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Increasing distillable key rate from bound entangled states by using local filtration
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We show the enhancement of a distillable key rate for quantum key distribution (QKD) by local filtering for
several bound entangled states. Through our paper, it becomes evident that the local filtration operations, whereas
transforming one bound entangled state to another, have the potential to increase the utility of the new state for
QKD. We demonstrate three examples of “one-way distillable key rate” enhancement by local filtering and, in
this process, discover new bound entangled states which are key distillable.
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I. INTRODUCTION

A perfect cryptography protocol can be set up if one can
distribute a private key between the trusted parties interested
in secure communication [1]. It has been established that
only quantum key distribution (QKD) protocols are funda-
mentally secure as they draw their security from the laws of
quantum physics, as opposed to their classical counterparts
where the security is based on the impossibility of solving
certain mathematical problems in polynomial time [2–4]. The
QKD protocols are either of the prepare and measure type,
such as the BB84 protocol [5,6] or the entanglement assisted
protocols, such as the E91 protocol [3]. These two classes
of protocols are intimately connected, and entanglement is
considered a fundamental resource for QKD [7].

Bipartite quantum entanglement involves nonclassical cor-
relations between two parties and can occur in pure as well
mixed states [8–10]. A powerful tool to identify entanglement
is the transpose operation where entangled quantum states can
transform to nonstates when we apply the transpose operation
on one of the subsystems [11]. The states whose density
operators become negative under such partial transposition
are entangled and are called negative under partial transpose
(NPT) and those which remain positive and valid are called
positive under partial transpose (PPT). From the work of
Peres and Horodeckis’, it became clear that partial transpose
is necessary and sufficient only for 2 ⊗ 2 or 2 ⊗ 3 bipartite
systems, whereas for higher-dimensional systems, there can
be entangled states which are PPT [12]. Due to the existence
of PPT entangled states, the geometry of states in composite
dimensions other than 4 and 6 has not been fully understood.
The examples and methods to construct classes of PPT entan-
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gled states are sparse [13–15], although a plethora of literature
exists on the subject [10,16,17].

Ideally, quantum information tasks require pure entangled
states. Since mixedness caused by the environment is unavoid-
able, for operational purposes, it is necessary to recreate pure
copies of the required entangled state via distillation protocols
[18,19]. Entangled states from which we cannot distill any
pure entangled states are called bound entangled, and their en-
tanglement is called bound entanglement. All pure entangled
states are NPT, and distillable entangled states from which
maximally entangled states can be distilled, are also NPT. It
can be shown that pure entangled states cannot be distilled
from PPT entangled states and, hence, PPT entangled states
are bound entangled [20].

Contrary to expectation, bound entanglement has been
found to be a useful resource for performing a number of
quantum information processing tasks. It was shown by Wild
and Hsieh [21] that bound entanglement can be used for es-
tablishing superactivation of quantum channels by using the
Smith-Yard protocol [22]. Using tensor products of bound
entangled states to obtain distillable states and aspects re-
lated to superactivation and superadditivity are discussed in
Refs. [23,24]. Usefulness of bound entanglement in metrology
has been observed by Czekaj et al. [25] where they have given
an example of a family of bound entangled states which can
be used in quantum enhanced metrology with the precision
advantage approaching the Heisenberg limit. Furthermore,
Tóth and Vértesi [26] demonstrated that multipartite quantum
states that have a positive partial transpose with respect to all
bipartitions can outperform separable states in linear interfer-
ometers. Bound entanglement has also been shown to be a
useful resource for quantum heat engines [27].

For QKD protocols, for a long time, it was believed that
distillable entanglement from which one can obtain maxi-
mally entangled states is an essential resource [3] and bound
entanglement is not such a resource. Thus, it came as a sur-
prise when it was shown that PPT-bound entangled states may
also be useful for QKD [28–30]. A key role is played by a
new class of states called private states [28,29,31] which can
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be used to carry out QKD. These states need not be maximally
entangled but still can be used to obtain a perfectly corre-
lated key that is completely uncorrelated to any eavesdropper
[28,29]. Furthermore, it was demonstrated that one can find
PPT-bound entangled states that are arbitrarily close in trace
norm to the private states [30]. Thus, using the idea of private
states, it was shown that the PPT-bound entangled states can
also be used for QKD [28,29]. The initial class of key distill-
able bound entangled states presented in Refs. [28,31] were of
large dimensions and, hence, of limited use for experimental
applications. A new class of low-dimensional-bound entan-
gled states which can be used for QKD key was introduced in
Ref. [32]. These have been further studied in Refs. [30,33,34].

Evaluating PPT entangled states for their utility for QKD
is not always straightforward, and there are more than one
criteria being used in the literature. The two most important
parameters in this context are “distillable key rate” (KD) de-
fined in Ref. [28] and the “one-way distillable key rate” (KDW

D )
given in the Devetak-Winter protocol [35]. As per the defini-
tion given in Ref. [28], a state is declared useful for QKD if
KD > 0. However, for the states defined in Ref. [32], whereas
it has been shown that KD > 0, we have KDW

D < 0 [35]. The
situation, therefore, is delicate, and different definitions may
not always agree [30]. However, for the cases that we consider
in our paper, we have KD > KDW

D , and, thus, we use the one
way distillable key rate as a lower bound of the available key
from a PPT state.

Local filtration is a process where starting with an ensem-
ble of bipartite states, the members are selected or discarded
based on the results of certain local measurements thereby
obtaining a new smaller (filtered) ensemble of bipartite states
[36]. Although local filtration can not change the nature of
entanglement (PPT or NPT), the filtered ensemble can have
different properties as compared to the original one. Partic-
ularly, such a filtration has been used to enhance the Bell
violation [37] for detecting the entanglement of PPT entan-
gled states [38] and for increasing the usefulness of quantum
states for QKD [39]. In this paper, we use the local filtration on
different PPT entangled states and obtain transformed states
that have higher one-way distillable key rate. We demonstrate
our method by considering three concrete examples of PPT
entangled states, some of which are available in the literature.
First, we apply local filtration to a family of states closely
related to the states given in Ref. [32] and show that, under
certain conditions, the one way distillable key rate of the
Devetak-Winter protocol can be made positive. Using similar
filtration methods, we show enhancement of one way distil-
lable key rate for two more families of states considered by
Chi et al. [32]. In all the cases, the enhancement is dramatic,
and the one-way distillable key rate goes from a negative
to a significant positive value making the transformed states
explicitly usable for QKD. Since we quantitatively calculate
the key rate, the added advantage is that the amount of key
available can also be ascertained.

This paper is organized as follows: In Sec. II, we recall the
results that provide background for our paper, which includes
the definition of private states and distillable key rate given in
Sec. II A, privacy squeezing and one-way distillable key rate
given in Sec. II B and a description of local filtration process
given in Sec. II C. In Sec. III, we describe our main results

where we show how the filtration process can enhance the
one-way distillable key rate. Some concluding remarks are
presented in Sec. IV.

II. BACKGROUND

In this section, we briefly recapitulate the results that our
paper builds upon. In this context, private states and their roles
in QKD protocols, classical-classical-quantum (ccq) states,
the one-way distillable key rate and local filters that we will
use in the next section for enhancement of the relevant key
rates of certain bound entangled states are discussed.

A. Private states and distillable key

Consider a situation where Alice and Bob want to carry
out QKD; Alice has systems A and A′ of dimensions dA

and dA′ , respectively, whereas Bob has systems B and B′ of
dimensions dB and dB′ , respectively. The key is contributed
by the systems A and B, therefore, dA = dB = d . Let a state
ρABA′B′ ∈ B(Hd ⊗ Hd ⊗ HdA′ ⊗ HdB′ ) be shared between Al-
ice and Bob, and the eavesdropper has the standard purifying
system E . The purification |ψρ〉ABA′B′E of state ρABA′B′ is called
secure if, upon measurement on systems A and B in the basis
{|i j〉AB}d−1

i, j=0, followed by tracing over the A′B′ subsystem, the
joint state of systems A, B, and E takes the form of a ccq
state:

ρccq =
d−1∑

i, j=0

pi j |i j〉〈i j|AB ⊗ ρE . (1)

State ρABA′B′ whose purification is secure is called a private
state or a pdit, and ρccq is called the ccq state corresponding
to the secure state.

The private states are related to maximally entangled states
of the system AB, and are obtained by applying twisting op-
erations on the tensor product of a maximally entangled state
of the AB system and some arbitrary state σA′B′ of the system
A′B′ in the following way:

γABA′B′ = 1

d

d−1∑
i, j=0

|ii〉〈 j j|AB ⊗ U iiσA′B′U j j †
. (2)

The operators U ii are arbitrary unitary transformations on the
A′B′ system. Twisting does not change the security related
properties of a state as the corresponding ccq state is invari-
ant under the twisting operation. Therefore, the private states
are as efficient for QKD as maximally entangled states and
have the same amount of key. In fact, given a private state,
we should always be able to find a twisting operation so that
we recover the maximally entangled state of the AB system by
twisting [28,31].

Since, private states are analogous to maximally entangled
states in entanglement theory, similar to the definition of
measure of distillable entanglement, one can define maximal
distillable pdits. For any given state ρAB ∈ B(HA ⊗ HB), let
us consider a sequence of local operations and classical com-
munication (LOCC) operations {Pn} such that Pn(ρ⊗n

AB ) = φn,
where φn ∈ B(H(n)

A ⊗ H(n)
B ). A set of operations P = {Pn: n ∈

N} is called a pdit distillation protocol of state ρAB if there is
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a pdit γdn whose key part is of dimension dn × dn, satisfying

lim
n→∞

∥∥φn − γdn

∥∥ = 0. (3)

For a given distillation protocol P , the key rate is given by

R(P ) = lim sup
n→∞

log2 dn

n
. (4)

The distillable key rate of state ρAB is given by maximizing
over all possible protocols,

KD(ρAB) = sup
P

R(P ). (5)

If one can transform by LOCC, such as the recurrence pro-
tocol [19], sufficiently many copies of a state ρABA′B′ into a
state close enough to a private state in a trace norm, then
KD(ρABA′B′ ) > 0.

It can be shown that there are PPT states for which the key
rate KD is positive [40,41]. In any case, since separable states,
by construction, do not have any distillable key rate and PPT
states are always bound entangled, we can conclude that these
states are bound entangled states with a nonzero distillable
key rate. We will consider a few of these states in the next
section, and the detailed mathematical proofs are available in
Refs. [31,32]. It is not always straightforward to calculate KD

for a given quantum state as an optimization over distillation
protocols is involved.

B. One-way distillable key rate

In the special case when d = 2, the private state is called a
pbit, and we will restrict to this case in the rest of this paper. In
this scenario, consider a state ρABA′B′ ∈ B(H2 ⊗ H2 ⊗ HdA′ ⊗
HdB′ ). Expanding this state in the computational basis of the
qubits A and B, namely, |i j〉, with i, j ∈ {0, 1},

ρABA′B′ =

⎡
⎢⎣

σ 0000 σ 0001 σ 0010 σ 0011

σ 0100 σ 0101 σ 0110 σ 0111

σ 1000 σ 1001 σ 1010 σ 1011

σ 1100 σ 1101 σ 1110 σ 1111

⎤
⎥⎦. (6)

The term |00〉〈11|AB ⊗ σ 0011 (upper right-hand corner in the
above equation), with σ 0011 being a density operator for
the A′B′ subsystem plays an important role. If state ρABA′B′

was such that the AB subsystem is in a maximally entan-
gled state 1√

2
(|00〉 + |11〉), then, this term and its Hermitian

conjugate, namely, the term |11〉〈00|AB ⊗ σ 1100
A′B′ is the only

nonzero of-diagonal term in the expansion and the trace norm
‖σ 1100‖ = ‖σ 0011‖ = 1

2 . For any private state, by an appro-
priate twisting operation, ‖σ 1100‖ can always be brought to
1
2 . For an arbitrary state ρABA′B′ , in order to determine its
ability to carry out QKD, we carry out an operation called
privacy squeezing where we maximize ‖σ 1100‖ by applying
twisting operations. State ρPS that we obtain after such a
maximization is called a privacy squeezed state corresponding
to ρAA′BB′ . It has been shown by a more detailed analy-
sis [35] that if ‖σ 0000‖ = ‖σ 0011‖ = ‖σ 1111‖ and ‖σ 0101‖ <

‖σ 0011‖, ‖σ 1010‖ < ‖σ 0011‖, then, KD(ρABA′B′ ) > 0.
For a specific form of ρABA′B′ ∈ B(H2 ⊗ H2 ⊗ H2 ⊗ H2),

ρABA′B′ = |φ+〉〈φ+| ⊗ σ0 + |φ−〉〈φ−| ⊗ σ1

+|ψ+〉〈ψ+| ⊗ σ2 + |ψ−〉〈ψ−| ⊗ σ3, (7)

where |φ±〉 and |ψ±〉 are Bell states in H2 ⊗ H2. Then, if
‖σ0 − σ1‖ > 1

2 and tr(σ0σ1) = 0, then, KD(ρABA′B′ ) > 0.
The one-way key distillation protocol expresses the key

distillation rate for the ccq state in terms of the Devetak-
Winter function KDW

D [35]. Devetak-Winter function or the
one-way distillable key rate, KDW

D is the difference between
the mutual information of the Alice-Bob subsystem and the
Alice-Eve subsystem,

KDW
D = I (A:B) − I (A:E ), (8)

where the mutual information between A and B is given as
I (A:B) = S(A) + S(B) − S(AB) and between A and E is

given as I (A:E ) = S(A) + S(E ) − S(AE ) with S(X ) being the
Von-Neumann entropy of the subsystem X .

For a state ρABA′B′ of the form given in Eq. (6), let us define
the following parameters:

x = (‖σ 0000‖ + ‖σ 1111‖)/2 + ‖σ 0011‖,
y = (‖σ 0000‖ + ‖σ 1111‖)/2 − ‖σ 0011‖,
z = (‖σ 0101‖ + ‖σ 1010‖)/2 + ‖σ 0110‖,

w = (‖σ 0101‖ + ‖σ 1010‖)/2 − ‖σ 0110‖. (9)

In terms of these parameters, define

S(E ) = −x log2 x − y log2 y − z log2 z − w log2 w, (10)

The analysis given in Ref. [35] proves that

KDW
D

(
[ρPS]ccq

ABE ′
) = 1 − S(E ). (11)

This is the key formula that we will use to compute the one-
way distillable key rates for various states in the next section.

For any bipartite state ρABA′B′ ∈ B(H2 ⊗ H2 ⊗ Hd ⊗ Hd ′
),

it can be shown that

KD(ρABA′B′ ) � KDW
D

(
[ρPS]ccq

ABE ′
)
, (12)

where [ρPS]ccq
ABE ′ is the ccq state corresponding to the privacy

squeezed state of ρABA′B′ . Combining Eq. (10) with Eq. (12)
will allow us to prove the positive distillable key rates of
several bound entangled states.

C. Local filters

In a local filtering process that we consider, Alice and
Bob perform local positive operator-valued measures on state
ρAA′BB′ ∈ B(H2 ⊗ H2 ⊗ H2 ⊗ H2) defined by the operators
LA and LB. They retain the cases when both of them get
positive outcome for the operators LA and LB and discard
the other cases. The state after such an operation changes as
follows:

ρ → (LρL†)/(Tr LρL†), L = LA ⊗ LB. (13)

In our case, LA and LB are 4 × 4 diagonal matrices leading to

L =

⎡
⎢⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎤
⎥⎦

A

⊗

⎡
⎢⎣

r 0 0 0
0 s 0 0
0 0 t 0
0 0 0 u

⎤
⎥⎦

B

. (14)
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The 16 × 16 matrix L can also be written as

L =

⎡
⎢⎣

L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4

⎤
⎥⎦, (15)

where L1, L2, L3, and L4 all are 4 × 4 diagonal matrices
determined in terms of LA and LB and we have

L1 =

⎡
⎢⎣

ar 0 0 0
0 as 0 0
0 0 at 0
0 0 0 au

⎤
⎥⎦, L2 =

⎡
⎢⎣

br 0 0 0
0 bs 0 0
0 0 bt 0
0 0 0 bu

⎤
⎥⎦,

L3 =

⎡
⎢⎣

cr 0 0 0
0 cs 0 0
0 0 ct 0
0 0 0 cu

⎤
⎥⎦, L4 =

⎡
⎢⎣

dr 0 0 0
0 ds 0 0
0 0 dt 0
0 0 0 du

⎤
⎥⎦.

(16)

The parameters {a, b, c, d, r, s, t, u} ∈ (0, 1] define the local
filter. The filtration is typically considered as an operator on

a large ensemble of identically prepared states ρAA′BB′ and
lead to a smaller ensemble of filtered states. The success
probability P of a filter is defined as the probability with which
both the measurements give the positive result together and
the size of the ensemble after filtration is P times the size of
the original ensemble.

III. ENHANCEMENT OF THE DISTILLABLE KEY OF
BOUND ENTANGLED STATES BY LOCAL FILTRATION

We are now ready to consider the possibility of enhancing
the distillable key rate from bound entangled states by a local
filtration process. The starting states that we consider are
bound entangled because they are PPT and the local filters
cannot change states from PPT to NPT and, hence, the fil-
tered states are also bound entangled. We, then, analyze the
distillable key rate from the new and old states by specifically
computing the one-way distillable key rate defined in the
Devetak-Winter protocol by a procedure described in Sec. II.
In every case, the one distillable key rate goes from a negative
to a positive value.

A. Example 1

Consider a one-parameter family of states ρ (1)
p ∈ B(H2 ⊗ H2 ⊗ H2 ⊗ H2) parametrized by a real parameter with p ∈ [0, 1/2]

defined as

ρ (1)
p = 1

1 + 2p

⎡
⎢⎢⎢⎢⎣

2pτ1 0 0 2pτ1

0
(

1
2 − p

)
τ2 0 0

0 0
(

1
2 − p

)
τ2 0

2pτ1 0 0 2pτ1

⎤
⎥⎥⎥⎥⎦, (17)

with matrices τ1 and τ2 given as

τ1 =

⎡
⎢⎢⎢⎢⎣

1
6 0 0 0

0 1
3 − 1

6 0

0 − 1
6

1
3 0

0 0 0 1
6

⎤
⎥⎥⎥⎥⎦ and τ2 =

⎡
⎢⎢⎢⎢⎣

1
3 0 0 0

0 1
6

1
6 0

0 1
6

1
6 0

0 0 0 1
3

⎤
⎥⎥⎥⎥⎦. (18)

This family of states is PPT, and, hence, any entanglement if present, has to be bound entanglement.
Since this family of states belongs to B(H2 ⊗ H2 ⊗ H2 ⊗ H2) as per Eq. (12), KD is always greater than KDW, and, therefore,

KDW
D provides us with a lower bound for the distillable key rate. We calculate the value of KDW

D for these states by exploiting the
fact that the structure of the family of states is the same as that given in Eq. (6) for which we can calculate KDW

D . Comparison with
Eq. (10) reveals that, for this family of states, we have x = 4| p

1+2p ||, y = 0, z = 1
2 |−1+2p

1+2p |, and w = 1
2 |−1+2p

1+2p |. Therefore, using

formula (10) and Eq. (11), we can calculate KDW
D ([ρ (1)

p
PS]ccq

ABE ′ ). The graph of KDW
D ([ρ (1)

p
PS]ccq

ABE ′ ) as a function of p is plotted in
Fig. 1(a). The value of KDW

D is negative up to a certain values of p and, then, crosses over to a positive value at approximately
p = 0.31.

Now, we propose local filtration operation on the family of states ρ (1)
p with a view to raise the value of the corresponding

KDW
D ([ρ (1)

p
PS]ccq

ABE ′ ). Consider the application of the local filter described in Eqs. (13) on state ρ (1)
p . The state after filtration is

given by

ρ (1)
p → Lρ (1)

p L†

Tr
(
Lρ

(1)
p L†

) = ρ (1)′
p . (19)
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FIG. 1. Improvement in the value of KDW
D after local filtration operation on the one-parameter family of quantum states ρ (1)

p . (a) The value of
the one-way distillable key rate KDW

D for the family of states ρ (1)
p as a function of p. (b) The value of KDW

D after optimal local filtration operation
on ρ (1)

p . (c) The probability of success P of the optimal local filter. (d) The effective one-way distillable key rate after filtration obtained by
multiplying the value of KDW

D with the success probability of the optimal filter. For all plots, the x axis is the parameter p ∈ [0, 1/2]. The
enhancement of the one-way distillable key rate can be seen by comparing the graphs shown in (a) and (d).

Exploiting the structure of the filtration operation detailed in Eqs. (14)–(16), we can write ρ (1)′
p in explicit matrix form as

ρ (1)′
p = 1

(1 + 2p)M

⎡
⎢⎢⎢⎢⎣

L1(2pτ1)L†
1 0 0 L1(2pτ1)L†

4

0 L2
(

1
2 − p

)
τ2L†

2 0 0

0 0 L3
(

1
2 − p

)
τ2L†

3 0

L4(2pτ1)L†
1 0 0 L4(2pτ1)L†

4

⎤
⎥⎥⎥⎥⎦, (20)

where M = Tr(Lρ (1)
p L†). For calculating the one-way distillable key rate, we use the following Eq. (10) to ascertain the values

of the parameters x, y, z, and w for this state as

x = [‖L12p(τ1)L†
1/(1 + 2p)M‖ + ‖L42p(τ1)L†

4/(1 + 2p)M‖]/2 + ‖L12p(τ1)L†
4/(1 + 2p)M‖,

y = [‖L12p(τ1)L†
1/(1 + 2p)M‖ + ‖L42p(τ1)L†

4/(1 + 2p)M‖]/2 − ‖L12p(τ1)L†
4/(1 + 2p)M‖,

z = [∥∥L2
(

1
2 − p

)
τ2L†

2/(1 + 2p)M
∥∥ + ∥∥L3

(
1
2 − p

)
τ2L†

3/(1 + 2p)M
∥∥]/

2,

w = [∥∥L2
(

1
2 − p

)
τ2L†

2/(1 + 2p)M
∥∥ + ∥∥L3

(
1
2 − p

)
τ2L†

3/(1 + 2p)M
∥∥]/

2. (21)

The value of KDW
D ([ρ (1)

p
PS]ccq

ABE ′ ) can be again calculated following Eqs. (10) and (11) as was performed before filtering.
A given filter has a success probability P which is defined as the fraction of cases the filter gives a positive answer. In real

terms, for the purposes of using an ensemble of states for QKD, we must multiply the key rate with the success probability to
get the effective key rate. This is particularly important if we want to make any comparison with the key rate before filtration. A
filter may give us a very high key rate, however, if its probability of success is small the effective key rate may, in fact, be small.
For a given value of p, we numerically optimize the product KDW

D P to obtain the optimal filter. It turns out that, for this family
of states, the parameters of the optimal filters are

a = d = r = s = t = u = 1,

b = c = (small p-dependent value). (22)
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The results are shown in Fig. 1. In Fig. 1(a), the value of one-way distillable key rate KDW
D for the family of states ρ (1)

p is
plotted as a function of p ∈ [0, 1/2] before filtration. This value is clearly negative for p values up to a certain value and becomes
positive only after p approximately crosses 0.31. In Fig. 1(b), the value of KDW

D is plotted as a function p after the optimal local
filtration operation. It is noteworthy that we are always able to find a filter such that the value of the one-way distillable key rate
is equal to its maximum possible value of 1. In Fig. 1(c), we plot the success probability P of the optimal local filter as a function
of p which clearly is small for small values of p but quickly becomes significant as the value of p increases and approaches 1
as p approaches 0.5. In Fig. 1(d), we plot the effective one-way distillable key rate obtained by multiplying KDW

D and P for the
optimal filter as a function p. It is clear form the graphs that the filtration process is able to make the one-way distillable key rate
positive for all values p. We must compare the values in Fig. 1(a) with values in Fig. 1(d) to access the enhancement achieved
through filtration. The comparison clearly shows that every member of the family of states ρ (1)

p after filtration has a positive value
of KDW

D . This implies that this family of PPT states has a nonzero one-way distillable key rate after filtration. In other words, ρ (1)
p

is a family of bound entangled states with a nonzero value of KDW
D . Since for this class of states KD > KDW

D , they, thus, have a
nonzero distillable key rate. Any PPT entangled state remains PPT entangled under a local filtration operation, this implies that
all states in the original family(before filtration) are PPT entangled states which can be employed for QKD after filtration.

As it turns out, this family of states is closely related to the states considered and analyzed by Horodecki et al. [31]. They
consider states ρ(p,d,k) which, for d = 2, k = 1, are defined as

ρ(p,2,1)

⎡
⎢⎢⎣

p
2 (τ1 + τ2) 0 0 p

2 (τ1 − τ2)
0

(
1
2 − p

)
τ2 0 0

0 0
(

1
2 − p

)
τ2 0

p
2 (τ1 − τ2) 0 0 p

2 (τ1 + τ2)

⎤
⎥⎥⎦, (23)

Consider a projection operator A such that

A = 1

2

⎡
⎢⎣

I 0 0 I
0 I 0 0
0 0 I 0
I 0 0 I

⎤
⎥⎦. (24)

where I is an identity operator on a 2 ⊗ 2 space. The families of states ρ (1)
p and ρ(p,2,1) are connected with each other via the

operator A as follows:

ρ (1)
p = Aρ(p,2,1)A†

Tr(Aρ(p,2,1)A†)
. (25)

B. Example 2

Next, we consider examples of families of states considered by Chi et al. [32]. The family of states ρ (2)
p ∈ B(H2 ⊗ H2 ⊗

H2 ⊗ H2) is defined as follows:

ρ (2)
p = 1

2

⎡
⎢⎢⎢⎣

σ0 + σ1 0 0 σ0 − σ1

0 σ2 + σ3 σ2 − σ3 0

0 σ2 − σ3 σ2 + σ3 0

σ0 − σ1 0 0 σ0 + σ1

⎤
⎥⎥⎥⎦, (26)

with

σ0 = 1

2

⎡
⎢⎢⎢⎣

p 0 0 p

0 2p 0 0

0 0 0 0

p 0 0 p

⎤
⎥⎥⎥⎦, σ1 = 1

2

⎡
⎢⎢⎢⎣

p 0 0 −p

0 0 0 0

0 0 2p 0

−p 0 0 p

⎤
⎥⎥⎥⎦,

σ2 = 1

2

⎡
⎢⎢⎢⎢⎣

1 − 4p − 2
√

2p 0 0 0

0 (
√

2 + 1)p p 0

0 p (
√

2 − 1)p 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦, (27)

σ3 = 1

2

⎡
⎢⎢⎢⎢⎣

1 − 4p − 2
√

2p 0 0 0

0 (
√

2 − 1)p −p 0

0 −p (
√

2 + 1)p 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦.
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FIG. 2. Results for the family of states ρ (2)
p . Various quantities are plotted as a function of the parameter p in the range of ( 1

8 , 1
4+2

√
2

).

(a) Displays KDW
D for the states ρ (2)

p before filtration. (b) Displays KDW
D for ρ (2)′

p which is the state after optimal filtration. (c) Displays the
success probability P of the optimal filter. (d) Displays the product KDW

D P which represents the effective key rate after filtration. Comparison
of plots (a) and (d) clearly shows that an enhancement of the key rate has been achieved by filtration.

This family of states is determined by single real parameter p in the range of ( 1
8 , 1

4+2
√

2
). It is straightforward to see that the

states in the family are PPT as (ρ (2)
p )� = ρ (2)

p and, therefore, if they have entanglement, it has to be bound entanglement [41].
Since the family of states have a form given in Eq. (7) and, here, we have ‖σ0 + σ1‖ = 4p and ‖σ0 − σ1‖ = 4p > 1/2, we have
KD(ρ (2)

p ) > 0 [32].
In order to calculate the one-way distillable key rate for this family of states, we first identify the parameters x, y, z, and w

as per Eq. (10) which turn out to be

x = 4p, y = 0,

z = 1 − 4p + 2
√

2p

2
and w = 1 − 4p − 2

√
2

2
, (28)

Using Eqs. (10) and (11), we obtain the value of

KDW
D

([
ρ (1) PS

p

]ccq

ABE ′
) = 1 + 4p log2 4p +

(
1 − 4p − 2

√
2

2

)
log2

(
1 − 4p − 2

√
2

2

)

+
(

1 − 4p + 2
√

2p

2

)
log2

(
1 − 4p + 2

√
2p

2

)
. (29)

Here, [ρ (2)
p

PS]ccq
ABE ′ is the ccq state for the privacy squeezed state of ρ (2)

p . For this class of states, the values of KDW
D is negative for

most values of p, therefore, although the KD > 0 utility of the states for QKD is not clear. The exact plot of KDW
D as function of

p is shown in Fig. 2(a).
Next, we apply filtration operation on ρ (2)

p as described in Eq. (13),

ρ (2)
p → Lρ (2)

p L†

Tr Lρ
(2)
p L†

= ρ (2)′
p . (30)
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By using the form of filtration matrices given in Eqs. (14) and (15), the density operator after filtration operation can be written
as

ρ (2)′
p = 1

2M

⎡
⎢⎢⎢⎢⎣

L1(σ0 + σ1)L†
1 0 0 L1(σ0 − σ1)L†

4

0 L2(σ2 + σ3)L†
2 L2(σ2 − σ3)L†

3 0

0 L3(σ2 − σ3)L†
2 L3(σ2 + σ3)L†

3 0

L4(σ0 − σ1)L†
1 0 0 L4(σ0 + σ1)L†

4

⎤
⎥⎥⎥⎥⎦. (31)

Each element in the above expression is a 4 × 4 matrix and can be computed by using Eq. (16), here, M=Tr(Lρ (2)
p L†). In order

to calculate the value of KDW
D ([ρ (2)′

p
PS]ccq

ABE ′ ), we first map the parameters x, y, z, and w as per Eq. (10) which turn out to be

x = [‖L1(σ0 + σ1)L†
1/2M‖ + ‖L4(σ0 + σ1)L†

4/2M‖]/2 + ‖L1(σ0 − σ1)L†
4/2M‖,

y = [‖L1(σ0 + σ1)L†
1/2M‖ + ‖L4(σ0 + σ1)L†

4/2M‖]/2 − ‖L1(σ0 − σ1)L†
4/2M‖,

z = [‖L2(σ2 + σ3)L†
2/2M‖ + ‖L3(σ2 + σ3)L†

3/2M‖]/2 + ‖L2(σ2 − σ3)L†
3/2M‖,

w = [‖L2(σ2 + σ3)L†
2/2M‖ + ‖L3(σ2 + σ3)L†

3/2M‖]/2 − ‖L2(σ2 − σ3)L†
3/2M‖. (32)

We, now, calculate the value of KDW
D ([ρ (2)′ PS

p ]ccq
ABE ′ ) by once again using Eqs (10) and (11).

The filter is numerically optimized to maximize the effective key rate which is the product of the one-way distillable key rate
KDW

D and the success probability of the filter P. The structure of the filter turns out to be similar to what was obtained for the
previous example and is give in Eq. (23). The results are displayed in Fig. 2 where, in Fig. 2(a), we plot KDW

D before filtration,
in Fig. 2(b), we plot KDW

D after filtration, in Fig. 2(c), we plot the success probability of the filter, and in Fig. 2(d), we plot the
effective key rate which is the quantity KDW

D P as functions of p. It is clear from a comparison of plots Figs. 2(a) and 2(d), that, for
the entire family of states, the one-way distillable key rate turns positive from negative. By using the Devetak-Winter lower bound
of distillable key rate for the ccq states, we can, therefore, state that distillable key rate KD(ρ (2)′

p ) � KDW
D ([ρ (2)′ PS

p ]ccq
ABE ′ ) > 0. This

establishes the usefulness of this family of states for QKD and provides a quantitative estimate of the available key.

C. Example 3

We consider another example from the paper of Chi et al. [32], namely, the family of states ρ (3)
p given by the density operator,

ρ (3)
p = 1

2

⎡
⎢⎢⎢⎣

σ0 + σ1 0 0 σ0 − σ1

0 2σ2 0 0

0 0 2σ2 0

σ0 − σ1 0 0 σ0 + σ1

⎤
⎥⎥⎥⎦. (33)

The operators σ0 and σ1 are defined in Eq. (27) and
σ2 = p√

2
(|01〉〈01| + |10〉〈10|) + [ 1

4 − (1 + 1√
2

)p](|00〉〈00| + |11〉〈11|). The states in this one-parameter family of states are

well defined and are bound entangled states in the rangeof 1
8 � p � 1

4+2
√

2
. Again, as per Ref. [32], for this family of states

KD(ρ (3)
p ) > 0. However, by an explicit calculation, it was shown that KDW

D ([ρ (3)
p

PS]ccq
ABE ′ ) < 0 for 1

8 � p � 1
4+2

√
2
.

As was performed in the earlier cases, we apply filtration operation on ρ (3)
p as described in Eq. (13),

ρ (3)
p → Lρ (3)

p L†

Tr Lρ
(3)
p L†

= ρ (3)′
p . (34)

Again, the explicit form of the density operator can be written in terms of filter parameters explicitly as, written as

ρ (3)′
p = 1

2M

⎡
⎢⎢⎢⎢⎣

L1(σ0 + σ1)L†
1 0 0 L1(σ0 − σ1)L†

4

0 L2(2σ2)L†
2 0 0

0 0 L3(2σ2)L†
3 0

L4(σ0 − σ1)L†
1 0 0 L4(σ0 + σ1)L†

4

⎤
⎥⎥⎥⎥⎦. (35)
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FIG. 3. Results for the family of states ρ (3)
p . The plots of KDW

D before and after filtration are shown in parts (a) and (b), the success
probability P of the optimal filter is shown in (c) whereas in (d), the effective key rate is displayed in a way similar to Fig.s 1 and 2. The
one-way key rate change from completely negative to positive is clearly evident.

Each element in the above expression is a 4 × 4 matrix and can be computed by using Eq. (16), here, M = Tr(Lρ (3)
p L†). In order

to calculate the value of KDW
D ([ρ (3)′

p
PS]ccq

ABE ′ ), we first map the parameters x, y, z, and w as per Eq. (10) which turn out to be

x = [‖L1(σ0 + σ1)L†
1/2M‖ + ‖L4(σ0 + σ1)L†

4/2M‖]/2 + ‖L1(σ0 − σ1)L†
4/2M‖,

y = [‖L1(σ0 + σ1)L†
1/2M‖ + ‖L4(σ0 + σ1)L†

4/2M‖]/2 − ‖L1(σ0 − σ1)L†
4/2M‖,

z = [‖L2(2σ2)L†
2/2M‖ + ‖L3(2σ2)L†

3/2M‖]/2,

w = [‖L2(2σ2)L†
2/2M‖ + ‖L3(2σ2)L†

3/2M‖]/2. (36)

The one-way distillable key rate is calculated for the numeri-
cally optimized filter which in this case again has the structure
given in Eq. (23). The results are displayed in different parts
of Fig. 3, where KDW

D before and after filtration operation,
the success probability of the filter and the effective key rate
(KDW

D P) are plotted as functions of p in the relevant range of
the parameter p. A comparison of Figs. 3(a) and 3(d) make
it clear that the one-way distillable key rate has turned from
negative to positive under filtration and we now have a filtered
ensemble ready for QKD.

IV. CONCLUDING REMARKS

In this paper, we have explored the role of local filtration
operations in enhancing the distillable key rate available from
bound entangled states for QKD. The route we took was to
calculate the Winter-Devetak function (also called the one-
way distillable key rate) which provides a lower bound for the

distillable key rate for the examples that we considered. Three
examples of families of bound entangled states were analyzed
from this point of view, and in each case a significant enhance-
ment of the key rate was achieved by the filtration process.
The filter was optimized so as to maximize the postfiltration
one-way distillable key rate multiplied by the success prob-
ability of the filter. The one-way distillation key rate in each
case turned from negative to positive and the effective key rate
was significant. Our results provide quantitative estimates of
available key rates for the family of states that we consider.
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