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Maximal-value condition of coherence measures holds for mixed states
if and only if it does for pure states
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While various coherence measures based on the framework for quantifying coherence [T. Baumgratz, M.
Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)] have been proposed, it is often asked whether
a coherence measure fulfills the maximal value condition that only maximally coherent states should achieve
the maximal value of a coherence measure [Y. Peng, Y. Jiang, and H. Fan, Phys. Rev. A 93, 032326 (2016)].
Although it may be easy to rule out the measures that violate the condition by giving a counterexample, it is
usually complicated to confirm the validity of the condition for a general coherence measure due to the deal with
all mixed states. In this paper, we prove that the maximal value condition of coherence measures holds for mixed
states if and only if it holds for a special subset of pure states. Our finding can greatly reduce the examination of
whether a coherence measure fulfills the maximal value condition since one only needs to consider a subset of
pure states, avoiding the work of considering mixed states.
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I. INTRODUCTION

Quantum coherence is a fundamental property of quantum
mechanics and describes the capability of a quantum state to
exhibit quantum interference phenomena. It provides an im-
portant resource for various quantum information processing
tasks, such as quantum algorithms, quantum cryptography [1],
nanoscale thermodynamics [2], quantum metrology [3], and
quantum biology [4,5]. The resource theory of coherence has
attracted a growing interest due to the rapid development of
quantum information science [6–14].

By following the approach that has been established for
an entanglement resource [15,16], Baumgratz et al. pro-
posed a rigorous framework for quantifying coherence [8].
The framework consists of four conditions, i.e., the coher-
ence being zero (positive) for incoherent states (all other
states), the monotonicity of coherence under incoherent
operations, the monotonicity of coherence under selective
measurements on average, and the nonincreasing of coherence
under mixing of quantum states. Based on this framework,
a number of coherence measures [6,8,17–29], such as the
l1 norm of coherence, the relative entropy of coherence, the
coherence of formation, and the robustness of coherence,
have been proposed. With these measures, various topics
of quantum coherence [18,20,30–53], such as the dynamics
of quantum coherence [31–33], the distillation of quantum
coherence [20,34–36], and the relations between quantum
coherence and other quantum resources [18,38–51], have been
addressed. There is no doubt that more coherence measures
with interesting properties can be found along with the devel-
opment of research.

*tdm@sdu.edu.cn

A maximally coherent state of a quantum system is the
state that can be transformed into any other state of the
quantum system under incoherent operations. Although a co-
herence measure satisfying the above four conditions must
reach its maximal value for maximally coherent states, the
states that make a coherence measure take the maximal value
may not be the maximally coherent states. To reconcile max-
imally coherent states with the states that take the maximal
value of a coherence measure, Peng et al. suggested that
a valid coherence measure should satisfy a fifth condition,
which says that only maximally coherent states achieve the
maximal value of a coherence measure [54]. We refer to it as
the maximal value condition for simplicity.

The coherence measures that fulfill the maximal value con-
dition have some particular properties, which are not held for
coherence measures only satisfying the four conditions. For
example, unitary incoherent operations preserve the coher-
ence of a quantum system, i.e., they do not change the value
of any coherence measure, but the incoherent operations that
do not change the value of the coherence measure may not
be unitary incoherent operations. However, the two subsets of
incoherent operations are exactly equivalent for the coherence
measures satisfying the maximal value condition. Due to these
merits, such as the consistency of the maximally coherent
states and the states with the maximal coherence value, and
the equivalence of the two subsets of incoherent operations
mentioned above, the coherence measures satisfying the max-
imal value condition look more interesting in some sense.
While a coherence measure is proposed based on the above
four conditions, it is often asked whether it fulfills the max-
imal value condition. For instance, Refs. [21,22] proved the
robustness of coherence CR, Ref. [24] proved the coherence
concurrence CC , and Ref. [29] proved a family of functionals,
denoted as C by its presenters, to be the coherence mea-
sures satisfying the maximal value condition, while Ref. [28]
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indicated that the modified trace distance of coherence
C′

tr does not fulfill the maximal value condition. Besides,
Ref. [55] proved that the trace distance of coherence Ctr , a
previous candidate of coherence measures, fulfills the maxi-
mal value condition, although it was lately proved in Ref. [23]
that Ctr violates the monotonicity of coherence under selective
measurements on average.

Although it may be easy to rule out the measures that vio-
late the maximal value condition by giving a counterexample,
such as the modified trace distance of coherence [23,28] and
the rank measure of coherence [27], it is usually complicated
to confirm the validity of the condition for a general coherence
measure due to the deal with all mixed states, especially for
those that only admit a closed-form expression for pure states
but lack a closed-form expression for mixed states, such as
the robustness of coherence measure [21] and the convex roof
coherence measures [19,26]. In this paper, we prove that the
maximal value condition holds for mixed states if and only
if it holds for a special subset of pure states. Our finding
can greatly reduce the examination of whether a coherence
measure fulfills the maximal value condition, since one only
needs to consider a subset of pure states, avoiding the work of
considering mixed states. Our paper is organized as follows.
In Sec. II, we review some notions related to coherence mea-
sures. In Sec. III, we present our main result as a lemma, a
theorem, and a corollary. In Sec. IV, we apply our theorem to
several coherence measures. Section V is our summary.

II. PRELIMINARIES

We recapitulate some notions related to coherence mea-
sures, such as incoherent states, incoherent operations, and the
framework of quantifying coherence.

Let H represent the Hilbert space of a d-dimensional
quantum system. A particular basis of H is denoted as
{|α〉, α = 0, 1, . . . , d − 1}, which is chosen according to the
physical problem under consideration. The coherence of a
state is then measured based on the basis chosen. We use
ρ = ∑

αβ ραβ |α〉〈β| to denote a general density operator in
the basis, where ραβ are the elements of the density matrix.
A state is called an incoherent state if its density operator is
diagonal in the basis, and the set of all incoherent states is
denoted by I. It follows that a density operator ρ belonging
to I is of the form ρ = ∑d−1

α=0 ραα|α〉〈α|. All other states,
which cannot be written as diagonal matrices in the basis, are
called coherent states. A special family of coherent states is
the maximally coherent states of the form ρ = |�〉〈�|, where

|�〉 = 1√
d

d−1∑
α=0

eiθα |α〉 (1)

with the phase parameters θα being real numbers. Maximally
coherent states have the particular property that they allow for
the deterministic generation of all other quantum states of the
same dimension by means of incoherent operations. A general
pure state is denoted by |ψ〉 = ∑d−1

α=0 cα|α〉 with cα being the
coefficients, corresponding to density operator ρ = |ψ〉〈ψ |.

An incoherent operation is defined by a completely positive
and trace preserving (CPTP) map, �(ρ) = ∑

n KnρK†
n with

the Kraus operators fulfilling not only
∑

n K†
n Kn = I but also

KnIK†
n ⊂ I, i.e., each Kn maps an incoherent state to an

incoherent state.
A functional C can be taken as a coherence measure, if it

satisfies the following four conditions [8]:
(C1) C(ρ) � 0, and C(ρ) = 0 if and only if ρ ∈ I.
(C2) Monotonicity under incoherent operations, C(ρ) �

C(�(ρ)) if � is an incoherent operation.
(C3) Monotonicity under selective measurements on av-

erage, C(ρ) � ∑
n pnC(ρn), where pn = Tr(KnρK†

n ), ρn =
KnρK†

n /pn, and �(ρ) = ∑
n KnρK†

n is an incoherent opera-
tion.

(C4) Nonincreasing under mixing of quantum states, i.e.,
convexity,

∑
n qnC(ρn) � C(

∑
n qnρn) for any set of states

{ρn} and any probability distribution {qn}.
Based on the four-condition framework of quantifying co-

herence, various coherence measures have been proposed. For
any coherence measure satisfying the four conditions, C(ρ)
must take its maximal value when ρ is a maximally coherent
state, but the states that can achieve the maximal value may
not be limited to maximally coherent ones. As stated in the
introduction section, since maximally coherent states have the
particular property of allowing for the deterministic genera-
tion of all other states with incoherent operations regardless
of any specific coherence measure, one more condition for a
desirable coherence measure has been suggested in Ref. [54],
denoted as the fifth condition (criterion), i.e.,

(C5) A valid coherence measure should only assign a
maximal value to the maximally coherent states.

III. MAIN RESULTS

With these preliminaries, we may now present our main
results as the following lemma, theorem, and corollary.
For simplicity, we use C(|ψ〉) to represent C(|ψ〉〈ψ |), and
{|�〉〈�|} or simply {|�〉} to represent the set of all the maxi-
mally coherent states.

Lemma 1. Let C(ρ) be a functional of ρ satisfying either the
nonincreasing under mixing of quantum states or the mono-
tonicity under incoherent operations. Then, C(ρ) < C(|�〉)
for ρ �∈ {|�〉} if and only if C(|ψ〉) < C(|�〉) for |ψ〉 �∈ {|�〉}.

We prove the lemma. It is obvious that the validity of the
inequality, C(ρ) < C(|�〉) for ρ �∈ {|�〉}, certainly implies
C(|ψ〉) < C(|�〉) for |ψ〉 �∈ {|�〉} since the set of pure states
is a subset of all the states. Hence, we only need to prove that
the validity of C(|ψ〉) < C(|�〉) for |ψ〉 �∈ {|�〉} necessarily
leads to C(ρ) < C(|�〉) for ρ �∈ {|�〉}.

We first prove that the lemma is valid for C(ρ) satisfy-
ing the nonincreasing under mixing of quantum states [i.e.,
condition (C4)]. To this end, we first consider the family of
convex roof functionals. It will be easy to extend the result for
convex roof functionals to that for other functionals satisfying
the nonincreasing under mixing of quantum states.

A convex roof functional is defined by extending a func-
tional Cf acting only on pure states to mixed states via the
standard convex roof construction [19,26]. It can be generally
expressed as

Cf (ρ) = min
{pi,|ψi〉}

∑
i

piCf (|ψi〉), (2)
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where the minimum is taken over all possible ensemble de-
compositions, ρ = ∑

i pi|ψi〉〈ψi| with pi � 0 and
∑

i pi = 1.
We will prove Lemma 1 by contradiction.

If the lemma was invalid for Cf , there should exist a density
operator ρ that is not a maximally coherent state but has
C(ρ) = CM even if C(|ψ〉) < CM is satisfied for all |ψ〉 �∈
{|�〉}. Here, CM represents the maximal value of Cf . We
assume that ρ = ∑

i pi|ψi〉〈ψi| is the optimal decomposition
of ρ, which makes the right-hand side of Eq. (2) achieve the
minimum value, i.e., Cf (ρ) = ∑

i piCf (|ψi〉). Since C(ρ) =
CM , there must be

∑
i piCf (|ψi〉) = CM , which necessarily

lead to Cf (|ψi〉) = CM . This implies that all the pure states
in the optimal decomposition are maximally coherent states,
i.e.,

|ψi〉 = 1√
d

d−1∑
α=0

eiθ i
α |α〉. (3)

We use U to represent an arbitrary unitary matrix with the
dimensions being the same as the number of nonzero terms in
the optimal decomposition, of which the elements are denoted
as Ui j , and let

|ψ̄i〉 = 1√
p̄i

∑
j

√
p jUi j |ψ j〉 (4)

with

p̄i =
∑

jk

√
p j pkU

∗
i jUik〈ψ j |ψk〉. (5)

Then, { p̄i, |ψ̄i〉} must be an ensemble decomposition of ρ as
long as {pi, |ψi〉} is an ensemble decomposition, i.e.,

ρ =
∑

i

pi|ψi〉〈ψi| =
∑

i

p̄i|ψ̄i〉〈ψ̄i|. (6)

Since we have assumed that Cf (ρ) = CM , all the vectors |ψ̄i〉
must be maximally coherent states too, regardless of any uni-
tary matrix U .

To educe a logical contradiction, we consider two al-
ternative decompositions defined by U = U1 and U = U2.
Noting that ρ is not a maximally coherent state, there are at
least two nonzero terms in the optimal decomposition ρ =∑

i pi|ψi〉〈ψi|. Without loss of generality, we assume that p1

and p2 are nonzero. We take

U1 = 1√
2

(1 1
1 −1

) ⊕
I (7)

and

U2 = 1√
2

( 1 −i
−i 1

) ⊕
I. (8)

For U = U1, we have

|ψ̄1〉 = 1√
M+

(
√

p1|ψ1〉 + √
p2|ψ2〉),

|ψ̄2〉 = 1√
M−

(
√

p1|ψ1〉 − √
p2|ψ2〉), (9)

|ψ̄i〉 = |ψi〉, i �= 1, 2,

where M± = p1 + p2 ± 2
√

p1 p2 Re〈ψ1|ψ2〉. Substituting
Eq. (3) into Eq. (9), we obtain that

|ψ̄1〉 = 1√
dM+

d−1∑
α=0

(√
p1eiθ1

α + √
p2eiθ2

α

)|α〉,
(10)

|ψ̄2〉 = 1√
dM−

d−1∑
α=0

(√
p1eiθ1

α − √
p2eiθ2

α

)|α〉.

To make sure that |ψ̄1〉 and |ψ̄2〉 are maximally coherent

states, we need to require |√p1eiθ1
α + √

p2eiθ2
α |/√M+ = 1 and

|√p1eiθ1
α − √

p2eiθ2
α |/√M− = 1, which lead to

cos
(
θ2
α − θ1

α

) = Re〈ψ1|ψ2〉. (11)

For U = U2, we have

|ψ̄1〉 = 1√
N+

(
√

p1|ψ1〉 − i
√

p2|ψ2〉),

|ψ̄2〉 = 1√
N−

(−i
√

p1|ψ1〉 + √
p2|ψ2〉), (12)

|ψ̄i〉 = |ψi〉, i �= 1, 2,

where N± = p1 + p2 ± 2
√

p1 p2 Im〈ψ1|ψ2〉. Substituting
Eq. (3) into Eq. (12), we obtain that

|ψ̄1〉 = 1√
dN+

d−1∑
α=0

(√
p1eiθ1

α − i
√

p2eiθ2
α

)|α〉,
(13)

|ψ̄2〉 = 1√
dN−

d−1∑
α=0

( − i
√

p1eiθ1
α + √

p2eiθ2
α

)|α〉.

To make sure that |ψ̄1〉 and |ψ̄2〉 are maximally coherent

states, we need to require |√p1eiθ1
α − i

√
p2eiθ2

α |/√N+ = 1

and |√p1eiθ1
α + i

√
p2eiθ2

α |/√N− = 1, which lead to

sin
(
θ2
α − θ1

α

) = Im〈ψ1|ψ2〉. (14)

It is obvious that Eqs. (11) and (14) cannot be satisfied at
the same time. The contradiction indicates that such a density
operator ρ that is not a maximally coherent state but has
Cf (ρ) = CM does not exist in the case of Cf (|ψ〉) < CM for
|ψ〉 �∈ {|�〉}. Therefore, Lemma 1 is valid for convex roof
functionals.

After having proved the validity of the lemma for convex
roof functionals, it is ready to demonstrate its validity for all
other functionals satisfying the nonincreasing under mixing
of quantum states. Let C be a functional satisfying the non-
increasing under mixing of quantum states but not a convex
roof functional. From C, we can always construct a convex
roof functional Cf by taking Cf (|ψ〉) = C(|ψ〉). As C(ρ)
satisfies the nonincreasing under mixing of quantum states,
i.e., condition (C4), there is always C(ρ) � ∑

i piC(|ψ〉) for
any decomposition ρ = ∑

i pi|ψi〉〈ψi|. On the other hand,
by definition, there is Cf (ρ) = min{pi,|ψi〉}

∑
i piCf (|ψi〉). We

then obtain

C(ρ) � Cf (ρ), (15)
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which is valid for any state ρ. It means that C(ρ) < CM as
long as Cf (ρ) < CM . Therefore, the density operator ρ that is
not a maximally coherent state but has C(ρ) = CM does not
exist in the case of C(|ψ〉) < CM for |ψ〉 �∈ {|�〉}, since such
a state does not exist for Cf (ρ), as proved above. Lemma 1 is
valid for functional C.

This completes the proof of Lemma 1 for the functionals
satisfying the nonincreasing under mixing of quantum states.

We now prove that Lemma 1 is valid too for C(ρ) satisfying
the monotonicity under incoherent operations [i.e., condition
(C2)]. To this end, we consider a general mixed state ρ, but not
a maximally coherent state. We only need to show that C(ρ)
must be less than C(�) if C(|ψ〉) < C(|�〉) for |ψ〉 �∈ {|�〉}.

We use {pi, |ψi〉} to represent an arbitrary ensemble de-
composition of the mixed state,

ρ =
∑

i

pi|ψi〉〈ψi| (16)

with |ψi〉 = ∑d−1
α=0 ci

α|α〉. Based on the decomposition, we can
define an auxiliary pure state,

|	〉 =
d−1∑
α=0

cα|α〉, (17)

where cα is only required to satisfy |cα|2 = ∑
i pi|ci

α

↓|2. Here,

the number sequence (ci
0
↓
, ci

1
↓
, . . . , ci

d−1
↓) is a rearrangement

of (ci
0, ci

1, . . . , ci
d−1) in the decreasing order of |ci

α|. It is easy
to verify that

Cfl (|	〉) =
d−1∑
α=l

|cα|2

=
d−1∑
α=l

(∑
i

pi

∣∣ci
α

↓∣∣2

)

=
∑

i

pi

(
d−1∑
α=l

∣∣ci
α

↓∣∣2

)

=
∑

i

piCfl (|ψi〉), (18)

where Cfl (
∑d−1

α=0 cα|α〉) = ∑d−1
α=l |c↓

α |2, l = 1, 2, . . . , d − 1.
Equation (18) indicates that |	〉 can be transformed into ρ

under incoherent operations [56]. Therefore, if C(ρ) satisfies
the monotonicity under incoherent operations [i.e., condition
(C2)], there must be

C(ρ) � C(|	〉). (19)

On the other hand, { p̄i, |ψ̄i〉} defined by Eqs. (4) and (5)
is also an ensemble decomposition of ρ if {pi, |ψi〉} is an
ensemble decomposition of ρ. Then, we can always find a de-
composition in which at least one pure state is not a maximally
coherent state. In fact, if {pi, |ψi〉} is not such a decomposi-
tion, one of the two decompositions given by U1 and U2 in
Eqs. (7) and (8) must be such a decomposition. This point has
been implied in the previous discussions. Without loss of gen-
erality, we take {pi, |ψi〉} as such an ensemble decomposition
in which at least one pure state is not a maximally coherent
state. In this case, the auxiliary state |	〉 defined by Eq. (17)

must not be a maximally coherent state, i.e., |	〉 �∈ {|�〉}, and
hence there is C(|	〉) < C(|�〉). From the relations (19), we
immediately obtain

C(ρ) < C(|�〉). (20)

This completes the proof of Lemma 1 for the functionals
satisfying the monotonicity under incoherent operations.

Therefore, the conclusion in Lemma 1 is valid for any
functionals C(ρ) satisfying either the nonincreasing under
mixing of quantum states or the monotonicity under inco-
herent operations. Coherence measures are such functions
satisfying these conditions, and therefore the lemma is appli-
cable to coherence measures. Further, we use S to represent
the set of the pure states in which all the coefficients cα

are non-negative numbers and satisfy c0 � c1 � · · · � cd−1,
excluding the maximally coherent state with c0 = c1 = · · · =
cd−1. By applying Lemma 1 to coherence measures, we can
obtain the following theorem.

Theorem 1. A coherence measure satisfies C(ρ) < C(|�〉)
for ρ �∈ {|�〉} if and only if it satisfies C(|ψ〉) < C(|�〉) for
|ψ〉 ∈ S.

Since a pure state with complex coefficients can be trans-
formed into the pure state with non-negative coefficients
by using unitary incoherent operations and all coherence
measures are invariant under unitary incoherent operations,
Theorem 1 can be directly derived from Lemma 1. From the
theorem, we can further obtain the following corollary.

Corollary 1. Condition (C5) does or does not hold for both
coherence measures C1(ρ) and C2(ρ) at the same time, if a
monotonically increasing function f (·) is such that C1(|ψ〉) =
f (C2(|ψ〉)) for |ψ〉 ∈ S.

IV. APPLICATIONS

Theorem 1 indicates that the maximal value condition of
coherence measures, i.e., condition (C5), holds for mixed
states if and only if it holds for a special subset of pure
states. With the help of the theorem, to examine whether a
coherence measure satisfies condition (C5), one only needs to
consider a subset of pure states. In this section, we will present
some examples to show the usefulness of our theorem. The
first example contains three coherence measures for which the
validity of the maximal value condition have been examined
before. By this example, we illustrate that our theorem and
corollary make the examination more simple and effective.
The second and third examples contain the coherence mea-
sures for which so far it is unknown whether the maximal
value condition is valid. One will see that, by using our theo-
rem and corollary, it is easy to prove these coherence measures
fulfill the maximal value condition.

Example 1. We first consider three coherence measures:
the l1 norm of coherence Cl1 [8], the robustness of coherence
CR [21], and the coherence concurrence CC [24], which are
defined as

Cl1 (ρ) =
∑
i �= j

|ρi j |, (21)

CR(ρ) = min
τ

{
s � 0

∣∣∣ ρ + sτ

1 + s
∈ I

}
, (22)
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and

CC (ρ) = min
{pi,|ψi〉}

∑
i

piCl1 (|ψi〉), (23)

respectively. Here, the minimum in Eq. (22) is taken over all
quantum states τ and the minimum in Eq. (23) is taken over
all possible ensemble decompositions ρ = ∑

i pi|ψi〉〈ψi|.
Since CR(|ψ〉) = Cl1 (|ψ〉) [21] and CC (|ψ〉) =

Cl1 (|ψ〉) [24], i.e.,

Cl1 (|ψ〉) = CR(|ψ〉) = CC (|ψ〉), (24)

by using Corollary 1, the three coherence measures Cl1 , CR,
and CC do or do not satisfy condition (C5) at the same time.
Noting that Cl1 satisfies condition (C5), proved in Ref. [54],
we immediately obtain that CR and CC satisfy condition (C5)
too without the need of the extra proofs [21,24].

Example 2. We consider a family of convex roof coherence
measures, defined in Refs. [17,19],

Cfl (ρ) = min
{pi,|ψi〉}

∑
i

piCfl (|ψi〉), l = 1, 2, . . . , d − 1 (25)

with

Cfl (|ψ〉) =
d−1∑
α=l

∣∣c↓
α

∣∣2
(26)

for an arbitrary pure state |ψ〉 = ∑d−1
α=0 cα|α〉, where the

number sequence (c↓
0 , c↓

1 , . . . , c↓
d−1) is a rearrangement of

(c0, c1, . . . , cd−1) in the decreasing order of |cα|, where |c↓
0 | �

|c↓
1 | � · · · � |c↓

d−1|.
By using our theorem, we can easily prove that Cfl (ρ)

fulfill condition (C5). By definition, Cfl (|ψ〉) = (d − l )/d
for |ψ〉 ∈ {|�〉}. Therefore, according to our theorem, we
only need to demonstrate that Cfl (|ψ〉) is less than (d −
l )/d for |ψ〉 = ∑d−1

α=0 cα|α〉 ∈ S. Since c0 � c1 � · · · � cd−1

except for c0 = c1 = · · · = cd−1, some coefficients must
be larger than others. The average of the first l num-
bers (c2

0, c2
1, . . . , c2

l−1) is larger than the average of the

last (d − l ) numbers (c2
l , c2

l+1, . . . , c2
d−1), i.e., (

∑l−1
α=0 c2

α )/l >

(
∑d−1

α=l c2
α )/(d − l ). On the other hand, the average of

all the d numbers (c2
0, c2

1, . . . , c2
d−1) is 1/d . It implies

that (
∑d−1

α=l c2
α )/(d − l ) < 1/d . We then obtain Cfl (|ψ〉) =∑d−1

α=l c2
α < (d − l )/d . This completes our proof of Cfl satis-

fying condition (C5).
Example 3. We consider the geometric measure of coher-

ence Cg [18] and the convex roof coherence measure CF [25],
both of which are based on the Uhlmann fidelity [57].

The geometric measure of coherence is defined as

Cg(ρ) = 1 − max
δ∈I

F (ρ, δ) (27)

with the Uhlmann fidelity F (ρ, δ) = (Tr
√√

ρδ
√

ρ)
2
, where

the minimum in Eq. (27) is taken over all incoherent states δ.
The convex roof coherence measure, based on the same

fidelity F (ρ, δ), is defined as

CF (ρ) = min
{pi,|ψi〉}

∑
i

piCF (|ψ〉) (28)

with

CF (|ψ〉) = min
δ∈I

√
1 − F (|ψi〉, δ), (29)

where the minimum in Eq. (28) is taken over all the
ensemble decomposition {pi, |ψi〉} of ρ, and F (|ψ〉, δ) =
F (ρ, δ)|ρ=|ψ〉〈ψ |.

It is easy to see that Cg(|ψ〉) = 1 − c2
0 and CF (|ψ〉) =√

1 − c2
0 for |ψ〉 = ∑d−1

α=0 cα|α〉 ∈ S. Noting that Cf1 (|ψ〉) =
1 − c2

0 [see Eq. (26), taking l = 1], we then have

Cg(|ψ〉) = C2
F (|ψ〉) = Cf1 (|ψ〉). (30)

Therefore, by using Corollary 1, the coherence measures Cg

and CF satisfy condition (C5), as did Cf1 in example 2.
In passing, we give two instances that fulfill conditions

(C1)–(C4) but violate the maximal value condition. One is
the modified trace distance of coherence, defined as C′

tr (ρ) =
minλ�0,δ∈I ‖ρ − λδ‖tr [23], and another is the rank measure of
coherence, defined as Crank (ρ) = min{pi,|ψi〉}

∑
i piCrank (|ψi〉),

where Crank (|ψi〉) = log2 [rc(|ψi〉)] with the coherence rank
rc(|ψ〉) being the number of nonzero coefficients in |ψ〉 =∑

α cα|α〉 [27]. By direct calculations, we have C′
tr (|�〉) =

C′
tr (|φ〉) = 1 and Crank (|�〉) = Crank (|φ〉) = log 3 for both a

three-dimensional maximally coherent state |�〉 and a three-
dimensional nonmaximally coherent state |φ〉 = 1/

√
2|0〉 +

1/
√

3|1〉 + 1/
√

6|2〉. It means that the modified trace distance
of coherence does not fulfill the maximal value condition, and
neither does the rank measure of coherence.

Before going into the summary, we would like to stress that
our theorem is applicable to all the functionals satisfying con-
dition (C2), regardless of conditions (C3) and (C4). This point
is implied in the second part of the proof of Lemma 1. As the
convexity condition is not necessary in obtaining Theorem 1,
our result can be applied to examine the maximal value condi-
tion for nonconvex coherence measures too. For example, the
functional defined by C(ρ) = minδ∈I D(ρ‖δ) with D(ρ‖δ) =
min{λ : ρ � 2λδ} [58] is a nonconvex coherence measure.
By using Theorem 1 and Corollary 1, we can easily prove
that C(ρ) satisfies the maximal value condition. Indeed, since
C(|ψ〉) can be expressed as C(|ψ〉) = log [1 + CR(|ψ〉)] [58]
and CR(|ψ〉) satisfies the maximal value condition (see Ex-
ample 1), C(ρ) must satisfy the maximal value condition,
according to Corollary 1.

V. SUMMARY

To examine whether a candidate of coherence measures
fulfills the maximal value condition, we first present a lemma.
It says that C(ρ) < C(|�〉) for ρ �∈ {|�〉} if and only if
C(|ψ〉) < C(|�〉) for |ψ〉 �∈ {|�〉}, which is applicable to any
functional C(ρ) satisfying either the nonincreasing under mix-
ing of quantum states or the monotonicity under incoherent
operations. Here, {|�〉} represents the set of all the maximally
coherent states.

By applying the lemma to coherence measures, we then
obtain the theorem, i.e., a coherence measure satisfies C(ρ) <

C(|�〉) for ρ �∈ {|�〉} if and only if it satisfies C(|ψ〉) <

C(|�〉) for |ψ〉 ∈ S. Here, S is a subset of pure states, defined
as |ψ〉 = ∑d−1

α=0 cα|α〉 with the coefficients being non-negative
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and satisfying c0 � c1 � · · · � cd−1 but not c0 = c1 = · · · =
cd−1.

From the theorem, we further derive a corollary. That is,
condition (C5) does or does not hold for both coherence mea-
sures C1(ρ) and C2(ρ) at the same time, if a monotonically
increasing function f (·) is such that C1(|ψ〉) = f (C2(|ψ〉))
for |ψ〉 ∈ S.

Our finding can greatly reduce the examination on whether
a coherence measure fulfills the maximal value condition,
since one only needs to consider a subset of pure states,
avoiding the extra work of considering mixed states. To

show the usefulness of our finding, we have given some
examples.

We would like to point out that the above results give an
illuminating insight into the resource theory of coherence in
the sense that a problem involving all mixed states may be
reduced to that only related to pure states. Such an idea may
be useful to other topics in quantum resource theories too.
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