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The correlation alignment algorithm (CORAL), a representative domain adaptation algorithm, decorrelates
and aligns a labeled source domain dataset to an unlabeled target domain dataset to minimize the domain shift
such that a classifier can be applied to predict the target domain labels. In this paper, we implement the CORAL
on quantum devices by two different methods. One method utilizes quantum basic linear algebra subroutines to
implement the CORAL with exponential speedup in the number and dimension of the given data samples. The
other method is achieved through a variational hybrid quantum-classical procedure. In addition, the numerical
experiments of the CORAL with three different types of data sets, namely, the synthetic data, the synthetic-Iris
data, and the handwritten digit data, are presented to evaluate the performance of our paper. The simulation
results prove that the variational quantum correlation alignment algorithm can achieve competitive performance
compared with the classical CORAL.
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I. INTRODUCTION

Quantum computation is demonstrated to have the po-
tential to improve the performance of classical computation
problems [1–6]. In addition, quantum computation can be
applied to accomplish machine learning tasks with quantum
speedup [7–10]. Originally, many quantum shallow machine
learning algorithms were proposed such as quantum princi-
pal component analysis [11], quantum classification [12–16],
quantum data fitting [17,18], quantum clustering [19,20], and
quantum dimensionality reduction [21–23]. In recent years,
quantum autoencoders [24], quantum Boltzmann machines
[25,26], quantum generative adversarial networks [27,28], and
quantum feedforward neural networks [29] are the represen-
tative quantum deep learning models. For transfer learning,
a significant research subfield of machine learning, it can
also be combined with quantum computation to implement
machine learning tasks in a different but related domain with
the acquired knowledge of a well-studied domain [30–32].

In the field of machine learning, labeled data sets are
actually dreadfully scarce compared with the available huge
amount of unlabeled data. In most cases, the collected un-
processed data are labeled by the extremely time-consuming
manual labeling method. Domain adaptation (DA), a crucial
research branch of transfer learning, aims to predict the la-
bels of an unprocessed target domain dataset with a labeled
source domain dataset [33]. It has various applications in
computer vision [34], natural language processing [35], and
reinforcement learning [36]. It can be mainly categorized into
the semisupervised DA, with few labels in the target domain,
and the unsupervised DA, with no labels available in the
target domain. For the unsupervised DA, the data distribu-
tion adaptation [37–39] which attempts to approximate the
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data distributions of the source and target domain datasets is
one of the most representative domain adaptation methods.
In addition, subspace projection [40–42] is another common
method for the DA. It first projects the original given data to a
specified subspace and subsequently reduces the domain shift
by aligning the subspaces. Different from the two methods
above, the correlation alignment algorithm (CORAL) [43,44]
is a simpler but efficient DA algorithm.

The CORAL first decorrelates the labeled source domain
data to eliminate its unique data characteristics. Subsequently,
it aligns the decorrelated labeled source domain data to the
unlabeled target domain data to reduce the domain shift.
The goal of the CORAL is to minimize the discrepancy be-
tween the source and target domain datasets by aligning their
second-order statistics, namely, the covariance matrices [43].
The CORAL directly aligns the datasets without projecting
the data to their corresponding subspaces, resulting in a much
more concise procedure than other DA methods. After the data
decorrelation and alignment, a classifier will be trained on
the aligned labeled source domain dataset and applied to the
unlabeled target domain dataset to predict the target domain
labels. With the CORAL, the labels of an unprocessed target
domain can be obtained efficiently without the need for costly
manual labeling. However, the algorithmic complexity of the
CORAL can be prohibited with the increase of the number
and dimension of the given data.

In our paper, two different types of quantum imple-
mentations of the CORAL are presented. One implementa-
tion, namely, the quantum basic linear algebra subroutines
(QBLAS)-based CORAL, can be performed on a univer-
sal quantum computer achieving exponential speedup in the
number and dimension of the given data. The other im-
plementation, the variational quantum correlation alignment
algorithm (VQCORAL), can be performed on near-term
quantum devices through a variational hybrid quantum-
classical procedure. Concretely, the VQCORAL can be
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realized in two different ways called the end-to-end VQCO-
RAL and the matrix-multiplication-based VQCORAL which
is inspired from the variational quantum eigensolver [45,46]
and the variational quantum matrix multiplication [47]. To
evaluate the performance of the VQCORAL, three differ-
ent numerical experiments are provided. Specifically, the no
adaptation (NA) model set as the baseline model, the clas-
sical CORAL, and the VQCORAL are the models selected
in the experiments. For the two synthetic data sets gener-
ated from different distributions, the VQCORAL outperforms
the classical CORAL and the NA with a two-qubit eight-
layer variational quantum circuit. For the synthetic-Iris data
sets [48,49], the VQCORAL also shows outstanding perfor-
mance with a two-qubit eight-layer parametrized quantum
circuit compared to the other two models. For the handwrit-
ten digit datasets, namely, the Modified National Institute of
Standards and Technology dataset (MNIST) [50] and United
States Postal Service dataset (USPS) [51] data sets, the DA
procedure can be implemented by an eight-qubit 16-layer
parametrized quantum circuit to achieve comparable perfor-
mance to the classical CORAL and better performance than
the baseline model.

The arrangement of this paper is as follows. In Sec. II, the
classical CORAL will be briefly overviewed. Subsequently,
the quantum correlation alignment algorithm (QCORAL) is
presented in Sec. III. The QBLAS-based CORAL and the
VQCORAL are shown in Secs. III B and III C, respectively,
in detail. Then, the numerical experiments are provided in
Sec. IV. Finally, we make a conclusion and discuss some open
questions in Sec. V.

II. CLASSICAL CORRELATION ALIGNMENT

Assume a labeled source domain dataset Ds = {x(s)
i }ns

i=1 ∈
RD with labels Ls = {y(s)

i }ns
i=1 and an unlabeled target do-

main dataset Dt = {x(t )
j }nt

j=1 ∈ RD generated from different

data distributions. Xs = (x(s)
1 , . . . , x(s)

ns
) ∈ RD×ns and Xt =

(x(t )
1 , . . . , x(t )

nt
) ∈ RD×nt refer to the source and target domain

dataset matrices, respectively. Assume us (ut ) and Cs (Ct )
are the mean and covariance matrix of the source (target)
domain, respectively. The data in both domains have been
zero-centered, namely, us = ut = 0, and normalized but Cs �=
Ct . In addition, the data in the CORAL are assumed to depend
on a lower-dimensional manifold, meaning that Xs, Xt , Cs, and
Ct are all low-rank matrices where rCs and rCt represent the
rank of Cs and Ct , respectively.

The CORAL attempts to align the covariance matrix of the
source domain to the target domain utilizing a linear trans-
formation matrix A [43]. Thus, the objective function of the
CORAL is defined as

min
A

‖Cŝ − Ct‖2
F = min

A
‖AT CsA − Ct‖2

F , (1)

where Cŝ = AT CsA is the covariance matrix after the correla-
tion alignment; ‖ · ‖F represents the Frobenius norm.

Assume Cs = Us�sU T
s and Ct = Ut�tU T

t are the singular
value decomposition (SVD) of Cs and Ct , respectively. The
optimal solution of Eq. (1) is Cŝ = Ut[1:r]�t[1:r]U T

t[1:r] where
r = min(rCs , rCt ); the diagonal elements of �t[1:r] are the r

largest singular values; the columns of Ut[1:r] are the corre-
sponding left-singular vectors. Let

Cŝ = AT CsA = Ut[1:r]�t[1:r]U
T
t[1:r]. (2)

Then

AT Us�sU
T
s A = Ut[1:r]�t[1:r]U

T
t[1:r]. (3)

Hence, (
U T

s A
)T

�s
(
U T

s A
) = ET �sE (4)

where E = �
+ 1

2
s U T

s Ut[1:r]�
1
2

t[1:r]U
T
t[1:r]; �

+ 1
2

s is the Moore-

Penrose pseudoinverse of �
1
2
s .

Finally, the optimal solution of A is

A∗ = UsE

= (
Us�

+ 1
2

s U T
s

)(
Ut[1:r]�

1
2

t[1:r]U
T
t[1:r]

)
. (5)

The first term Us�
+ 1

2
s U T

s decorrelates the source domain

dataset. The second term Ut[1:r]�
1
2

t[1:r]U
T
t[1:r] aligns the decor-

related source domain dataset to the target domain dataset.
Therefore, the concrete steps of the CORAL are as follows.
(1) Compute the source domain covariance matrix Cs =

XsX T
s and the target domain covariance matrix Ct = Xt X T

t .
(2) Decorrelate the source domain data as

Xs̃ = C
− 1

2
s Xs. (6)

(3) Align the decorrelated source domain data to the target
domain data as

Xŝ = C
1
2

t Xs̃. (7)

After the CORAL, the source domain data are trans-
formed to the target domain data space. The classifier can
be subsequently trained on the aligned source domain data
{x(ŝ)

i , y(s)
i }ns

i=1 and predict the labels Lt = {y(t )
j }nt

j=1 of the target
domain data Dt . The schematic diagram of the CORAL is
presented in Fig. 1.

III. QUANTUM CORRELATION ALIGNMENT

The QCORAL can be implemented in two aspects, based
on the quantum basic linear algebra subroutines and the vari-
ational hybrid quantum-classical procedure, respectively. In
these two implementations, we assume that all the data have
been normalized and zero-centered exactly as the classical
CORAL.

A. State preparation

Assume the source domain data Xs = ∑ns
i=1 |x(s)

i ||x(s)
i 〉〈i|

and the target domain data Xt = ∑nt
j=1 |x(t )

j ||x(t )
j 〉〈 j|. When the

original samples are quantum data, they can be processed di-
rectly. We assume that the data stored in the quantum random
access memory are accessible as described in Refs. [52,53]
when the original data are given in the form of classical
vectors, so that the quantum states representing the original
data samples can be generated in time O[poly log(D)]. The
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FIG. 1. The schematic diagram of the CORAL.

quantum states representing the source domain data Xs and
the target domain data Xt are

|ψXs〉 =
ns∑

i=1

D∑
m=1

x(s)
mi |i〉|m〉 =

ns∑
i=1

|i〉∣∣x(s)
i

〉
, (8)

|ψXt 〉 =
nt∑

j=1

D∑
m=1

x(t )
m j | j〉|m〉 =

nt∑
j=1

| j〉∣∣x(t )
j

〉
, (9)

respectively, in amplitude encoding with
∑

m,i |x(s)
mi |2 =∑

m, j |x(t )
m j |2 = 1. Hence, the covariance matrices of the source

and target domain data can be obtained as

ρCs = tri{|ψXs〉〈ψXs |}

=
D∑

m,m′=1

ns∑
i=1

x(s)
mi x(s)∗

m′i |m〉〈m′|, (10)

ρCt = tr j{|ψXt 〉〈ψXt |}

=
D∑

m,m′=1

nt∑
j=1

x(t )
m jx

(t )∗
m′ j |m〉〈m′|, (11)

respectively, by taking the partial trace over the corresponding
column register.

B. QBLAS-based QCORAL

The QBLAS-based QCORAL utilizes the quantum basic
linear algebra subroutines to implement the data decorrela-
tion and alignment procedure of the CORAL. In the spirit of
Ref. [54], the source domain data Xs can be aligned to the
target domain data Xt as follows.

Let Xs = ∑
m σ (s)

m |u(s)
m 〉〈v(s)

m | and Xt = ∑
m σ (t )

m |u(t )
m 〉〈v(t )

m |
be the SVD of Xs and Xt , respectively. The source and target
domain data Xs and Xt can be extended to

X̃s =
[

0 Xs

X †
s 0

]
, (12)

X̃t =
[

0 Xt

X †
t 0

]
. (13)

With the input state |0, ψXs〉|0〉⊗ log(D+ns ), the quantum state

ns∑
i=1

|i〉
D∑

m=1

β
(s)
mi

∣∣σ (s)
m

〉 1√
2

(∣∣w(s)+
m

〉 − ∣∣w(s)−
m

〉)

=
ns∑

i=1

|i〉
D∑

m=1

β
(s)
mi

∣∣σ (s)
m

〉∣∣v(s)
m

〉
(14)

can be obtained by performing the quantum phase estimation
(QPE)

UPE(X̃s) =(QFT† ⊗ I)

(
T −1∑
τ=0

|τ 〉〈τ | ⊗ eiX̃sτ t/T

)

(H⊗n ⊗ I) (15)

as described in Refs. [3,55] where β
(s)
mi = 〈u(s)

m |x(s)
i 〉; |w(s)±

m 〉 =
1√
2
(|0〉|u(s)

m 〉 ± |1〉|v(s)
m 〉) are the eigenvectors of X̃s correspond-

ing to the singular value σ (s)
m ; QFT† represents the inverse

quantum Fourier transform; and
∑T −1

τ=0 |τ 〉〈τ | ⊗ eiX̃sτ t/T is
the conditional Hamiltonian evolution. Subsequently, add a
new ancilla qubit and apply the controlled rotation operation
Ry[2 arcsin(γs/|σ (s)

m |)] on it, resulting in

ns∑
i=1

|i〉
D∑

m=1

β
(s)
mi

∣∣σ (s)
m

〉∣∣v(s)
m

〉∣∣ψ (s)
a

〉
(16)

where the ancilla register

∣∣ψ (s)
a

〉 =
√

1 − γ 2
s∣∣σ (s)

m

∣∣2

∣∣0〉 + γs∣∣σ (s)
m

∣∣ |1〉 (17)

γs is a constant. By uncomputing the singular value register
and measuring the ancilla register to be |1〉, the decorrelated
source domain quantum state

|ψXs̃〉 =
ns∑

i=1

|i〉
√

1∑D
m=1

∣∣γsβ
(s)
mi

∣∣2/∣∣σ (s)
m

∣∣2

D∑
m=1

β
(s)
mi γs∣∣σ (s)

m

∣∣ ∣∣v(s)
m

〉

=
ns∑

i=1

|i〉 C
− 1

2
s

∣∣x(s)
i

〉
√〈

x(s)
i

∣∣C− 1
2 †

s C
− 1

2
s

∣∣x(s)
i

〉
=

ns∑
i=1

|i〉∣∣x(s̃)
i

〉
(18)

representing the decorrelated source domain dataset Xs̃ is
finally obtained. Hence, the source domain data can be decor-
related in time O[‖Xs‖2

max log2(D + ns)/ε3] where ‖Xs‖max is
the largest absolute element of Xs and ε is the error parameter
[54].
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Similarly, we then perform the QPE UPE(X̃t ) on
|0, ψXs̃〉|0〉⊗ log(D+nt ), resulting in

ns∑
i=1

|i〉
D∑

m=1

β
(t )
mi

∣∣σ (t )
m

〉 1√
2

(∣∣w(t )+
m

〉 − ∣∣w(t )−
m

〉)

=
ns∑

i=1

|i〉
D∑

m=1

β
(t )
mi

∣∣σ (t )
m

〉∣∣v(t )
m

〉
, (19)

where β
(t )
mi = 〈u(t )

m |x(s̃)
i 〉; |w(t )±

m 〉 = 1√
2
(|0〉|u(t )

m 〉 ± |1〉|v(t )
m 〉) are

the eigenvectors of X̃t corresponding to the singular
value σ (t )

m . By performing the controlled rotation operation
Ry[2 arcsin(γt |σ (t )

m |)] on a newly added ancilla, the quantum
state

ns∑
i=1

|i〉
D∑

m=1

β
(t )
mi

∣∣σ (t )
m

〉∣∣v(t )
m

〉(√
1 − γ 2

t

∣∣σ (t )
m

∣∣2|0〉 + γt

∣∣σ (t )
m

∣∣|1〉
)

(20)
is achieved where γt is a constant. Ultimately, the quantum
state

|ψXŝ〉 =
ns∑

i=1

|i〉
√

1∑D
m=1

∣∣γtβ
(t )
mi σ

(t )
m

∣∣2

D∑
m=1

β
(t )
mi γt

∣∣σ (t )
m

∣∣∣∣v(t )
m

〉

=
ns∑

i=1

|i〉 C
1
2

t

∣∣x(s̃)
i

〉
√〈

x(s̃)
i

∣∣C 1
2 †

t C
1
2

t

∣∣x(s̃)
i

〉
=

ns∑
i=1

|i〉∣∣x(ŝ)
i

〉
(21)

can be obtained in O[‖Xt‖2
max log2(D + nt )/ε3] where ‖Xt‖max

is the largest absolute element of Xt [54]. Therefore, the decor-
related source domain data are aligned to the target domain
data.

After the procedure of correlation alignment, the source
domain data are aligned to the target domain, resulting in
the decorrelated source domain data Dŝ = {|x(ŝ)

i 〉}ns
i=1. Subse-

quently, a quantum classification algorithm such as the local
classifier, the quantum k-nearest-neighbor algorithm, or the
global classifier (the quantum support vector machine al-
gorithm) can be applied to the decorrelated source domain
quantum state |ψXŝ〉 with corresponding labels Ls and the
target domain quantum state |ψXt 〉 directly to obtain the target
domain labels Lt .

The pseudocode of the QBLAS-based QCORAL is pre-
sented in Algorithm 1. In contrast, the implementation of the
classical CORAL involves SVD and matrix multiplication
operations resulting in the algorithmic complexity in time
O[poly(ns, nt , D)]. Thus, the QBLAS-based QCORAL pre-
sented in this subsection takes logarithmic resources in the
number and dimension of the source and target domain data
compared to the classical CORAL.

Algorithm 1. QBLAS-based QCORAL

Input: Source domain data Xs with labels Ls; target domain data Xt .
Output: Target domain labels Lt .
step 1: Apply the QPE UPE(X̃s ) on the input state
|0, ψXs 〉|0〉⊗ log(D+ns ) resulting in Eq. (14) in O(1/ε) with an error ε.
step 2: Add a new ancilla and perform the rotation operation
Ry(2 arcsin(γs/|σ (s)

m |)) to obtain Eq. (16).
step 3: Uncompute the singular value register |σ (s)

m 〉 and measure the
ancilla register to be |1〉 to obtain the decorrelated source domain
quantum state |ψXs̃ 〉 as Eq. (18) in O(‖Xs‖2

max log2(D + ns )/ε3).
step 4: Perform UPE(X̃t ) on |0, ψXs̃ 〉|0〉⊗ log(D+nt ) resulting in the
quantum state as Eq. (19).
step 5: Perform the rotation operation Ry(2 arcsin(γt |σ (t )

m |)) on a
newly added ancilla to obtain Eq. (20).
step 6: Uncompute the singular value register |σ (t )

m 〉 and measure the
ancilla to be |1〉 to achieve the aligned source domain quantum state
|ψXŝ 〉 as Eq. (21) in O(‖Xt‖2

max log2(D + nt )/ε3).
step 7: Invoke a classifier to predict the target labels
Lt = Classi f ier(Xŝ, Ls, Xt ).

C. Variational quantum correlation alignment

Although the QBLAS-based QCORAL can be per-
formed on a universal quantum computer with exponential
speedup, the implementation critically requires a high-depth
quantum circuit and fully coherent evolution. Alterna-
tively, the CORAL can be implemented on near-term noisy
intermediate-scale quantum devices with a variational hy-
brid quantum-classical procedure. The VQCORAL combines
quantum computation and classical optimization together to
implement the algorithm with parametrized quantum circuits.
Compared with the QBLAS-based QCORAL, the VQCO-
RAL can achieve the procedure of correlation alignment with
shallow quantum circuits. Specifically, the number of param-
eters utilized in the VQCORAL to achieve the procedure of
correlation alignment is polynomial to the number of input
quantum states. However, the cost of the classical CORAL
will be exponential in the size of qubits when the original data
are given in the form of quantum states. In this subsection,
we will present the implementation of the VQCORAL and
explore two different specific configurations in detail.

As introduced in Sec. II, the goal of the CORAL is to find a
linear transformation matrix A to align the source domain data
Xs to the target domain data Xt . Hence, we can approximate
the linear transformation by a parametrized quantum circuit
Uθ . The cost function of the VQCORAL can be defined as

Lv (θ ) = ∥∥UθρCs U
†
θ − ρCt

∥∥2
F (22)

where

Uθ = UL(θ ) · · · Ul (θ ) · · · U1(θ ) (23)

is an L-depth parametrized quantum circuit with a set of pa-
rameters {θ}. Then, the optimal configuration of the quantum
circuit can be obtained by minimizing Lv with the optimiza-
tion algorithm. Inspired by the classical neural network, this
procedure can be called the end-to-end VQCORAL.

In addition to the end-to-end VQCORAL described as
above, the matrix-multiplication-based VQCORAL can also
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be implemented in two variational procedures successively as
follows.

(1) We do not optimize the cost function Lv directly, but
compute C1/2

s and C1/2
t by solving the eigenvalues and cor-

responding eigenvectors of Cs and Ct , respectively, through
the variational quantum covariance matrix square-root solver
inspired from Refs. [45,46] as presented in Algorithm 2.

Algorithm 2. Variational quantum covariance matrix square root
solver

Input: Source domain data Xs with labels Ls; target domain data Xt .
Output: The source domain covariance square root matrix C1/2

s and
the target domain covariance square root matrix C1/2

t .
step 1: Compute the Hamiltonians Hs = ρCs , Ht = ρCt and
subsequently H̃t = ηI − Ht with a specified constant η.
step 2: Prepare the ansatz states |ψ (λ(s)

k )〉 with a set of parameters
{θ (s)}. Minimize the cost function

Fs(λ
(s)
k ) =

{
E (s)

1 , k = 1,

E (s)
k + ∑k−1

i=1 α
(s)
i O(s)

ki , k = 2, · · · , D,

to obtain the D eigenvalues of Hs and the corresponding
eigenvectors where{

E (s)
k = 〈ψ (λ(s)

k )|Hs|ψ (λ(s)
k )〉

O(s)
ki = |〈ψ (λ(s)

k )|ψ (λ(s)
i )〉|2

with the weight coefficient α
(s)
i for i = 1, · · · , k − 1.

step 3: Prepare the ansatz states |ψ (λ(t )
k )〉 with a set of parameters

{θ (t )}. Minimize the cost function

Ft (λ
(t )
k ) =

{
E (t )

1 , k = 1,

E (t )
k + ∑k−1

i=1 α
(t )
i O(t )

ki , k = 2, · · · , r,

to obtain the r smallest eigenvalues of H̃t and the corresponding
eigenvectors where{

E (t )
k = 〈ψ (λ(t )

k )|H̃t |ψ (λ(t )
k )〉

O(t )
ki = |〈ψ (λ(t )

k )|ψ (λ(t )
i )〉|2

with the weight coefficient α
(t )
i for i = 1, · · · , k − 1.

step 4: Compute C1/2
s = Us�

1/2
s U T

s and C1/2
t = Ut[1:r]�

1/2
t[1:r]U

T
t[1:r]

with the eigenvalues and eigenvectors obtained in step 2 and step 3.

In step 1, we compute the source domain covariance matrix
Hs = ρCs and the target domain covariance matrix Ht = ρCt .
Then, the Hamiltonian H̃t = ηI − Ht is determined with a
specified constant η.

In step 2, the ansatz states |ψ (λ(s)
k )〉 are prepared by

a quantum circuit with a set of parameters {θ (s)}. Subse-
quently, the cost function Fs(λ

(s)
k ) is minimized to obtain

the optimal ansatz states where the expectation value term
E (s)

k = 〈ψ (λ(s)
k )|Hs|ψ (λ(s)

k )〉 and the overlap term O(s)
ki =

|〈ψ (λ(s)
k )|ψ (λ(s)

i )〉|2 with the weight coefficient α
(s)
i for i =

1, · · · , k − 1. In the first iteration, we minimize the Fs(λ
(s)
1 ) to

obtain the ground state |ψ (λ(s)
1 )〉 of Hs with the correspond-

ing eigenvalue λ1 = E1. In the second iteration, substitute
|ψ (λ(s)

1 )〉 to Fs(λ
(s)
2 ) and minimize it to obtain |ψ (λ(s)

2 )〉. Then,
the iteration continues until |ψ (λ(s)

D )〉 is computed by substi-
tuting |ψ (λ(s)

D−1)〉 to the cost function Fs(λ
(s)
D ). Therefore, Hs’s

eigenstates |ψ (λ(s)
k )〉 for k = 1, · · · , D corresponding to the D

eigenvalues can be obtained in O(1/ε2) [46].
In step 3, the r largest eigenvalues of Ht can be obtained

similarly by minimizing the cost function Ft (λ
(t )
k ) as exactly

the same procedure as in step 2 in time O(1/ε2) [46] where
the expectation value term E (t )

k = 〈ψ (λ(t )
k )|H̃t |ψ (λ(t )

k )〉 and
the overlap term O(t )

ki = |〈ψ (λ(t )
k )|ψ (λ(t )

i )〉|2 with the weight
coefficient α

(t )
i for i = 1, · · · , k − 1.

In step 4, the matrices C1/2
s = Us�

1/2
s U T

s and C1/2
t =

Ut[1:r]�
1/2
t[1:r]U

T
t[1:r] can be computed by the results of step 2 and

step 3. Specifically, the D eigenvalues of Hs are the diagonal
elements of �s and the columns of Us are the corresponding
D eigenvectors. The nonzero diagonal elements of �t[1:r] are
the r largest eigenvalues of Ht and the columns of Ut[1:r] are
made up of the corresponding eigenvectors.

(2) The procedure of data decorrelation and alignment can
be achieved as Eqs. (6) and (7), which are actually variational
processes of matrix multiplication. In the spirit of Ref. [47],
we design a matrix-multiplication-based VQCORAL as in
Algorithm 3.

Algorithm 3. Matrix-multiplication-based VQCORAL

Input: Source domain data Xs with labels Ls; target domain data Xt ;
C1/2

s and C1/2
t .

Output: Target domain labels Lt .
step 1: Prepare the ansatz states |x(s̃)

i (θ (d ) )〉 by parametrized quantum
circuits and a set of parameters {θ (d )} to represent the data points of
the decorrelated source domain data Xs̃.
step 2: Minimize the cost function

Lm1 = 1 − 1
ns

∑ns
i=1

∣∣∣∣∣ 〈x(s)
i |C

1
2

s |x(s̃)
i (θ (d ) )〉√

〈x(s̃)
i (θ (d ) )|C

1
2 †

s C
1
2

s |x(s̃)
i (θ (d ) )〉

∣∣∣∣∣
2

to obtain the optimal decorrelated source domain data states
|x(s̃)

i∗ (θ (d ) )〉.
step 3: Prepare the ansatz states |x(ŝ)

i (θ (a) )〉 by parametrized quantum
circuits and a set of parameters {θ (a)} to represent the data points of
the aligned source domain data Xŝ.
step 4: Minimize the cost function

Lm2 = 1 − 1
ns

∑ns
i=1

∣∣∣∣∣ 〈x(ŝ)
i (θ (a) )|C

1
2

t |x(s̃)
i∗ (θ (d ) )〉√

〈x(ŝ)
i (θ (a) )|C

1
2

t C
1
2 †

t |x(ŝ)
i (θ (a) )〉

∣∣∣∣∣
2

to obtain the optimal aligned source domain data states |x(ŝ)
i∗ (θ (a) )〉.

step 5: Invoke a classifier to predict the target labels
Lt = Classi f ier(Xŝ, Ls, Xt ).

In step 1, the quantum ansatz states |x(s̃)
i (θ (d ) )〉 representing

the decorrelated source domain data points x(s̃)
i are designed

by parametrized quantum circuits with a set of parameters
{θ (d )}.

In step 2, the states

|ψ1〉 = C
1
2

s

∣∣x(s̃)
i (θ (d ) )

〉
√〈

x(s̃)
i (θ (d ) )

∣∣C 1
2 †

s C
1
2

s

∣∣x(s̃)
i (θ (d ) )

〉 (24)
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are defined to be proportional to |x(s)
i 〉 with a set of parameters

{θ (d )}. Thus, the optimal quantum ansatz states |x(s̃)
i∗ (θ (d ) )〉

representing the decorrelated source domain data can be ob-
tained by minimizing the cost function

Lm1 = 1 − 1

ns

ns∑
i=1

∣∣〈x(s)
i

∣∣ψ1
〉∣∣2

(25)

in time O(κs/ε) [47] where κs is the conditional number of

C
1
2

s .
In step 3, the ansatz states |x(ŝ)

i (θ (a) )〉 are prepared by
parametrized quantum circuits with a set of parameters {θ (a)}.

In step 4, define the states

|ψ2〉 = C
1
2 †

t

∣∣x(ŝ)
i (θ (a) )

〉
√〈

x(ŝ)
i (θ (a) )

∣∣C 1
2

t C
1
2 †

t

∣∣x(ŝ)
i (θ (a) )

〉 (26)

with a set of parameters {θ (a)}. Then, we align the decorrelated
source domain data Xŝ by minimizing

Lm2 = 1 − 1

ns

ns∑
i=1

∣∣〈ψ2

∣∣x(s̃)
i∗ (θ (d ) )

〉∣∣2
(27)

in time O(κt/ε) [47] where κt is the conditional number of

C
− 1

2
t . The data alignment procedure actually aims to generate

the state |ψ2〉 to be proportional to |x(ŝ)
i (θ (a) )〉.

In step 5, a classifier such as the local classifier, the nearest-
neighbor algorithm, or the global classifier (the support vector
machine) will be applied to Xŝ with Ls and Xt to predict the
target labels Lt .

IV. NUMERICAL EXPERIMENTS

In this section, three numerical experiments are pre-
sented to demonstrate the feasibility and efficiency of the
VQCORAL. The NA model, the classical CORAL, and
the VQCORAL are applied to the synthetic data sets, the
synthetic-Iris data sets, and the handwritten digit data sets,
respectively, to evaluate their performance. According to the
simulation results, the VQCORAL can achieve compara-
ble or even better performance than the classical CORAL.
The VQCORAL is simulated on a classical computer us-
ing the PYTHON programming language and the Scikit-learn
machine learning library [56]. The code and the selected pa-
rameters can be found in Ref. [57].

A. Basic settings

The NA model is set as the baseline model. In addition, the
classical CORAL is also selected as a performance compar-
ison to the VQCORAL. As for the VQCORAL, we design
parametrized quantum circuits with hierarchical structures.
Specifically, we apply the Hadamard operation on each regis-
ter, respectively, as the first layer. Then, we alternately apply
the rotation layer constructed by the Ry gate on each qubit
and the entanglement layer constructed by the controlled-NOT

gate on each pair of qubits to introduce the parameters and
entanglement as shown in Fig. 2. The classical optimization
algorithm, the AdaGrad [58], is selected to optimize the cost
function.

FIG. 2. The variational quantum circuit for preparing Uθ where
q = log D.

B. Synthetic data

In the first numerical experiment, we select two syn-
thetic data sets D1 ∼ N (μ(1)

1 = μ
(1)
2 = 0, σ

(1)
1 = σ

(1)
2 = 1)

and D2 ∼ N (μ(2)
1 = μ

(2)
2 = 0, σ

(2)
1 = σ

(2)
2 = 2) as the source

and target domain data sets alternately. Both Xs and Xt contain
100 four-dimensional data points distributed in two different
classes.

The design of the VQCORAL in this experiment is a two-
qubit eight-layer quantum circuit. The simulation results of
the NA, the classical CORAL, and the VQCORAL applied
to the D1 → D2 task and the D2 → D1 task are presented in
Table I.

As shown in Table I, for both the D1 → D2 and the D2 →
D1 tasks, it is obvious that the NA (baseline model) cannot
achieve a relatively high accuracy. However, the performance
of the classical CORAL is comparable to the NA, meaning
that the classical CORAL may not play the role of domain
adaptation as we expected in some cases. Compared with the
classical CORAL and the NA, the VQCORAL model achieves
significantly better performance.

C. Synthetic and Iris data

In the second experiment, the synthetic data set D3 ∼
N (μ(3)

1 = μ
(3)
2 = μ

(3)
3 = 0, σ

(3)
1 = σ

(3)
2 = σ

(3)
3 = 1) and the

Iris data set [48,49] are selected as the source and target
domain data sets alternately. Both the D3 and the Iris data
set contain 150 samples evenly distributed in three different
classes.

The model adopted by the VQCORAL in this experiment
is a two-qubit eight-layer parametrized quantum circuit. The
NA, the classical CORAL, and the VQCORAL are applied to

TABLE I. Accuracies of the NA, the classical CORAL, and the
VQCORAL applied on the synthetic data sets D1 and D2.

D1 → D2 D2 → D1

NA 50% 50%
Classical CORAL 50% 50%
VQCORAL 90% 97%
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TABLE II. Accuracies of the NA, the classical CORAL, the
VQCORAL applied on the synthetic data set D3, and the Iris data
set.

D3 → Iris Iris → D3

NA 33.3% 4%
Classical CORAL 33.3% 14%
VQCORAL 66.6% 72.7%

the D3 → Iris task and the Iris → D3 task, resulting in the
results in Table II.

As in Table II, the accuracies of both the NA and the
classical CORAL are 33.3% for the D3 → Iris task, which are
worse than the 66.6% accuracy of the VQCORAL. For the Iris
→ D3 task, the accuracy of the NA is only 4%. The classical
CORAL shows improvement with 14% accuracy. The VQCO-
RAL achieves significant performance improvement with the
accuracy of 72.7%, indicating that the VQCORAL can exhibit
more powerful expressivity in some specific tasks.

D. Handwritten digit data

The MNIST [50] and USPS [51] are the two representative
handwritten digit data sets widely used for evaluating the per-
formance of machine learning and pattern recognition. For the
transfer learning task, 2000 28 × 28 images of the MNIST and
1800 16 × 16 images of the USPS are selected as the source
and target domain data sets. In the data preprocessing, all the
images are linearly rescaled to 16 × 16, meaning that the gray
values of each image are represented by a 256-dimensional
vector. The MNIST and USPS share the same feature space
but are generated from different distributions.

Concretely, the quantum circuit adopted by the VQCO-
RAL has an eight-qubit 16-layer structure. The simulation
results of the NA, the classical CORAL, and the VQCORAL
applied to the MNIST → USPS task and the USPS → MNIST
task are presented in Table III.

According to Table III, both the classical CORAL and the
VQCORAL show better performance than the NA, meaning
that the CORAL is helpful in accomplishing transfer learning
tasks. In addition, the VQCORAL can achieve a compara-
ble accuracy, namely, 65.6%, as the classical CORAL in the
MNIST → USPS task. Although in the USPS → MNIST task
the accuracy of the VQCORAL is 44.5%, which is not as
good as the classical CORAL, the VQCORAL still exhibits
better performance than the NA. We believe that the VQCO-
RAL can achieve at least comparable accuracy to the classical
CORAL by further optimizing the design of the quantum
circuit.

TABLE III. Accuracies of the NA, the classical CORAL, and the
VQCORAL applied on the MNIST and USPS handwritten digit data
sets.

MNIST → USPS USPS → MNIST

NA 64.4% 35.9%
Classical CORAL 65.6% 46.9%
VQCORAL 65.6% 44.5%

V. DISCUSSIONS

In this paper, we propose two quantum versions of the
CORAL, one of the most representative domain adaptation
algorithms. On the one hand, the QCORAL implemented by
the QBLAS can be performed on a universal quantum com-
puter with exponential speedup in the dimension and number
of the given data. On the other hand, the VQCORAL can
be performed on near-term quantum devices with low cir-
cuit depth. Specifically, the VQCORAL can be implemented
in two different perspectives. From an intuitive perspective,
the VQCORAL can be realized directly by an end-to-end
hierarchical structure. In addition, the source domain data
can be decorrelated and aligned to the target domain data
by successively applying the variational quantum covariance
matrix square-root solver and the variational matrix multipli-
cation operations. To evaluate the feasibility and efficiency of
our work, we design three different types of numerical ex-
periments, namely, the synthetic data, the synthetic-Iris data,
and the handwritten digit data. According to the simulation
results, the VQCORAL presented in this paper can achieve at
least comparable or even better performance than the classical
CORAL.

However, some open questions need further study. First of
all, the QBLAS-based QCORAL requires a high-depth quan-
tum circuit and fully coherent evolution, which are actually
prohibited in experiment at present. In addition, although the
VQCORAL algorithm can be realized with limited quantum
resources, the performance of the variational algorithm actu-
ally depends largely on the specific design of the parametrized
circuits. Hence, it is well worth exploring how to design
quantum circuits specifically to achieve optimal performance.
Although some further exploration is required, it is demon-
strated that quantum techniques can make a contribution to
the field of domain adaptation.
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