (b) Ansatz for
the two qubit classifier, with 12 parameters, {αk}12

k=1. The first six
parameters, α1, . . . , α6, are contained in the first two single qubit
unitaries, and α10, . . . , α12 are the parameters of the final single qubit
gate. The parameters of the intermediate rotations are defined by
{γ1, γ2, γ3} := {2α7 + π, 2α8, 2α9}. This decomposition can realize
any two qubit unitary [87] up to global phase with the addition of a
single qubit rotation on the bottom qubit at the end of the circuit.
We omit this rotation since we only measure the first qubit for
classification. As such, we reduce the number of trainable parameters
(α) from 15 to 12.

Again, we use Hölder’s, the Fuchs-van de Graaf and the trian-
gle inequalities, with ||D||∞ := max j |λ j (D)| = 1.

APPENDIX C: MORE DETAILS ON
NUMERICAL RESULTS

In this Appendix, we present supplementary numeri-
cal results to those in the main text. Firstly, in Fig. 12,
we illustrate the three single qubit data sets we employ
here, namely. the vertical, diagonal, and moons. The former
two are linearly separable, whereas the moons data set is
nonlinear.

Second, to complement the results of Fig. 9 in the main
text, in Table II we provide the best parameters found in the

FIG. 14. Misclassification percentage as a result of Pauli noise
with strengths {pX , pY , pZ = 0} As expected, classification is robust
for pX + pY < 1/2 based on Theorem 1, and a sharp transition
occurs when this constraint is violated to give maximal misclassi-
fication. By classified correctly, in this context, we mean the fraction
of points which are classified the same with and without noise.
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procedure. Each set of parameters (each row, measured in
radians) performs optimally in one of three areas. The first
is the noiseless environment, in which a θ ≈ 2.9 parame-
ter performs optimally. The second is the amplitude-damped
environment, in which θ ≈ 1.6 achieves the best accuracy
and, finally, θ = 0 is the most robust point to encode in, for
the whole data set. For each of these parameter sets, we also
test them in the other scenarios, for example, the best pa-
rameters found in the noisy environment ([θ, φ] = [1.6, 3.9])
have a higher δ-Robustness (81%) than those in the noiseless
environment (70%), since these parameters force points to
be encoded closer to the |0〉 state, i.e., the fixed point of the
channel in question.

Figure 13 illustrates the specific decompositions for the
single and two qubit classifiers we utilize for the numerical

results in the text. For the matrix representation of the circuit
shown in Fig. 13(a), see Appendix (A3).

To illustrate the results of Theorem 1, we focus on the
dense angle encoding, which can achieve nearly 100% accu-
racy on the vertical data set. We then compute the percentage
which would be misclassified as a function of and Pauli
noise parameters. The results are seen in Fig. 14, similar to
that observed in Fig. 11. We note here that for values of
pX + pY > 1/2, one has two strategies to achieve robustness.
The first is to adjust the measurement basis as per Corollary 1
and requires changing the model itself. Alternatively, one can
apply an extra step of post processing and relabel every output
ŷ = 0 to ŷ = 1 and vice versa.

Algorithm 1 contains pseudocode for the encoding learning
algorithm discussed in the main text.
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