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The logarithmic negativity of a bipartite quantum state is a widely employed entanglement measure in
quantum information theory due to the fact that it is easy to compute and serves as an upper bound on
distillable entanglement. More recently, the κ entanglement of a bipartite state was shown to be an entanglement
measure that is both easily computable and has a precise information-theoretic meaning, being equal to the exact
entanglement cost of a bipartite quantum state when the free operations are those that completely preserve the
positivity of the partial transpose [Xin Wang and Mark M. Wilde, Phys. Rev. Lett. 125, 040502 (2020)]. In
this paper, we provide a nontrivial link between these two entanglement measures by showing that they are the
extremes of an ordered family of α-logarithmic negativity entanglement measures, each of which is identified
by a parameter α ∈ [1, ∞]. In this family, the original logarithmic negativity is recovered as the smallest with
α = 1, and the κ entanglement is recovered as the largest with α = ∞. We prove that the α-logarithmic negativity
satisfies the following properties: entanglement monotone, normalization, faithfulness, and subadditivity. We
also prove that it is neither convex nor monogamous. Finally, we define the α-logarithmic negativity of a quantum
channel as a generalization of the notion for quantum states, and we show how to generalize many of the concepts
to arbitrary resource theories.
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I. INTRODUCTION

Establishing a quantitative theory of entanglement has long
been one of the central concerns of quantum information
theory [1–4]. Starting with the original developments in [5],
there now exists a large body of knowledge on this topic [6,7].

The traditional approaches to quantifying entanglement
are the axiomatic approach and the operational (information-
theoretic or resource-theoretic) approach. In the axiomatic
approach, one identifies a list of desirable properties that a
measure of entanglement should possess. Most prominent
among these is that a measure of entanglement should not
increase under the action of a quantum channel realized by
local operations and classical communication (LOCC); if a
measure of entanglement satisfies this property, it is called
an entanglement monotone. In the operational approach, one
identifies a meaningful information-processing task involving
entanglement as a resource, as well as some set of physical
operations that are allowed for free. For example, one could
fix the free operations to be LOCC [5], separable operations
[8–10], or operations that completely preserve the positivity
of the partial transpose (C-PPT-P operations) [11]. Examples

*wangxin73@baidu.com
†mwilde@lsu.edu

of information-processing tasks include entanglement distilla-
tion [5], for which the goal is to use many copies of a quantum
state and free operations to produce as many high-quality Bell
states as possible. In the opposite task, known as entanglement
dilution [5,12], the goal is to use as few Bell states as possible,
along with LOCC, to produce as many high-fidelity copies of
a quantum state as possible.

One of the most well-known measures of entanglement is
the logarithmic negativity [13,14], defined for a bipartite state
ρAB as

EN (ρAB) ≡ log2 ‖TB(ρAB)‖1, (1)

where TB is the partial transpose map [15], defined for an
orthonormal basis {|i〉B}i as

TB(YAB) ≡
∑
i, j

(IA ⊗ |i〉〈 j|B)YAB(IA ⊗ |i〉〈 j|B), (2)

and ‖X‖1 ≡ Tr[
√

X †X ] denotes the trace norm of an operator
X . The logarithmic negativity satisfies a number of properties,
the most important of which is that it is an entanglement
monotone [13,14]. The widespread use of the logarithmic
negativity is due to the ease with which it can be computed
and the fact that it provides an upper bound on the distillable
entanglement of a bipartite state [13,16]. In this context, it
should be mentioned that an entanglement measure alternative
to the logarithmic negativity was recently proposed in [17]
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(also known as the max-Rains relative entropy [18]): it is easy
to compute via semidefinite programming, it satisfies all of the
properties that the logarithmic negativity does, and it provides
a generally tighter upper bound on distillable entanglement.

Another entanglement measure proposed in recent work
is the κ entanglement of a quantum state [19,20], defined as
follows:

Eκ (ρAB) ≡ log2 inf{Tr[SAB] :

− TB(SAB) � TB(ρAB) � TB(SAB), SAB � 0}. (3)

The κ entanglement can be computed easily by semidefinite
programming [19,20]. In the context of the resource theory of
entanglement, the κ-entanglement measure can be regarded as
a breakthrough: not only is it easily computable and satisfies
a number of desirable properties, but it also has a precise
information-theoretic interpretation as the exact entanglement
cost of a bipartite state ρAB when C-PPT-P operations are
allowed for free (see [19,20] for details and see [21,22] for
earlier work on this information-processing task). No other
entanglement measure is known to have these properties,
which makes κ entanglement desirable from both the ax-
iomatic and information-theoretic perspectives.

It is known that the κ entanglement and logarithmic nega-
tivity coincide for two-qubit states and for bosonic Gaussian
states [19,20]. This reduction raises the question of whether
there might be a deeper connection between the two measures.
In this paper, we show that this is indeed the case by defin-
ing a whole family of ordered entanglement measures that
interpolate between the logarithmic negativity, the smallest
in the family, and the κ entanglement, the largest in the
family. We call each member of the family the α-logarithmic
negativity, where α is a parameter in the interval [1,∞]. The
α-logarithmic negativities are ordered, and the usual loga-
rithmic negativity is recovered when α = 1, whereas the κ

entanglement is recovered when α = ∞. In this sense and
following earlier traditions in quantum information theory
[23–26], we can alternatively refer to the κ entanglement as
the max-logarithmic negativity.

Our results in this paper are related to the precedent of
Rényi [27], who established an interpolating family of en-
tropic measures based on a parameter α. However, it should
be noted that we cannot interpret α-logarithmic negativity in
terms of the traditional definitions of quantum Rényi relative
entropies [28–30], for two reasons:

(1) The normalization prefactor for α-logarithmic negativ-
ity is different from that employed for quantum Rényi relative
entropies.

(2) More importantly, the quantum Rényi relative entropies
are functions of quantum states or, more generally, positive
semidefinite operators, whereas the α-logarithmic negativity
is based on an information measure that is a function of a (not
necessarily positive semidefinite) Hermitian operator.

The second reason given above for the difference between
α-logarithmic negativity and Rényi relative entropy is already
apparent in the definition of the logarithmic negativity in (1),
since the argument is TB(ρAB), which is a (not necessarily
positive semidefinite) Hermitian operator. Nevertheless, we
discuss connections between the α-logarithmic negativity and
sandwiched Rényi relative entropy [29,30] in the case that one

allows for the first argument of the sandwiched Rényi relative
entropy to be a Hermitian operator.

We remark here that the technical development in our paper
heavily relies on results from [31] and [32]. In particular,
our proofs that the α-logarithmic negativities are ordered and
are entanglement monotones strongly rely on the methods
of [31], which therein were only applied to quantum states
or positive semidefinite operators. Here, we simply observe
that the methods of [31] apply when one of the operators
is Hermitian, not unlike how the authors of [33] observed
that the methods of [31] apply more generally to positive
trace-preserving maps (rather than just the strict subset of
completely positive trace-preserving maps). Also, in order to
establish that the α-logarithmic negativity can be computed by
convex optimization, we rely on a general theorem established
in [32]. Thus, given the benefits of the methods of [31] and
[32] for establishing entanglement measures in quantum infor-
mation, it seems fruitful to continue the mathematical physics
directions considered in [31] and [32] for future work, as has
already been done in several papers [34–37].

We note here that other papers [38–40] have pursued var-
ious generalizations of logarithmic negativity, but their status
as entanglement monotones remains unclear.

In the rest of the paper, we provide a detailed exposition
of the α-logarithmic negativity. In particular, we define it
in Sec. II. In Sec. III, we detail several properties of the
quantities underlying α-logarithmic negativity, and in Sec. IV,
we prove that the α-logarithmic negativities are ordered (i.e.,
monotone increasing with respect to α ∈ [1,∞]). Then, in
Sec. V, we prove that the logarithmic negativity and the κ

entanglement are special cases of the α-logarithmic negativity
when α = 1 and α = ∞, respectively. In Sec. VI, we establish
several properties of the α-logarithmic negativity, including
normalization, faithfulness, subadditivity, and that it is an en-
tanglement monotone. We also prove that it is neither convex
nor monogamous. In Sec. VII, we define the α-logarithmic
negativity of a quantum channel as a generalization of the
measure for states. Therein, we also discuss other generaliza-
tions of the α-logarithmic negativity. We finally conclude in
Sec. VIII with a brief summary and some open questions.

II. α-LOGARITHMIC NEGATIVITY

In this section, we define the α-logarithmic negativity of a
bipartite state ρAB.

First, let us define the following quantities, which are func-
tions of α � 1, a Hermitian operator X 
= 0, and a positive
semidefinite operator σ 
= 0:

μα (X‖σ ) ≡
{∥∥σ

1−α
2α Xσ

1−α
2α

∥∥
α

if supp(X ) ⊆ supp(σ )
+∞ else

,(4)

να (X‖σ ) ≡ log2 μα (X‖σ ), (5)

where the α norm of an operator Y is defined for α � 1 as

‖Y ‖α ≡ (Tr[|Y |α])1/α
, (6)

|Y | ≡
√

Y †Y , (7)

and the inverse σ (1−α)/2α is understood in the generalized
sense (i.e., taken on the support of σ ). The definition in (4)

032416-2



α-LOGARITHMIC NEGATIVITY PHYSICAL REVIEW A 102, 032416 (2020)

is consistent with the following limit:

μα (X‖σ ) = lim
ε↘0

μα (X‖(1 − ε)σ + εθ ), (8)

where θ is a positive definite state. A proof for the equality in
(8) follows the same steps given in the proof of Lemma 13 in
Ref. [29].

We define

μ∞(X‖σ ) ≡ lim
α→∞ μα (X‖σ ) (9)

= ‖σ−1/2Xσ−1/2‖∞ (10)

= inf{λ : −λσ � X � λσ }, (11)

and

ν∞(X‖σ ) ≡ log2 μ∞(X‖σ ). (12)

Both of the above formulas are defined as above in the case
that supp(X ) ⊆ supp(σ ), and μ∞(X‖σ ) and ν∞(X‖σ ) are set
to +∞ otherwise.

The function να (X‖σ ) is related to the sandwiched Rényi
relative entropy D̃α (X‖σ ) [29,30] of a Hermitian operator
X 
= 0 and a positive semidefinite operator σ 
= 0 as follows:

D̃α (X‖σ ) = α

α − 1
να (X‖σ ). (13)

Also, we have that

ν∞(X‖σ ) = Dmax(X‖σ ) (14)

≡ log2 ‖σ−1/2Xσ−1/2‖∞ (15)

= log inf {λ : −λσ � X � λσ }, (16)

where Dmax(X‖σ ) is the max-relative entropy [24] of a Her-
mitian operator X 
= 0 and a positive semidefinite operator
σ 
= 0. Note that Dmax(X‖σ ) = +∞ if supp(X ) 
⊆ supp(σ ).
We also note here that both the sandwiched Rényi relative
entropy and max-relative entropy have only been considered
in prior work when X is positive semidefinite, and so (13) and
(14) represent strict generalizations of the previously consid-
ered definitions.

We are now ready to define the α-logarithmic negativity of
a bipartite state as follows:

Definition 1. α-logarithmic negativity. Let ρAB be a bipartite
state. We define its α-logarithmic negativity as

Eα
N (ρAB) ≡ inf

σAB∈PPT(A:B)
να (TB(ρAB)‖σAB), (17)

where TB is the partial transpose map, defined in (2), and the
set PPT(A : B) is the set of positive partial transpose states,
defined as [41–44]

PPT(A : B)

≡ {σAB : σAB � 0, TB(σAB) � 0, Tr[σAB] = 1}. (18)

It can be useful as a proof tool to take the infimum in
Definition 1 over only the faithful states in PPT(A : B), and
the following lemma establishes that this is possible:

Lemma 1. The following identity holds:

Eα
N (ρAB) = inf

σAB∈PPTinv(A:B)
να (TB(ρAB)‖σAB), (19)

where PPTinv(A : B) consists of the faithful states in
PPT(A : B):

PPTinv(A : B)

≡ {σAB : σAB > 0, TB(σAB) > 0, Tr[σAB] = 1}. (20)

Proof. This follows because the set PPTinv(A : B) is dense
in PPT(A : B) and the α norm is continuous, so that the α

norm of any state in PPT(A : B) can be approximated arbitrar-
ily well by that of a state in PPTinv(A : B). �

III. PROPERTIES OF THE FUNCTIONS
μα(X‖σ ) AND να(X‖σ )

In this section, we establish several properties of the func-
tions μα (X‖σ ) and να (X‖σ ) that are used in the rest of the
paper. We also employ the following abbreviations: CP stands
for completely positive, TP stands for trace preserving, and
CPTP stands for completely positive and trace preserving.

Throughout the section, X 
= 0 is a Hermitian operator and
σ is a positive-definite operator. Following [31,45], for p � 1,
we define the following norm:

‖X‖p,σ ≡ ‖σ 1/2pXσ 1/2p‖p. (21)

Note that

‖X‖∞,σ ≡ lim
p→∞ ‖X‖p,σ = ‖X‖∞. (22)

We also define the following CP map [31]:


σ (X ) ≡ σ 1/2Xσ 1/2, (23)

so that


−1
σ (X ) = σ−1/2Xσ−1/2. (24)

Lemma 2. Let X 
= 0 be a Hermitian operator and let σ

be a positive-definite operator. Let P be a positive and trace-
nonincreasing map. Then the following inequality holds for
all α � 1:

να (X‖σ ) � να (P (X )‖P (σ )). (25)

Proof. This follows as a direct consequence of the reason-
ing given in Theorem 6 in Ref. [31] (see, also, Theorem 2 in
Ref. [33]). We repeat the argument here for completeness.

Since α � 1 and the logarithm function is monotone in-
creasing, (25) is equivalent to∥∥
−1

σ (X )
∥∥

α,σ
�

∥∥
−1
P (σ )(P (X ))

∥∥
α,P (σ )

. (26)

Observe that


−1
P (σ )(P (X )) = (
−1

P (σ ) ◦ P ◦ 
σ )(
−1
σ (X )). (27)

As a result,∥∥
−1
P (σ )(P (X ))

∥∥
α,P (σ )

�
∥∥
−1

P (σ ) ◦ P ◦ 
σ

∥∥
(α,σ )→(α,P (σ ))

· ∥∥
−1
σ (X )

∥∥
α,σ

, (28)

where, for a map M,

‖M‖(α,σ )→(α′,σ ′ ) ≡ sup
Y 
=0

‖M(Y )‖α′,σ ′

‖Y ‖α,σ

. (29)
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We also define

‖M‖α→α′ ≡ ‖M‖(α,I )→(α′,I ). (30)

So it suffices to establish that∥∥
−1
P (σ ) ◦ P ◦ 
σ

∥∥
(α,σ )→(α,P (σ ))

� 1. (31)

By employing Theorem 4 of Ref. [31], it is only necessary to
establish (31) for α = 1 and α = ∞.

For α = 1, it follows that∥∥
−1
P (σ ) ◦ P ◦ 
σ

∥∥
(1,σ )→[1,P (σ )]

= ‖P‖1→1 � 1 (32)

because P is positive and trace nonincreasing. For α = ∞, it
follows that ∥∥
−1

P (σ ) ◦ P ◦ 
σ

∥∥
(∞,σ )→[∞,P (σ )]

= ∥∥
−1
P (σ ) ◦ P ◦ 
σ

∥∥
∞→∞. (33)

Since 
−1
P (σ ) ◦ P ◦ 
σ is a positive map, by the Russo-Dye

theorem (Corollary 2.3.8 of [46]), we have that∥∥
−1
P (σ ) ◦ P ◦ 
σ

∥∥
∞→∞ = ∥∥(
−1

P (σ ) ◦ P ◦ 
σ )(I )
∥∥

∞ (34)

= ∥∥(
−1
P (σ ) ◦ P )(σ )

∥∥
∞ (35)

= ‖(P (σ ))−1/2P (σ )(P (σ ))−1/2‖∞
(36)

= 1, (37)

concluding the proof. �
Lemma 3. Let

YXB ≡
∑

x

p(x)|x〉〈x|X ⊗ Y x
B , (38)

σXB ≡
∑

x

q(x)|x〉〈x|X ⊗ σ x
B, (39)

where {Y x
B }x is a set of Hermitian operators such that Y x

B 
=
0 for all x, {p(x)}x is a probability distribution, {σ x

B} is a set
of positive-definite operators, and {q(x)}x is a set of strictly
positive reals. Then, for α � 1, we have that

να (YXB‖σXB) �
∑

x

p(x)να (Y x
B ‖σ x

B ) +
(

α − 1

α

)
D(p‖q),

(40)

where D(p‖q) := ∑
x p(x) log2[p(x)/q(x)] is the classical rel-

ative entropy.
Proof. The case α = 1 follows directly because

να=1(YXB‖σXB) = log2 ‖YXB‖1 (41)

= log2

[∑
x

p(x)
∥∥Y x

B

∥∥
1

]
(42)

�
∑

x

p(x) log2

∥∥Y x
B

∥∥
1 (43)

=
∑

x

p(x)να=1
(
Y x

B

∥∥σ x
B

)
, (44)

where the inequality follows from concavity of the logarithm.

For the case α > 1, consider that

να (YXB‖σXB) = log2 μα (YXB‖σXB) (45)

= 1

α
log2 [μα (YXB‖σXB)]α (46)

= 1

α
log2

∑
x

[
μα

(
p(x)Y x

B

∥∥q(x)σ x
B

)]α
(47)

= 1

α
log2

∑
x

p(x)αq(x)1−α
[
μα

(
Y x

B

∥∥σ x
B

)]α
(48)

= 1

α
log2

∑
x

p(x)

[
p(x)

q(x)

]α−1[
μα

(
Y x

B

∥∥σ x
B

)]α

(49)

� 1

α

∑
x

p(x) log2

{[
p(x)

q(x)

]α−1[
μα

(
Y x

B

∥∥σ x
B

)]α

}
(50)

=
(

α − 1

α

) ∑
x

p(x) log2

[
p(x)

q(x)

]
+ 1

α

∑
x

p(x) log2

[
μα

(
Y x

B

∥∥σ x
B

)]α
(51)

=
(

α − 1

α

)
D(p‖q) +

∑
x

p(x)να

(
Y x

B ‖σ x
B

)
.

(52)

The third equality follows from definitions and the fact that
‖∑

y |y〉〈y| ⊗ By‖α

α
= ∑

y ‖By‖α
α for a set {By}y of operators.

The sole inequality is a consequence of concavity of the loga-
rithm. �

Lemma 4. Let X 
= 0 be a Hermitian operator and let σ be a
positive-definite operator. Then the following inequality holds
for all α � 1:

μ1(X‖σ ) = ‖X‖1 � μα (X‖σ )(Tr[σ ])(α−1)/α. (53)

Equivalently,

log2 ‖X‖1 � να (X‖σ ) +
(

α − 1

α

)
log2 Tr[σ ]. (54)

Proof. The proof of this lemma closely follows the proof of
Theorem 5 in Ref. [31]. Set α′ = α/(α − 1). Consider that

μα (X‖σ )(Tr[σ ])1/α′

= ‖σ (1−α)/2αXσ (1−α)/2α‖α (Tr[σ ])1/α′
(55)

= ‖σ−1/2α′
Xσ−1/2α′ ‖α (Tr[σ ])1/α′

(56)

= ‖σ 1/2α′ ‖2α′ ‖σ−1/2α′
Xσ−1/2α′ ‖α‖σ 1/2α′ ‖2α′ (57)

� ‖σ 1/2α′
σ−1/2α′

Xσ−1/2α′
σ 1/2α′ ‖1 (58)

= ‖X‖1, (59)

where we used that (Tr[σ ])1/α′ = ‖σ 1/2α′ ‖2
2α′ and the inequal-

ity is a consequence of Hölder’s inequality. �
Lemma 5. Let X 
= 0 be a Hermitian operator and let σ be a

positive-definite operator. Then the following inequality holds
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for all β > α > 1:[
μα (X‖σ )

‖X‖1

] α
α−1

�
[
μβ (X‖σ )

‖X‖1

] β

β−1

. (60)

Equivalently,
α

α − 1
[να (X‖σ ) − log2 ‖X‖1]

� β

β − 1
[νβ (X‖σ ) − log2 ‖X‖1]. (61)

Proof. The proof of this lemma closely follows the proof
of Theorem 7 in Ref. [31]. Since 1 < α < β, it follows that
1
β

< 1
α

< 1, so that there exists θ ∈ (0, 1) such that

1

α
= 1 − θ + θ

β
. (62)

We then find that by simple manipulations,

θ
( α

α − 1

)
=

(
β

β − 1

)
. (63)

Consider from Corollary 3 of Ref. [31] that the following
inequality holds:∥∥
−1

σ (X )
∥∥

α,σ
�

∥∥
−1
σ (X )

∥∥1−θ

1,σ

∥∥
−1
σ (X )

∥∥θ

β,σ
. (64)

Consider that ∥∥
−1
σ (X )

∥∥
1,σ

= ‖X‖1, (65)∥∥
−1
σ (X )

∥∥
α,σ

= μα (X‖σ ), (66)∥∥
−1
σ (X )

∥∥
β,σ

= μβ (X‖σ ), (67)

from which we conclude that

μα (X‖σ ) � ‖X‖1−θ
1 μβ (X‖σ )θ , (68)

so that

μα (X‖σ )
α

α−1 � ‖X‖
(1−θ )α
α−1

1 μβ (X‖σ )
θα

α−1 (69)

= ‖X‖
α

(α−1) − β

(β−1)

1 μβ (X‖σ )
β

β−1 . (70)

Rewriting this, we find that[
μα (X‖σ )

‖X‖1

] α
α−1

�
[
μβ (X‖σ )

‖X‖1

] β

β−1

. (71)

Taking a logarithm, we get that
α

α − 1
[να (X‖σ ) − log2 ‖X‖1]

� β

β − 1
[νβ (X‖σ ) − log2 ‖X‖1], (72)

concluding the proof. �
Corollary 1. Let X 
= 0 be a Hermitian operator and let σ

be a positive-definite operator. Then the following inequality
holds for all β > α > 1:

μα (X‖σ ) � μβ (X‖σ ). (73)

Equivalently,

να (X‖σ ) � νβ (X‖σ ). (74)

Proof. This follows easily from the fact that
β

β − 1
� α

α − 1
(75)

for β > α > 1 and by applying Lemma 5. �
Lemma 6. Let X 
= 0 be a Hermitian operator and let σ be

a positive-definite operator. Then, for all α � 1, the following
function is convex:

σ �→ [μα (X‖σ )]α. (76)

Proof. Consider that

[μα (X‖σ )]α = ∥∥σ
1−α
2α Xσ

1−α
2α

∥∥α

α
(77)

= Tr
[(

σ
1−α
2α Xσ

1−α
α Xσ

1−α
2α

) α
2
]
. (78)

A general theorem (see Theorem 5.2 in Ref. [32]) states that
the following function of positive-definite operators A and B
is jointly convex in A and B:

Tr({[P1(Ap)]1/2P2(Bq)[P1(Ap)]1/2}s), (79)

for positive maps P1 and P2, p, q ∈ [−1, 0], and s � 0. (For
this statement, please consult Theorem 5.2 of [32] and the
brief remarks stated before Theorem 5.3 therein). Then we
see that the convexity of [μα (X‖σ )]α in σ for α � 1 follows
as a special case of Theorem 5.2 in Ref. [32] by taking

P1 = id, (80)

P2(·) = X (·)X, (81)

p = q = (1 − α)/α, (82)

s = α/2, (83)

A = B = σ, (84)

concluding the proof. �

IV. ORDERING OF THE α-LOGARITHMIC NEGATIVITY

Recall that the logarithmic negativity of a bipartite state
ρAB is defined as [13,14]

EN (ρAB) ≡ log2 ‖TB(ρAB)‖1. (85)

Proposition 1. Let ρAB be a bipartite quantum state, and let
1 � α � β. Then,

EN (ρAB) � Eα
N (ρAB) � Eβ

N (ρAB). (86)

Proof. Let σAB be an arbitrary state in PPTinv(A : B). Ap-
plying Lemma 4, we find that

EN (ρAB) = log2 ‖TB(ρAB)‖1 (87)

� να (TB(ρAB)‖σAB). (88)

Since the inequality holds for all σAB ∈ PPTinv(A : B), by
applying Lemma 1 and an infimum, we conclude the first
inequality in (86).

To establish the second inequality in (86), let σAB be an
arbitrary state in PPTinv(A : B). Then, applying Definition 1
and Corollary 1, we find that

Eα
N (ρAB) � να (TB(ρAB)‖σAB) (89)

� νβ (TB(ρAB)‖σAB). (90)
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Since the inequality holds for all σAB ∈ PPTinv(A : B), we
conclude that Eα

N (ρAB) � Eβ
N (ρAB). �

V. LIMITS OF THE α-LOGARITHMIC NEGATIVITY

In this section, we consider two limits of the α-logarithmic
negativity, when α → 1 and α → ∞. The former limit con-
verges to the well-known logarithmic negativity [13,14] and
the latter converges to the κ entanglement of a bipartite quan-
tum state [19,20]. Recall that the κ entanglement of a quantum
state is defined as [19,20]

Eκ (ρAB) ≡ log2 inf{Tr[SAB] :

− TB(SAB) � TB(ρAB) � TB(SAB), SAB � 0}. (91)

Proposition 2. Let ρAB be a bipartite quantum state. Then,

lim
α→1

Eα
N (ρAB) = EN (ρAB). (92)

Proof. Let σAB be a state in PPTinv(A : B). Then,

lim
α→1

Eα
N (ρAB) = lim

α→1
inf

σAB∈PPTinv(A:B)
να (TB(ρAB)‖σAB) (93)

� lim
α→1

να (TB(ρAB)‖σAB) (94)

= lim
α→1

log2

∥∥σ
(1−α)/2α
AB TB(ρAB)σ (1−α)/2α

AB

∥∥
α

(95)

= log2 ‖TB(ρAB)‖1 (96)

= EN (ρAB). (97)

Combining with the inequality Eα
N (ρAB) � EN (ρAB) from

Proposition 1, we conclude the proof. �
Definition 2. Max-logarithmic negativity. For ρAB a bipar-

tite quantum state, the max-logarithmic negativity Emax
N (ρAB)

is defined as

Emax
N (ρAB) ≡ inf

σAB∈PPT(A:B)
ν∞(TB(ρAB)‖σAB), (98)

and ν∞ is defined in (12).
Proposition 3. Let ρAB be a bipartite quantum state. Then,

Eκ (ρAB) = Emax
N (ρAB) = lim

α→∞ Eα
N (ρAB). (99)

Proof. We first prove the first equality in (99). Consider that
by the substitution SAB → TB(SAB) in (91), we find that

Eκ (ρAB) = log2 inf{Tr[TB(SAB)] :

− SAB � TB(ρAB) � SAB, TB(SAB) � 0}. (100)

Since Tr[TB(SAB)] = Tr[SAB], it follows that

Eκ (ρAB) = log2 inf{Tr[SAB] :

− SAB � TB(ρAB) � SAB, TB(SAB) � 0}. (101)

From the condition −SAB � TB(ρAB) � SAB, it follows that
−SAB � SAB and thus that SAB � 0. By approximation (the
fact that positive-definite operators are dense in the set of
positive-semidefinite ones), it follows that we can take the in-
fimum over SAB > 0. Now make the substitution SAB → μσAB

in (101), where μ > 0 and σAB ∈ PPTinv(A : B). Then we find

that

Eκ (ρAB) = log2 inf{μ : −μσAB � TB(ρAB) � μσAB,

σAB ∈ PPTinv(A : B)}. (102)

The condition −μσAB � TB(ρAB) � μσAB is equivalent to
−μIAB � σ

−1/2
AB TB(ρAB)σ−1/2

AB � μIAB, which is in turn equiv-
alent to ∥∥σ

−1/2
AB TB(ρAB)σ−1/2

AB

∥∥
∞ � μ. (103)

So then,

Eκ (ρAB) = log2 inf
{
μ :

∥∥σ
−1/2
AB TB(ρAB)σ−1/2

AB

∥∥
∞ � μ,

σAB ∈ PPTinv(A : B)
}
. (104)

Then it follows that

Eκ (ρAB) = inf
σAB∈PPTinv(A:B)

log2

∥∥σ
−1/2
AB TB(ρAB)σ−1/2

AB

∥∥
∞ (105)

= inf
σAB∈PPTinv(A:B)

ν∞(TB(ρAB)‖σAB), (106)

thus establishing (99).
Now we establish the second equality in (99). Consider that

lim
α→∞ Eα

N (ρAB) = sup
α∈[1,∞)

inf
σAB∈PPT(A:B)

να (TB(ρAB)‖σAB) (107)

= inf
σAB∈PPT(A:B)

sup
α∈[1,∞)

να (TB(ρAB)‖σAB) (108)

= inf
σAB∈PPT(A:B)

ν∞(TB(ρAB)‖σAB) (109)

= Emax
N (ρAB). (110)

The first equality follows from the ordering inequality from
Proposition 1, using which we can replace limα→∞ with
supα∈[1,∞). The second (critical) equality above is a con-
sequence of the ordering inequality from Proposition 1,
the quasiconvexity of να (TB(ρAB)‖σAB) with respect to σAB

(Proposition 5), and the convexity and compactness of the
set PPT(A : B). All of these properties allow for applying the
minimax theorem from Corollary A.2 of Ref. [47], concluding
the proof of the second equality in (99). �

Putting together previous results, we conclude the follow-
ing:

Proposition 4. If ρAB satisfies the condition
TB(|TB(ρAB)|) � 0, then all α-logarithmic negativities are
equal; i.e., the following equality holds for all α � 1:

Eα
N (ρAB) = EN (ρAB). (111)

Proof. It is known from Proposition 3 of Ref. [19]
that EN (ρAB) = Eκ (ρAB) if ρAB satisfies the condition
TB(|TB(ρAB)|) � 0. Then the equality in (111) follows as a
consequence of the ordering inequality from Proposition 1,
as well as Propositions 2 and 3. �

Remark 1. Since all pure states [48], two-qubit states [49],
Werner states [21], and bosonic Gaussian states [21] satisfy
the condition TB(|TB(ρAB)|) � 0, we conclude that the equality
in (111) holds for such states.
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VI. PROPERTIES OF THE α-LOGARITHMIC NEGATIVITY

Here we prove that the α-logarithmic negativity obeys
several fundamental properties, making it an interesting entan-
glement measure to consider in quantum information theory.
These properties include the following:

(1) Entanglement monotone under selective C-PPT-P chan-
nels (which includes selective LOCC channels as a special
case).

(2) It can be calculated by convex optimization.
(3) Normalization on maximally entangled states.
(4) Faithfulness.
(5) Subadditivity.
We also prove by counterexample that the α-logarithmic

negativities are neither convex nor monogamous.

A. Entanglement monotonicity under selective completely
positive partial transpose preserving channels

Let us first recall the class of completely positive partial
transpose preserving (C-PPT-P) channels [11,50], defined as
bipartite channels NAB→A′B′ such that NAB→A′B′ is CPTP and
the map TB′ ◦ NAB→A′B′ ◦ TB is CP. Related to this, a C-PPT-
P quantum instrument consists of the collection {N x

AB→A′B′ }x,
where each N x

AB→A′B′ is CP, the map TB′ ◦ N x
AB→A′B′ ◦ TB is CP,

and the sum map
∑

x N x
AB→A′B′ is TP. It is well known that the

set of C-PPT-P channels contains the set of LOCC channels,
as well as the set of separable channels [11,50].

The following fundamental theorem establishes that the α-
logarithmic negativities are entanglement monotones for all
α � 1:

Theorem 1. Entanglement monotone. Let {N x
AB→A′B′ }x be

a C-PPT-P quantum instrument and let ρAB be a bipartite
state. Then the α-logarithmic negativity is an entanglement
monotone; i.e., the following inequality holds for all α � 1:

Eα
N (ρAB) �

∑
x:p(x)>0

p(x)Eα
N

(
ρx

A′B′
)
, (112)

where

p(x) ≡ Tr
[
N x

AB→A′B′ (ρAB)
]
, (113)

ρx
A′B′ ≡ 1

p(x)
N x

AB→A′B′ (ρAB). (114)

Proof. Let σAB be an arbitrary state in PPTinv(A : B). Let

N T
AB→A′B′X (YAB) ≡

∑
x

N T,x
AB→A′B′ (YAB) ⊗ |x〉〈x|X ,

N T,x
AB→A′B′ (YAB) ≡ (TB′ ◦ N x

AB→A′B′ ◦ TB)(YAB). (115)

Note that the map N T
AB→A′B′X is completely positive and trace

preserving, which is a consequence of each map N T,x
AB→A′B′

being CP and the sum map
∑

x N
T,x
AB→A′B′ being TP. Let

σ x
A′B′ ≡ 1

q(x)
N T,x

AB→A′B′ (σAB), (116)

where the probability distribution {q(x)}x is defined as

q(x) ≡ Tr
[
N T,x

AB→A′B′ (σAB)
]
. (117)

Note that σ x
A′B′ ∈ PPT(A′ : B′) because

σ x
A′B′ = 1

q(x)
N T,x

AB→A′B′ (σAB) � 0, (118)

since σAB � 0 and N T,x
AB→A′B′ is CP, and

TB′ (σ x
A′B′ ) = 1

q(x)
N x

AB→A′B′ (TB(σAB)) � 0, (119)

since TB(σAB) � 0 and N x
AB→A′B′ is CP. Also, Tr[σ x

A′B′ ] = 1 by
definition. Then consider that

να (TB(ρAB)‖σAB)

� να

[
N T

AB→A′B′X (TB(ρAB))
∥∥N T

AB→A′B′X (σAB)
]

(120)

�
(

α − 1

α

)
D(p‖q) +

∑
x

p(x) να

(
TB′

(
ρx

A′B′
)∥∥σ x

A′B′
)

(121)

�
∑

x

p(x) να

(
TB′

(
ρx

A′B′
)∥∥σ x

A′B′
)

(122)

�
∑

x

p(x) Eα
N

(
ρx

A′B′
)
. (123)

The first inequality follows from Lemma 2 (data processing).
The second inequality follows from the facts that

N T
AB→A′B′X (TB(ρAB)) =

∑
x

p(x)|x〉〈x|X ⊗ TB′
(
ρx

A′B′
)
,

N T
AB→A′B′X (σAB) =

∑
x

q(x)|x〉〈x|X ⊗ σ x
A′B′ , (124)

and by applying Lemma 3. The third inequality follows be-
cause the classical relative entropy D(p‖q) is non-negative.
The final inequality follows from Definition 1.

Since the chain of inequalities holds for an arbitrary state
σAB ∈ PPTinv(A : B), we conclude (112). �

Note that Theorem 1 applies to the case in which the
C-PPT-P instrument consists of a single element, i.e., when
the C-PPT-P instrument is really just a C-PPT-P channel. We
remark here that if the goal is to establish monotonicity under
the action of a C-PPT-P channel (and not the more general
case of an instrument), then the proof is slightly simpler than
above. For clarity and due to its brevity, we show the few
steps explicitly now. Let NAB→A′B′ be a C-PPT-P channel
and let σAB ∈ PPTinv(A :B). By definition, N T

AB→A′B′ ≡ TB′ ◦
NAB→A′B′ ◦ TB is a quantum channel, and N T

AB→A′B′ (σAB) ∈
PPT(A′ :B′) by the same reasoning given in (118) and (119).
Then consider that

να (TB(ρAB)‖σAB) � να

(
N T

AB→A′B′ (TB(ρAB))
∥∥N T

AB→A′B′ (σAB)
)

(125)

= να

(
TB′ (NAB→A′B′ (ρAB))

∥∥N T
AB→A′B′ (σAB)

)
(126)

� Eα
N (NAB→A′B′ (ρAB)), (127)

where the first inequality follows from Lemma 2 and the
second from the fact that N T

AB→A′B′ (σAB) ∈ PPT(A′ :B′) and
Definition 1. Since the inequalities hold for all σAB ∈
PPTinv(A : B), we conclude that

Eα
N (ρAB) � Eα

N (NAB→A′B′ (ρAB)). (128)
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B. Convex optimization

Proposition 5. Let ρAB be a bipartite quantum state and
let α � 1. Then the α-logarithmic negativity Eα

N (ρAB) can be
calculated by convex optimization.

Proof. We can rewrite Eα
N (ρAB) as follows:

Eα
N (ρAB) = inf

σAB∈PPT(A:B)
log2 μα (TB(ρAB)‖σAB) (129)

= inf
σAB∈PPT(A:B)

1

α
log2 [μα (TB(ρAB)‖σAB)]α (130)

= 1

α
log2 inf

σAB∈PPT(A:B)
[μα (TB(ρAB)‖σAB)]α. (131)

The statement of the proposition then follows as a conse-
quence of Lemma 6. �

C. Normalization

Proposition 6. Normalization. For a maximally entangled
state �d

AB of Schmidt rank d � 2,

�d
AB ≡ 1

d

∑
i, j

|i〉〈 j|A ⊗ |i〉〈 j|B, (132)

where {|i〉A}i and {|i〉B}i are orthonormal bases, the following
equality holds for all α � 1:

Eα
N

(
�d

AB

) = log2 d. (133)

Proof. This is a direct consequence of EN (�d
AB) =

Eκ (�d
AB) = log2 d [19], the ordering inequality in Proposition

1, and Proposition 3. �

D. Faithfulness

It is known that the logarithmic negativity is faithful, mean-
ing that EN (ρAB) � 0 and EN (ρAB) = 0 if and only if ρAB ∈
PPT(A : B). To see that EN (ρAB) � 0, consider that

EN (ρAB) = log2 ‖TB(ρAB)‖1 (134)

� log2 Tr[TB(ρAB)] (135)

= log2 Tr[ρAB] = 0. (136)

The implication ρAB ∈ PPT(A : B) ⇒ EN (ρAB) = 0 follows
easily from the fact that ‖TB(ρAB)‖1 = Tr[TB(ρAB)] for such
states, and the opposite implication was shown, e.g., in Propo-
sition 5 of Ref. [19]. Using this, we can conclude faithfulness
for the α-logarithmic negativity as follows:

Proposition 7. Faithfulness. Let ρAB be a bipartite quantum
state, and let α � 1. Then, Eα

N (ρAB) � 0 and Eα
N (ρAB) = 0 if

and only if ρAB ∈ PPT(A : B).
Proof. The inequality Eα

N (ρAB) � 0 follows from Proposi-
tion 1 and the fact that EN (ρAB) � 0.

To see the other statement, let ρAB ∈ PPT(A : B). Then we
can pick σAB = TB(ρAB) ∈ PPT(A : B), and we find that

Eα
N (ρAB) � να (TB(ρAB)‖σAB) (137)

= να (TB(ρAB)‖TB(ρAB)) (138)

= log2

∥∥(TB(ρAB))
1−α
2α TB(ρAB)(TB(ρAB))

1−α
2α

∥∥
α

(139)

= log2 ‖(TB(ρAB))
1
α ‖α (140)

= 0. (141)

We then conclude that Eα
N (ρAB) = 0 if ρAB ∈ PPT(A : B).

Now suppose that Eα
N (ρAB) = 0. Then this means that

EN (ρAB) = 0 by Proposition 1, and we conclude that ρAB ∈
PPT(A : B) as a consequence of the faithfulness of logarithmic
negativity. �

E. Subadditivity

In this section, we establish subadditivity of the α-
logarithmic negativity Eα

N :
Proposition 8. Subadditivity. Let ρA1B1 and ωA2B2 be bipar-

tite states. Then the following subadditivity inequality holds
for all α � 1:

Eα
N

(
ρA1B1 ⊗ ωA2B2

)
� Eα

N

(
ρA1B1

) + Eα
N

(
ωA2B2

)
, (142)

where the bipartition for Eα
N (ρA1B1 ⊗ ωA2B2 ) is understood to

be A1A2|B1B2.
Proof. Let σ

(1)
A1B1

and σ
(2)
A2B2

be arbitrary PPT states in
PPT(A1 : B1) and PPT(A2 : B2), respectively. Then it follows
that σ

(1)
A1B1

⊗ σ
(2)
A2B2

∈ PPT(A1A2 : B1B2), so that

Eα
N (ρA1B1 ⊗ ωA2B2 )

� να

(
TB1 (ρA1B1 ) ⊗ TB2

(
ωA2B2

)∥∥σ
(1)
A1B1

⊗ σ
(2)
A2B2

)
(143)

= να

(
TB1 (ρA1B1 )

∥∥σ
(1)
A1B1

) + να

(
TB2

(
ωA2B2

)∥∥σ
(2)
A2B2

)
, (144)

where we have exploited the additivity of να to establish the
equality. Since the inequality holds for arbitrary σ

(1)
A1B1

and

σ
(2)
A2B2

, the inequality in (142) follows. �
It is not clear to us whether the opposite inequality (su-

peradditivity) holds in general. It is well known that the
logarithmic negativity is additive [13], and it has been shown
recently in [19] that the max-logarithmic negativity (κ en-
tanglement) is additive also. So, by Remark 1, it follows
that the α-logarithmic negativities are additive for the states
mentioned there. However, establishing additivity in general
(or a counterexample) is a problem that we leave open for
future work.

F. No convexity

As a consequence of the counterexample given in Propo-
sition 6 in Ref. [19] in addition to Remark 1, it follows that
the α-logarithmic negativity is not generally convex for any
choice of α ∈ [1,∞]. Indeed, by picking

ρ1
AB ≡ �2

AB, (145)

ρ2
AB ≡ 1

2 (|00〉〈00|AB + |11〉〈11|AB), (146)

ρAB ≡ 1
2

(
ρ1

AB + ρ2
AB

)
, (147)

we find for all α ∈ [1,∞] that

Eα
N

(
ρ1

AB

) = 1, (148)

Eα
N

(
ρ2

AB

) = 0, (149)

Eα
N (ρAB) = log2

3
2 , (150)

which implies that

Eα
N (ρAB) > 1

2

[
Eα

N

(
ρ1

AB

) + Eα
N

(
ρ2

AB

)]
. (151)
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G. No monogamy

An entanglement measure E is said to be monogamous
[51–53] if the following inequality holds for all tripartite states
ρABC :

E (ρA:B) + E (ρA:C ) � E (ρA:BC ), (152)

where the bipartition is indicated by a colon.
As a consequence of the counterexample given in Propo-

sition 7 of Ref. [19] in addition to Propositions 1 and 3 and
Remark 1, it follows that the α-logarithmic negativity is not
generally monogamous for any choice of α ∈ [1,∞]. Indeed,
consider the following state of three qubits:

|ψ〉ABC ≡ 1
2 (|000〉ABC + |011〉ABC +

√
2|110〉ABC ). (153)

It was shown in Proposition 7 of Ref. [19] that the following
inequality holds:

Eκ (ψA:B) + Eκ (ψA:C ) > Eκ (ψA:BC ). (154)

Since the reduced states ψAB and ψAC are two-qubit states, it
follows from Remark 1 and (154) for all α � 1 that

Eα
N (ψA:B) + Eα

N (ψA:C ) > Eκ (ψA:BC ) (155)

� Eα
N (ψA:BC ), (156)

where the last inequality is a consequence of Propositions
1 and 3. So monogamy does not hold for any of the α-
logarithmic negativities.

VII. GENERALIZATIONS

A. α-logarithmic negativity of a quantum channel

We can also generalize the notion of α-logarithmic nega-
tivity from bipartite quantum states to point-to-point quantum
channels. Before doing so, let us recall that the logarithmic
negativity of a quantum channel NA→B is defined as [54]

EN (N ) ≡ log2 ‖TB ◦ NA→B‖�. (157)

Recall that the diamond norm of a Hermitian preserving map
MA→B is defined as [55]

‖MA→B‖� ≡ sup
ψRA

‖MA→B(ψRA)‖1, (158)

with the optimization over pure bipartite states ψRA such that
the reference system R is isomorphic to the channel input sys-
tem A. By applying definitions, we see that we can write the
logarithmic negativity of a quantum channel as an optimized
version of the logarithmic negativity of quantum states,

EN (N ) = sup
ψRA

EN (ωRB), (159)

where ωRB ≡ NA→B(ψRA). Note that this kind of channel
generalization of state measures is quite common in quantum
information theory [18,56–58].

Continuing in this spirit, we define the following:
Definition 3. α-log. Negativity of a channel. The α-

logarithmic negativity of a quantum channel is defined for
α � 1 as

Eα
N (N ) = sup

ψRA

Eα
N (ωRB), (160)

with ωRB ≡ NA→B(ψRA).

We could define it more generally with an optimization
over mixed input states ψRA with unbounded reference system
R. However, the maximal value is always achieved by a pure
bipartite input state with reference system R isomorphic to the
channel input system A, as a consequence of the monotonicity
inequality in Theorem 1, the Schmidt decomposition theorem,
and the invariance of Eα

N with respect to isometric channels
acting on the reference system R (this latter statement itself
being a consequence of Theorem 1).

By the above observation and Remark 1, it follows that

Eα
N (N ) = EN (N ) (161)

for all α ∈ [1,∞] if N is a qubit channel (with qubit input and
qubit output), if N is a unitary channel, or if N is a Werner-
Holevo channel [59–61]. Recall that a Werner-Holevo channel
W (p,d )

A→B with parameters p ∈ [0, 1] and integer d � 2 is defined
as [59–61]

W (p,d )
A→B ≡ (1 − p)W (0,d )

A→B + pW (1,d )
A→B, (162)

where the channels W (0,d )
A→B and W (1,d )

A→B are defined as

W (0,d )
A→B(XA) ≡ Tr[XA]IB + idA→B[TA(XA)]

d + 1
, (163)

W (1,d )
A→B(XA) ≡ Tr[XA]IB − idA→B[TA(XA)]

d − 1
, (164)

and TA denotes the partial transpose map on system A. Note
that the Choi state of the Werner-Holevo channel W p,d

A→B is a
Werner state [62],

W (p,d )
A→B(�RA) ≡ (1 − p)

2

d (d + 1)
�S

RB + p
2

d (d − 1)
�A

RB,

(165)

where

�S
RB ≡ (IRB + FRB)/2, (166)

�A
RB ≡ (IRB − FRB)/2, (167)

and FRB is the unitary swap operator.
The claim stated after (161) follows easily from Remark

1 for qubit-qubit channels, for unitary channels because the
output state is pure (and then applying Remark 1), and for
Werner-Holevo channels by employing their covariance sym-
metry [61] and Theorem 1 to conclude that the optimal state
ψRA in (160) is the maximally entangled state, so that the
output of the channel is a Werner state, from which we con-
clude the claim by applying Remark 1. For the Werner-Holevo
channel, we can in fact give the following equality for all
α � 1 [19,21]:

Eα
N

(
W (p,d )

A→B

) =
{

log2

(
2
d [2p − 1] + 1

)
if p � 1

2

0 if p � 1
2

. (168)

Also, as a consequence of the ordering inequality in Propo-
sition 1 and in Theorem 27 in Ref. [19], the following
equalities hold for all α � 1:

Eα
N (Lη,NB ) = log2

[
1 + η

(1 − η)(2NB + 1)

]
, (169)
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Eα
N (AG,NB ) = log2

[
G + 1

(G − 1)(2NB + 1)

]
, (170)

Eα
N (Tξ ) = log2 (1/ξ ), (171)

where Lη,NB is a thermal channel with transmissivity η ∈
(0, 1) and thermal photon number NB ∈ (0, η/[1 − η]), AG,NB

is an amplifier channel with gain G > 1 and thermal pho-
ton number NB ∈ (0, 1/[G − 1]), and Tξ is an additive-noise
channel with noise variance ξ ∈ (0, 1). (See Sec. VII of
Ref. [19] for more details of these channels.)

B. Other positive but not completely positive maps

We note briefly here that the main definition in this paper
can be generalized to other maps, besides the partial transpose
map, that are positive but not completely positive. Let PB be
a such a map. Then we can define the set of free states as
follows:

P(A : B) ≡ {σAB : σAB,PB(σAB) � 0, Tr[σAB] = 1}, (172)

and we can define a generalized logarithmic negativity of a
bipartite state ρAB as follows for α � 1:

Eα
P (ρAB) ≡ inf

σAB∈P(A:B)
να (PB(ρAB)‖σAB). (173)

The same notion can be generalized to channels as in Defini-
tion 3. Such a concept could be interesting to explore further.

C. Generalizations to other resource theories

Recently, there has been a concerted effort to generalize
concepts developed in particular quantum resource theories to
more general ones (see [63] for a recent review and [64–71]
for other papers in this spirit). With this in mind, it seems
fruitful to generalize the concepts developed in this paper
to arbitrary resource theories, beyond the resource theory of
entanglement.

To this end, consider a resource theory with a set SF of
free states and a set OF of free operations (a quantum oper-
ation being a completely positive, trace-nonincreasing map).
Furthermore, suppose that P is a Hermiticity-preserving and
trace-preserving map satisfying

F ◦ P = P ◦ F , (174)

for all free operations F ∈ OF , as well as

P (σ ) ∈ SF if σ ∈ SF . (175)

(It should be clear that the map P mentioned above should
generalize the partial transpose operation considered earlier.)
We could demand further that

σ ∈ SF if P (σ ) ∈ SF . (176)

Then, for α � 1, we define the α-logarithmic resourceful-
ness of a state ρ with respect to P as

RP
α (ρ) ≡ inf

σ∈SF

να (P (ρ)‖σ ). (177)

This measure satisfies many of the same properties that the
α-logarithmic negativity does. By the same proof given for

Proposition 1, we have that the ordering property is satisfied,

RP
α (ρ) � RP

β (ρ), (178)

for all states ρ and for 1 � α � β.
We also have the following regarding faithfulness:
Proposition 9. Fix α � 1. The α-logarithmic resourceful-

ness is faithful, meaning that RP
α (ρ) � 0 and RP

α (ρ) = 0 if
ρ ∈ SF . If (176) holds and α > 1, then ρ ∈ SF if RP

α (ρ) = 0.
Proof. The proof follows along the same lines as that given

for Proposition 7. To see that RP
α (ρ) � 0 for an arbitrary state

ρ, consider that

RP
α (ρ) � RP

1 (ρ) (179)

= log2 ‖P (ρ)‖1 (180)

� log2 Tr[P (ρ)] (181)

= log2 Tr[ρ] (182)

= 0. (183)

For the first inequality, we used the ordering inequality in
(178). The second inequality follows because ‖X‖1 � Tr[X ]
for an arbitrary square operator X . The second equality ex-
ploits the assumption that P is trace preserving.

If ρ ∈ SF , then pick σ = P (ρ) ∈ SF [following from
(175)], and we find that

RP
α (ρ) � να (P (ρ)‖σ ) (184)

= να (P (ρ)‖P (ρ)) (185)

= log2 ‖[P (ρ)]1/α‖α (186)

= 0. (187)

If (176) holds and RP
α (ρ) = 0, then the ordering inequal-

ity in (178) implies that RP
1 (ρ) = log2 ‖P (ρ)‖1 = 0, which

means that ‖P (ρ)‖1 = 1. Let a Jordan-Hahn decomposi-
tion of P (ρ) be P (ρ) = P − N (i.e., P, N � 0 and PQ =
0). Consider that Tr[P (ρ)] = Tr[P] − Tr[N] = 1. Also, 1 =
‖P (ρ)‖1 = Tr[P] + Tr[N]. Subtracting these equations gives
that Tr[N] = 0 ⇒ N = 0. Then, P (ρ) � 0 and Tr[P (ρ)] =
1. Since we know by assumption that RP

α (ρ) = 0 for some
α > 1 and P (ρ) is a quantum state, and from the relation
in (13), the definition in (177), and the equality conditions
for sandwiched Rényi relative entropy [29–31], it follows that
P (ρ) ∈ SF , and so (176) implies that ρ ∈ SF . �

Let {F x}x denote a free quantum instrument, i.e., such
that F x ∈ OF and

∑
x F x is a quantum channel. The most

prominent property of α-logarithmic resourcefulness is that
it is monotone under the action of a free quantum instrument,
in the following sense:

RP
α (ρ) �

∑
x:p(x)>0

p(x) RP
α (ρx ), (188)

where

p(x) ≡ Tr[F x(ρ)], (189)

ρx ≡ 1

p(x)
F x(ρ). (190)

The proof of this inequality is nearly identical to that given
for Theorem 1, with the main change being that we use the
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defining property in (174) in the proof of Theorem 1. The
proof is simpler in the case that one is interested in establish-
ing monotonicity under a free quantum channel rather than a
free quantum instrument, and so we detail it briefly here for
clarity. Let σ ∈ SF and F ∈ CF , where CF denotes the set of
free channels. Then,

να (P (ρ)‖σ ) � να ((F ◦ P )(ρ)‖F (σ )) (191)

= να ((P ◦ F )(ρ)‖F (σ )) (192)

� RP
α (F (ρ)), (193)

where the first inequality employs Lemma 2 and the sole
equality employs (174). Since the inequality holds for all
σ ∈ SF , we conclude that

RP
α (ρ) � RP

α (F (ρ)). (194)

We can also define the α-logarithmic resourcefulness of a
quantum channel N for all α � 1 and with respect to P as

RP
α (N ) ≡ sup

ρ

RP
α (N (ρ)). (195)

We think it is interesting to explore particular instances of this
resourcefulness measure for particular resource theories, but
we leave this for future work.

VIII. CONCLUSION

In summary, we have defined an ordered family of α-
logarithmic negativity entanglement measures that interpolate
between the logarithmic negativity [13,14] and the κ entan-
glement [19,20]. We proved that this family of entanglement
measures satisfies LOCC monotonicity, normalization, faith-
fulness, and subadditivity, and can be computed by convex
optimization. The proofs of these properties built upon prior
results from [31] and [32]. We also proved that it is generally
not convex nor is it monogamous. Finally, we defined the
α-logarithmic negativity of a quantum channel as a gener-
alization of the measure for bipartite states, and we showed
how to generalize many of the concepts to arbitrary resource
theories.

Going forward from here, we think that it is worthwhile
to establish the definition and properties of the α-logarithmic
negativity of quantum states in the von Neumann algebra

setting. The tools developed in [37] should be useful for this
task. Note here that we do think that it is necessary to use the
approach of [37] over that given in [36] because our definition
of α-logarithmic negativity requires working with a Hermitian
operator and a positive-semidefinite one. Since [37] builds
upon the approach given in [31] for the finite-dimensional
case, we suspect that the methods of [37] should lead to a
cogent notion of α-logarithmic negativity of quantum states in
the von Neumann algebra setting. One could also define and
explore the α-logarithmic negativity of a quantum channel in
the von Neumann algebra setting, generalizing Definition 3.

As the logarithmic negativity is frequently used to study
entanglement in quantum many-body physics [38,39,72] and
holographic field theories [73,74], the α-logarithmic negativ-
ity may also shed light on these areas.

It is an interesting open question to determine whether
α-logarithmic negativity can be experimentally measured via
witnessing. This is true for the logarithmic negativity [75]
(see, also, [76]) and the κ entanglement [20], and so it remains
open to determine the answer for α ∈ (1,∞).

We also think that it is interesting to explore generaliza-
tions of quantum information measures that accept Hermitian
operators as input, rather than just positive-semidefinite ones,
the latter being the traditional approach in quantum informa-
tion theory. The former approach has been employed fruitfully
not only here, but also in recent work that gave exact char-
acterizations of the one-shot distillable entanglement of a
bipartite quantum state [77] and the one-shot distillable co-
herence of a quantum state [78].

Note added. Recently, we noticed another work [79]
that proposed different generalizations of the logarithmic
negativity.
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