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It is widely recognized that entanglement generation and dynamical chaos are intimately related in semiclas-
sical models via the process of decoherence. In this paper, we propose a unifying framework which directly
connects the bipartite and multipartite entanglement growth to the quantifiers of classical and quantum chaos.
In the semiclassical regime, the dynamics of the von Neumann entanglement entropy, the spin squeezing, the
quantum Fisher information, and the out-of-time-order square commutator are governed by the divergence of
nearby phase-space trajectories via the local Lyapunov spectrum, as suggested by previous conjectures in the
literature. General analytical predictions are confirmed by detailed numerical calculations for two paradigmatic
models, relevant in atomic and optical experiments, which exhibit a regular-to-chaotic transition: the quantum
kicked top and the Dicke model.
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I. INTRODUCTION

Entanglement as “the characteristic trait of quantum me-
chanics” is arguably one of the most puzzling properties
of composite quantum systems, “the one that enforces its
entire departure from classical lines of thought” [1]. How-
ever, the dynamics of quantum systems can often exhibit
a semiclassical behavior: When a system is initialized in a
localized wave packet, quantum observables obey the classical
equation of motion at short times, in the spirit of the Ehrenfest
theorem [2–5]. Accordingly, understanding how to reconcile
quantum entanglement with such semiclassical dynamics has
been under debate since the beginning of quantum mechan-
ics.

An early insight was proposed by the seminal work of
Zurek and Paz on decoherence in open systems [6,7]. These
authors conjectured that in a system coupled to an environ-
ment, the rate of entropy growth is equal to the sum of the
positive Lyapunov exponents, the classical Kolmogorov-Sinai
entropy rate [8–10]. A large body of numerical and analyt-
ical studies [11–26] proved consistent with the Zurek-Paz
surmise, establishing that the transient entanglement gener-
ation is associated with decoherence and suggesting further
relationships between semiclassical entanglement dynamics
and the chaoticity of the underlying trajectories. Related
work focused on understanding the emergence of quantum
irreversibility and decoherence through the dynamics of the
purity and the Loschmidt echo [27,28]. More recently, the
interest in entanglement properties of many-particle systems
spread to several theoretical research communities, ranging
from statistical physics [29] and condensed-matter theory
[30] to quantum information [31,32] and high-energy physics
[33,34]. In this context, the Zurek-Paz conjecture has recently

been laid on firm mathematical grounds by Bianchi et al. in
Ref. [35]; see also Refs. [36,37].

The technological advances of the last decades in the field
of ultracold-atom physics have allowed for probing the coher-
ent quantum dynamics of large ensembles of particles on un-
precedented timescales [38–45]. Interestingly, many atomic,
molecular, and optical quantum systems, such as Bose-
Einstein condensates [46,47], cavity-QED setups [48,49], and
trapped ions [50,51], can be described by collective uniform
interactions between their N elementary degrees of freedom,
which give rise to a controlled emergence of semiclassical
dynamical behavior in the limit of large N [52]. Such systems
thereby offer a natural playground for experimental efforts
toward a deeper understanding of the entanglement growth in
the semiclassical regime and beyond.

Recent theoretical and experimental studies on quantum
information spreading have also focused on the concepts of
multipartite entanglement and scrambling. The former, as
witnessed by the quantum Fisher information (QFI) [53–55],
quantifies the number of entangled elements of a composite
quantum system. It plays a central role in quantum informa-
tion theory together with spin squeezing [56–60] and it is
currently attracting interest because of its relation to thermal
susceptibilities, in and out of equilibrium [61–64]. On the
other hand, scrambling characterizes quantum chaotic prop-
erties in terms of the growth in time of the square commutator
of nonequal time observables or the closely related out-of-
time-order correlators (OTOCs) [65]. Introduced because of
their connection with the divergence of nearby trajectories in
the classical limit [65–67], OTOCs are now the focus of great
attention over various communities [68–70]. Despite numeri-
cal and analytical investigations suggesting the possibility of
a connection among all entanglement and chaos quantifiers
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[71,72], the formulation of a universal semiclassical frame-
work is presently still incomplete.

In this paper, we present a systematic and unifying ap-
proach connecting the bipartite and multipartite entanglement
growth to the quantifiers of classical and quantum chaos,
which applies whenever a quantum system is characterized by
an emergent semiclassical limit. We target many-particle sys-
tems with collective interactions initialized in quasiclassical
states and let to evolve in isolation. The quantum fluctuations
around the limiting classical trajectory remain under control
until the so-called Ehrenfest timescale, which diverges in the
thermodynamic limit. By expanding the Hamiltonian in terms
of the instantaneous quantum fluctuations, we show that their
dynamics determine all the quantifiers of entanglement and
chaos introduced above. This allows us to write down explicit
analytical expression for the von Neumann entanglement en-
tropy, the QFI, the spin squeezing, and the square commutator
in the semiclassical regime.

Following standard semiclassical arguments, the time-
evolving correlation matrix of the quantum fluctuations coin-
cides with the classical Oseledets multiplicative matrix, which
encodes the local divergence of nearby semiclassical trajec-
tories via the finite-time Lyapunov spectrum. Accordingly,
the transient growth of the quantum entanglement and chaos
quantifiers before saturation is dictated by the nature of the
underlying classical phase-space. In the absence of semiclas-
sical chaos, the entanglement entropy grows logarithmically
in time, while the multipartite and the square commutator
grow quadratically. Contrarily, whenever chaos is present, the
entanglement entropy grows linearly with a slope equal to the
sum of the largest local Lyapunov exponents (in agreement
with the Zurek-Paz conjecture), whereas the QFI and the
square commutator grow exponentially fast in time with a
rate given by twice the local largest Lyapunov exponent. The
same occurs for unstable trajectories in integrable systems, cf.
Ref. [73].

Our analysis is corroborated by detailed numerical com-
putations in paradigmatic many-body collective quantum sys-
tems of current experimental relevance, which undergo an
order-to-chaos transition, namely, the quantum kicked top
[5,74] and the Dicke model [75,76]. We find excellent agree-
ment with the analytical predictions in all dynamical regimes.
In particular, we observe and rationalize strong deviations
from the asymptotic Lyapunov exponents, particularly appar-
ent in regimes with mixed regular-chaotic phase space or with
dynamical instabilities.

The rest of the paper is organized as follows. Section II
contains a brief summary of the main results of the paper.
In Sec. III, we review the semiclassical behavior of quantum
systems with collective interactions; we discuss the relevant
class of initial states under analysis; we introduce the quantum
kicked top and the Dicke model. In Sec. IV, we define the
indicators of entanglement and chaos on which our analysis is
focused: the von Neumann entanglement entropy, the QFI, the
spin squeezing, the unequal-time square commutator (OTOC)
and the classical Lyapunov spectrum. In Sec. V, we present
our analysis: After rederiving the general dynamics of quan-
tum fluctuations around a semiclassical trajectory, we show
how the entanglement measures can be explicitly related to
that. In Secs. VI and VII, we numerically study the quantum

TABLE I. Summary of the dynamical behavior of entanglement
and chaos quantifiers of N-particle collective systems in the semi-
classical regime. The growth of the entanglement quantifiers and the
square commutator depends on the nature of the limiting classical
trajectory in the 2n-dimensional phase space (stable configuration,
regular, or chaotic), up to the Ehrenfest time. Here, λ ≡ λ1 is the
maximum Lyapunov exponent and �K = ∑2K

k=1 λk is the sum of the
2K largest Lyapunov exponents, where K is the number of degrees of
freedom associated with the considered subsystem. For K = n/2, one
has the classical Kolmogorov-Sinai entropy rate �KS = ∑

k : λk>0 λk .

Chaotic
Classical trajectory Stable Regular (unstable)

Entanglement entropy [6,35] oscillations ln t �K t
Quantum Fisher information oscillations t2 e2λt

Square commutator oscillations t2 e2λt

Ehrenfest timescale O(
√

N ) O(
√

N ) O(ln N )

kicked top and the Dicke model. Finally, in Sec. VIII we
present our conclusions and perspectives.

II. SUMMARY

In this paper, we analyze the relation between entangle-
ment growth and chaos in N-particle quantum systems char-
acterized by a classical limit in terms of n effective degrees
of freedom, such as spin models with collective uniform
interactions. We study the quantum unitary evolution of an
initially coherent state in the semiclassical regime, namely,
before the Ehrenfest time TEh(N ), which slowly diverges as
N → ∞.

The starting point of our analysis is the established semi-
classical argument that the instantaneous quantum fluctua-
tions around the classical trajectory, denoted δξ̂, are quantified
via the time-dependent correlation matrix,

[G(t )]i j = 1
2 〈δξ̂i(t )δξ̂ j (t ) + δξ̂ j (t )δξ̂i(t )〉, (1)

with i, j = 1, . . . , 2n, which, in turn, is equivalent to the
classical Oseledets multipicative matrix, whose eigenvalues
define the local Lyapunov spectrum.

The content of this paper can be summarized as follows:
(1) All the relevant information on the out-of-equilibrium

bipartite and multipartite entanglement growth is encoded in
the dynamics of the quantum fluctuations: The entanglement
entropy, the quantum Fisher information density, and the out-
of-time square commutator can be written explicitly in terms
of G(t ) in Eq. (1). It follows that these quantities grow as
dictated by the nature of the underlying classical trajectories;
see Table I for a summary.

(2) The correct semiclassical identification holds between
the growth rate of the quantum entanglement and the finite-
time Lyapunov spectrum, rather than the proper asymptotic
one. Such discrepancy may be particularly severe in the case
of underlying mixed phase-space, intermediate between inte-
grability and fully developed chaos. This is shown explicitly
for the kicked top and the Dicke model, where we find perfect
agreement between the semiclassical theory and exact finite-
size numerical computations.
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FIG. 1. Illustration of the temporal growth of quantum fluctua-
tions and the associated entanglement generation in spin systems
with direct interactions (a)–(c) or with interactions mediated by
bosonic “cavity” modes (d)–(f). The collective spin can be rep-
resented through an extended grey region on the Bloch sphere
surrounding the point identified by its average polarization 〈Ŝ(t )〉.
The grey region represents the uncertainty of the collective spin
polarization due to quantum fluctuations. Top panels (a)–(c): Spin-
spin interactions lead to a progressive stretching of the spin fluctu-
ations, or spin squeezing, which determines the growth of bipartite
(between subsets of spins A and B) and of multipartite entanglement.
Bottom panels (d)–(f): The entanglement between the spins and the
bosonic cavity mode can be read out from the area covered by spin
fluctuations on the Bloch sphere.

One appealing and experimentally natural consequence is
depicted in Fig. 1. In fact, the central result for quadratic
bosonic Hamiltonians of Refs. [35,37] (see Sec. V) states that
the entanglement entropy of a subsystem A, SA(t ), asymptoti-
cally coincides with the logarithm of the phase space volume
spanned by the quantum fluctuations of the subsystem degrees
of freedom. Hence, entanglement increases because of the
growth in time of this “reduced” volume, while the global
phase-space volume is always conserved. (Notice the inter-
esting correspondence with the quantum Liouville theorem of
Ref. [77] in the operator-spreading perspective.)

This picture corresponds to the well-known identification
of entanglement generation with the decoherence of the sub-
system, illustrated in Fig. 1. In an isolated spin system, such
as the quantum kicked top, the uncertainty growth in the
collective spin of a subset turns out to be dictated by the
stretching of the global quantum fluctuations on the Bloch
sphere, referred to as spin squeezing [73]. Consequently, all
the entanglement and chaos indicators in this semiclassical
regime can be reduced to the rate of spin squeezing, which is
accessible via standard experimental tools [73]. Concerning
spin-boson systems, such as the Dicke model, the bipartite
entanglement entropy between the spins and the boson can
be read out from the growth of the volume spanned by the
collective spin fluctuations. In fact, as illustrated in Fig. 1,
the area covered by spin fluctuations progressively expands
during the nonequilibrium evolution, due to the growth of the
entanglement with the cavity mode. [This is in contrast to an
isolated spin system, where the area spanned by collective

spin fluctuations gets stretched in time but is conserved—
compare to Figs. 1(b) and 1(c).] This principle has already
been exploited to access bipartite entanglement between the
nuclear and the electronic spin in experiments with single
atoms [78]. Similar ideas have also been applied to access en-
tanglement dynamics and chaos in experiments with trapped-
ion systems described by the Dicke model [72,79].

III. MODELS

In this section, we briefly recall the well-known properties
of quantum many-particle systems with collective interac-
tions, with emphasis on their limiting semiclassical descrip-
tion. We then describe the initial states considered throughout
this paper. We conclude by introducing two paradigmatic
models belonging to this class, which will be used to illustrate
our analysis: the quantum kicked top and the Dicke model.
This section mostly reviews standard material in the literature.

A. Collective quantum many-body systems

We recall how the permutational symmetries allow for
exactly mapping collective quantum models to systems of
few degrees of freedom characterized by a vanishingly small
effective Planck constant in the thermodynamic limit [52].

We consider a Hamiltonian Ĥ characterizing a uniform
all-to-all interaction of N elementary constituents, such as
spins or particles. The symmetry under permutations of the
degrees of freedom makes the mean-field treatment of the
quantum dynamics exact for large N . To show how the semi-
classical description emerges, we consider an ensemble of N
identical q-level quantum systems. A basis of the many-body
Hilbert space can be constructed as the tensor product of
identical single-unit bases {|α〉} with α = 1, . . . , q. Typical
states prepared in experiments may be simple products of
identical single-body states, or ground states. Such states
generally belong to the totally symmetric subspace (TSS) of
the many-body Hilbert space simultaneously invariant under
all permutations [80]. Due to the symmetry of Ĥ , the time-
evolved state never leaves the TSS. A basis of the TSS can be
labeled by the numbers N1, . . . , Nq of units occupying each
level α = 1, . . . , q (with

∑q
α=1 Nα = N). The dimension of

the TSS,

dim TSS =
(

N + q − 1

q − 1

)
∼

N→∞
Nq−1

(q − 1)!
, (2)

is only polynomially large in N , which allows for the exact
numerical analysis of large systems. It was shown by Sciolla
and Biroli in Ref. [52] that the dynamics of symmetric observ-
ables within the TSS is semiclassical in the thermodynamic
limit. This result is based on the smoothness of the matrix
elements of Ĥ between two TSS states with respect to small
changes in the occupation numbers Nα → Nα ± 1,±2, . . .

(see Appendix A for details). The Schrödinger equation for
the TSS wave function is governed by the effective Hamil-
tonian Ĥ = N Hcl(q̂, p̂) expressed in terms of the conjugated
canonical operators,

Nα

N
	→ q̂α, −i

∂

∂Nα

	→ p̂α, (3)
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with an effective Planck’s constant,

h̄eff ≡ 1

N
(h̄ = 1 in our units), (4)

that approaches zero in the thermodynamic limit. Thus, the
quantum dynamics of the original system of all-to-all in-
teracting q-level units starting from a quasiclassical state is
equivalent to the semiclassical dynamics of n = q − 1 collec-
tive degrees of freedom, governed by the Hamilton equations
generated by Hcl.

A more detailed discussion of the dynamics of quantum
fluctuations around the classical limit, and of the range of
validity of the semiclassical description, will be reviewed in
Sec. V below.

B. Infinite-range spin systems

In the specific case, a system of N interacting spins-1/2 or
qubits, the limiting semiclassical description, can be formu-
lated in a more direct and intuitive way by considering that the
TSS coincides with the Dicke manifold of maximal collective
spin S = N/2, whereby the behavior of collective spin oper-
ators approaches the classical limit. In fact, consider general
spin models with arbitrary all-to-all multibody interactions,
described by a Hamiltonian of the form

Ĥ = −
∑

p=1,2,...

⎧⎨⎩ ∑
μ1,...,μp=x,y,z

Jμ1...μp

N p−1

N∑
i1 
=···
=ip

ŝμ1
i1

. . . ŝ
μp

ip

⎫⎬⎭, (5)

where ŝi, i = 1, 2, . . . , N are quantum spins s. The rescaling
factor 1/N p−1 is such that the energy contribution of all
p-body interactions is extensive. These Hamiltonians can be
written in terms of the collective spin of the system

Ŝ =
N∑

i=1

ŝi, (6)

as [81]

Ĥ

N
= −

∑
p�1

⎧⎨⎩ 1

N p

∑
μ1,...,μp=x,y,z

Jμ1...μp Ŝμ1 . . . Ŝμp

⎫⎬⎭. (7)

The collective spin’s magnitude |Ŝ| = √
S(S + 1) with

S = Ns, Ns − 1, Ns − 2, . . . is extensive and conserved,
[|Ŝ|2, Ĥ ] = 0. The ground state typically belongs to the max-
imal total spin sector, characterized by the maximal spin
projection S = Ns (see, e.g., Ref. [82]).

For such states with maximal spin, the thermodynamic
limit N → ∞ is equivalent to the semiclassical limit or,
in loose terms, to a classical continuous spin 〈Ŝ〉/N of
(conserved) length s. In fact, these reduced spin variables
satisfy a commutation relation of the form [Ŝμ/N, Ŝν/N] =
(i/N ) εμνρ Ŝρ/N , whence one sees that Eq. (7) defines a semi-
classical system with an effective Planck’s constant h̄eff ≡
1/N which vanishes in the thermodynamic limit N → ∞. The
limiting classical Hamiltonian Ĥ/N → Hcl thus reads

Hcl( �S ) = −
∑
μ1

Jμ1 Sμ1 −
∑
μ1,μ2

Jμ1μ2 Sμ1Sμ2 − · · · , (8)

where now Ŝ/N → �S represents a classical spin on the sphere
of radius s which can be parametrized by spherical coordi-
nates: choosing the z direction as the polar axis, �S = sẐ with

Ẑ =
⎛⎝sin θ cos φ

sin θ sin φ

cos θ

⎞⎠. (9)

The rigorous meaning of the classical limit is that, as N → ∞,
the ground-state expectation values 〈Ŝ〉GS /N of the spin com-
ponents converge to the minimum point �S∗ of the classical
Hamiltonian Hcl on the sphere, with vanishingly small quan-
tum fluctuations, and their nonequilibrium evolution 〈Ŝ(t )〉 /N
upon varying in time some parameter J = J (t ) in the Hamilto-
nian is described by the classical trajectory �S (t ) on the sphere

governed by Hcl, i.e., �̇S = { �S,Hcl}, with the Poisson brackets
{Sμ,Sν} = εμνρSρ . This time evolution can be recast in terms
of the spherical angles θ (t ), φ(t ) defined in Eq. (9).

If s > 1/2, a permutationally invariant Hamiltonian may
feature additional “self-interaction” terms with j1 = j2 in
Eq. (5), e.g., energy contributions proportional to

∑N
j=1(ŝz

j )
2.

Such terms break the conservation of the collective spin mag-
nitude. In this case, the dynamics take place in the full TSS,
which is strictly larger than the Dicke manifold, in agreement
with the general mapping of Ref. [52] reviewed above.

C. Beyond global permutational symmetry

The semiclassical approach reviewed in the previous
Secs. III A and III B applies to a much wider class of states
and models than discussed therein.

One natural extension consists of a composite system
of M collective subsystems, possibly composed of different
kinds of degrees of freedom. Provided the interactions couple
the various subsystems uniformly in their elementary units,
i.e., via collective operators only, the global system has a
semiclassical description. In fact, when each subsystem is
large, the global system will be described by

∑M
m=1(qm − 1)

semiclassical collective degrees of freedom. The Dicke model,
where N spins interact collectively with a cavity mode (see
also Sec. III F below), can be viewed as an example, as well
as the two-species kicked top [14].

A second, closely related generalization, is represented by
nonsymmetric states which partially break the full permuta-
tional symmetry. Such states may be obtained by bringing
together a number M  N of initially separated subsystems.
In this case, the full permutational symmetry breaks down
into the product of smaller permutational symmetries acting
separately on each subsystem. While the full system evolves
outside of its TSS, the restricted symmetry allows a de-
scription of the dynamics within the product of the TSSs
of the M individual subsystems. The semiclassical theory
can thereby be applied in the thermodynamic limit, and one
ends up with a few-body semiclassical system described by
M × (q − 1) collective degrees of freedom. In this case, the
Hamiltonian depends on these variables only via the q − 1
global collective combinations, leaving all the (M − 1) ×
(q − 1) remaining coordinates frozen in their initial values.
A simple example is given by a permutationally invariant
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system of N spin-1/2′s initially in a random product state
| · · · ↗↗↗↙↗↙↙↗ . . . 〉 of spins pointing up or down
along a given axis. Such a state is far away from the Dicke
manifold of maximal total spin length N/2. Grouping together
the spins pointing in the same direction into two subsystems
A and B, with NA and NB spins, respectively, the global system
may be viewed as two interacting collective spins ŜA, ŜB,
of length NA/2 and NB/2, respectively, initially pointing in
opposite directions. In agreement with the above observation,
the motion of the the two spins is not independent: The
Hamiltonian generates a nonlinear collective precession and
the angle between ŜA and ŜB is a constant of motion.

D. Quasiclassical initial states

We consider systems initialized in pure nonentangled
states, such as uncorrelated product states. These states are
routinely prepared in cold-atom experiments via standard
techniques. In systems described by interacting spins, a nat-
ural class of nonentangled states is given by fully polarized
states, in which all spins point along a common direction. For
composite systems, we will consider uncorrelated products of
coherent states. Weakly entangled initial states may be treated
on equal footing.

Such initial states have a semiclassical nature, as their
classical phase-space representations via the Wigner function
[83,84] correspond to narrow Gaussian distributions centered
around a point with a small variance of quantum fluctuations
of order O(h̄eff ). For example, a system of N spins fully
polarized in the z direction has〈

Ŝ
N

〉
= s

⎛⎝0
0
1

⎞⎠,

〈
δŜ2

N2

〉
= 1

2
s

⎛⎝h̄eff

h̄eff

0

⎞⎠, (10)

(with δŜ = Ŝ − 〈Ŝ〉), i.e., the collective spin fluctuations in the
transverse directions are vanishingly small. The phase-space
representation is this state is given by the Bloch sphere portrait
in Figs. 1(b) and 1(e). More generally, quasiclassical states
can be characterized as Gaussian phase-space distributions
centered around a point (qcl, pcl ) ≡ (〈q̂〉, 〈p̂〉), with a width of
order h̄eff per degree of freedom. Ground states of collective
models are typically in this class (see, e.g., Refs. [52,82]).

According to the standard semiclassical theory [83–85],
quantum fluctuations around the classical trajectory
(qcl(t ), pcl(t )) will remain approximately Gaussian for a
diverging timescale as h̄eff → 0 (the so-called Ehrenfest
timescale) during the evolution. This will be further discussed
in Sec. V D.

E. The quantum kicked top

As a first illustrative model, we consider a driven model:
the quantum kicked top. The latter can be defined as an
ensemble of quantum spins in a magnetic field periodically
kicked via collective interactions. The model is described by
the Hamiltonian

Ĥ (t ) = αŜx + β

2Ns
Ŝ2

z

∞∑
n=−∞

δ(t − nτ ), (11)

where Ŝx,y,z are the collective spin operators in Eq. (6) and τ

the period of the periodic kicking. We fix τ = 1. Depending
on the value of the kicking strength β, this model is known
to exhibit a transition between a regular regime and a chaotic
one [5,74]. Being a paradigmatic model for quantum chaotic
behavior, its bipartite [11,14,78,86–93], multipartite entan-
glement [78,94–96], and scrambling dynamics [96–98] have
been intensively explored.

The stroboscopic time-evolution operator (namely, the
time-evolution operator over one period) encodes the dynam-
ical stability properties—regularity or chaos—of the system.
It can be written as

Û = ÛβÛα with Ûα = e−iαŜx
, Ûβ = e−i β

2Ns (Ŝz )2
. (12)

Due to the collective nature of the interactions, for large N the
classical limit is approached. In this limit, the stroboscopic
evolution from time t = n to t = n + 1 can be expressed as
a discrete map on the Bloch sphere. This is obtained as the
composition of the two following transformations:

φ′ = arctan

[
tan φ cos α − sin α

tan θ cos φ

]
+ π H (− cos φ)

cos θ ′ = cos θ cos α + sin θ sin φ sin α, (13a)

φ′′ = φ′ + β cos θ ′

cos θ ′′ = cos θ ′, (13b)

where H (x) is the Heaviside step function. See Appendix B 1
for the derivation.

F. The Dicke model

As a second illustrative example, we consider a conserva-
tive system: the Dicke model. The latter was originally defined
[75] as an ensemble of two-level atoms collectively interacting
with a single mode of the quantized electromagnetic field.
Representing the atoms as spins-1/2, one can write the Dicke
Hamiltonian as [99]

Ĥ = ω0Ŝz + ωb̂†b̂ + γ√
N

b̂† + b̂√
2

Ŝx, (14)

where Ŝx,y,z are spin-1/2 collective operators as in Eq. (6)
and b̂†, b̂ are creation and annihilation operators of a bosonic
mode. For convenience, we define the real quadrature oper-
ators Q̂ = (1/

√
2)(b̂ + b̂†), P̂ = (1/i

√
2)(b̂ − b̂†). The Dicke

model has interesting equilibrium and nonequilibrium prop-
erties. At zero temperature, the system undergoes a phase-
transition at γc = √

ωω0/2, between a normal phase (γ < γc)
to a super-radiant one (γ > γc) [75].

Furthermore, in the classical limit, the accessible phase
space may undergo a progressive regular-to-chaotic tran-
sition upon varying the energy E and/or the coupling γ

[76,100]. Its bipartite [12,72,101–103], multipartite entangle-
ment [72,104–109], and scrambling dynamics [72,110–112]
have been intensively explored.

The dynamics of the Dicke model approach their classical
limit for N → ∞, described by the classical Hamiltonian
Ĥ/N → Hcl,

Hcl = ω0Sz + ω
Q2 + P2

2
+ γQSx, (15)
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with

Ŝ ∼ N

2
Z(t ), Q̂ ∼

√
NQ(t ), P̂ ∼

√
NP (t ), (16)

where Z(t ) represents the direction of the average collective
spin and it is parametrized by the time-dependent angles
φ(t ), θ (t ) [cf. Eq. (9)]. The functions Q(t ), P (t ) describe
the limiting classical dynamics of the bosonic mode. The

√
N

scaling may be understood as the occurrence that all terms
in the Hamiltonian are extensive and balance each other in
equilibrium. The rescaling in Eq. (16) renders the emergence
of the effective Planck’s constant h̄eff = 1/N manifest.

The classical limit of the Hamiltonian governs the coupled
dynamics of the atoms and the radiation field via the Hamilton
equations

Q̇ = ωP

Ṗ = −ωQ − γ

2
sin θ cos φ

φ̇ = −ω0 tan θ + γQ cos φ

θ̇ = −γQ sin φ. (17)

See Appendix B 2 for the derivation.

IV. QUANTIFIERS OF ENTANGLEMENT AND CHAOS

In this section, we introduce the quantifiers of bipartite and
multipartite entanglement and of dynamical chaos, which we
will examine in the subsequent analysis.

A. Entanglement entropies

For a composite system with Hilbert space H = HA ⊗ HB

in a pure state ρ̂ = |ψ〉〈ψ |, the bipartite entanglement be-
tween subsystems A and B is encoded in the reduced density
matrix ρ̂A = TrB ρ̂ [113]. The system is entangled with re-
spect to the bipartition (A, B) if ρ̂A (equivalently, ρ̂B) is not
pure. The amount of bipartite entanglement can be quantified
by the Renyi entropies

Sα
A = − 1

1 − α
ln Tr ρ̂α

A , (18)

parameterized by α > 1. The von Neumann entropy is ob-
tained as their limit for α → 1, i.e.,

SA = − Tr(ρ̂A ln ρ̂A). (19)

In spatially extended systems with interactions depending
on the distance between particles, it is natural to consider
bipartitions where subsystem A is constituted by degrees of
freedom within a connected region of space, and B its com-
plement. However, in fully connected N-particle systems, the
permutational symmetry makes spatial bipartitions meaning-
less. Hence, we consider bipartitions specified by the number
NA = fA N of particles in subsystem A (with NB = N − NA =
fB N).

In addition to spatial bipartitions, one can examine bipar-
titions between different types of degrees of freedom, irre-
spective of their spatial location. This notion is meaningful in
collective models, as well. For instance, for the Dicke model
introduced in Sec. III F, we will focus on the entanglement
between the atoms and the cavity field.

For a pictorial representation of the bipartitions considered
in this paper, see Figs. 1(a) and 1(d).

B. Quantum Fisher information and spin squeezing

A different approach is to characterize the system via
the multipartite entanglement properties of the time-evolving
state, as given by the QFI F (Ô, ρ̂ ). This quantity was intro-
duced in metrology to bound the precision of the estimation of
a parameter φ, conjugated to an observable Ô using a quantum
state ρ̂, via the so-called quantum Cramer-Rao bound �φ2 �
1/MF (Ô, ρ̂ ), where M is the number of independent mea-
surements made in the protocol [58]. The QFI has key mathe-
matical properties [54,56–58], such as convexity, additivity,
monotonicity, and it can be used to probe the multipartite
entanglement structure of a quantum state [59,60]. If, for a
certain Ô, the QFI density satisfies the inequality

fQ = F (Ô, ρ̂ )

N
> m, (20)

then, at least (m + 1) parties in the system are entangled
(with 1 � m � N − 1 a divisor of N). Namely, m represents
the size of the biggest entangled block of the quantum state.
In particular, if N − 1 � fQ(Ô) � N , then the state is called
genuinely N-partite entangled.

The QFI has an operational definition in terms of statistical
speed of quantum states under external parametric transfor-
mations [56,114]. For a general mixed state, described by the
density matrix ρ̂ = ∑

n pn|n〉〈n|, it reads [56]

F (Ô, ρ̂ ) = 2
∑
n,m

(pn − pm)2

pn + pm
|〈n|Ô|m〉|2� 4 〈�Ô2〉, (21)

with 〈�Ô2〉 = Tr(ρ̂ Ô2) − Tr(ρ̂ Ô)2. The equality holds for
pure states ρ̂ = |ψ〉〈ψ |. In general, different operators Ô lead
to different bounds and there is no systematic method (without
some knowledge on the physical system [61,115]) to choose
the optimal one.

In this paper, we study the dynamical QFI of pure states out
of equilibrium |ψ (t )〉. In the case of spin systems of Sec. III B,
we focus on collective spin projections Ô = Ŝn = ∑N

i=1 n · ŝi

in the direction of the 3d unit vector n, while for composite
systems we consider Ô = 1S ⊗ Ŝn, where S is the complement
of the spin subsystem. The optimal QFI is then given by the
maximal fluctuation of the total spin as

fQ(t ) = 4 max
n

〈
�Ŝ2

n(t )
〉

N
. (22)

In the case of composite systems, such as the Dicke model of
Sec. III F, Eq. (22) detects not only the correlations between
the individual spins but also the entanglement between the
collective spin and the other degrees of freedom (see, e.g.,
Ref. [108]).

A related experimentally relevant indicator of multipartite
entanglement in spin systems is given by spin squeezing,
a concept first introduced in Ref. [116]. This observable is
associated with the reduction of collective spin quantum fluc-
tuations along one direction at the expense of an enhancement
of orthogonal fluctuations, due to the Heisenberg principle.
Spin squeezing is usually quantified by the minimal transverse
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variance of collective spin fluctuations [117,118] as

ξ 2 ≡ min
|u|=1,u⊥Z

〈(u · Ŝ)2〉
N/4

. (23)

The squeezing parameter ξ 2 is equal to 1 for coherent states,
and smaller for squeezed states (see, e.g., Refs. [116,118]). It
has long been known [119–121] that collective spin squeez-
ing is a witness of many-body quantum entanglement. It is
possible to demonstrate that ξ 2 � 1/ fQ [121], namely, there
exists a class of states which are not spin squeezed but can
be maximally entangled. In the following, we will show that a
simple relation exists between the QFI and spin squeezing in
the semiclassical regime.

C. Scrambling and the square commutator

Recently, the study of chaos in quantum systems has
received a renewed attention with emphasis on the notion of
scrambling. This revival has been triggered by Kitaev’s pro-
posal to characterize quantum chaotic properties in terms of
the growth in time of the squared nonequal time commutator
of two initially commuting observables [65], i.e.,

c(t ) = −〈[B̂(t ), Â]2 〉, (24)

where the expectation value is taken in a generic quantum
state ρ̂, i.e., 〈·〉 = Tr(·ρ̂). Note that c(t ) � 0 if Â, B̂ are Her-
mitian. This object measures the noncommutativity induced
by the dynamics between two initially commuting operators
Â, B̂ and it contains OTOCs 〈B̂(t )ÂB̂(t )Â〉, characterized by
the absence of time ordering.

The square commutator was originally introduced in 1969
by Larkin and Ovchinnikov in Ref. [66] to describe semiclas-
sically the exponential sensitivity to initial conditions and the
associated Lyapunov exponent. In fact, in the classical limit,
c(t ) encodes the square of the derivatives of the classical
trajectory with respect to the initial conditions [67]. Thus,
whenever the classical limit is chaotic, c(t ) is expected to
grow exponentially in time, with a rate set by twice the classi-
cal Lyapunov exponent [72,96,112,122–131]. In this context,
several quantum generalizations of the classical Lyapunov
spectrum (see below) have been proposed [132–134].

In the present case, we will study the square commutator in
Eq. (24) by taking the expectation value in pure quasiclassical
initial states introduced in Sec. III D. In the case of spin sys-
tems, we study the square commutator between two collective
spin projections (6), namely,

cαβ (t ) = −
(

1

Ns

)2

〈ψ0|[Ŝα (t ), Ŝβ (0)]2|ψ0〉, (25)

where α, β = x, y, z and |ψ0〉 is a fully polarized spin-
coherent initial state.

D. Lyapunov exponents

Here we recall the definition of the characteristic Lyapunov
exponents, while in Appendix C 1 we report a brief summary
of their main properties. We refer the reader to the abundant
literature on this topic, e.g., Ref. [135].

The notion of deterministic chaos is associated with the
strong sensitivity of the evolved state of a system on its initial

condition. Given a generic d-dimensional flow ẋ = f (x) in
phase space, the measure of the instability of a trajectory x(t )
is provided by the maximum Lyapunov exponent.

Consider an initial condition x(0) and a neighboring point
x̃(0) displaced by an infinitesimal amount x̃(0) = x(0) +
δ(0). Chaos is defined by an exponential growth in time of
the separation between the corresponding trajectories, δ(t ) =
|x̃(t ) − x(t )| ∼ δ(0) exp(λt ), with λ > 0. The rate λ generally
depends on the initial state and on the observation time t . A
nonambiguous definition thus requires “time-averaging”:

λ := lim
t→∞ lim

δ(0)→0

1

t
ln

δ(t )

δ(0)
. (26)

The inner limit δ(0) → 0 translates the (nonlinear) evolution
of small displacements away from the initial condition into the
(linear) tangential map of the flow along the given trajectory.

The number λ above does not exhaust all the possible
information on the separation of nearby initial conditions.
Consider an infinitesimal hypercube surrounding the initial
condition x(0), identified by d independent infinitesimal dis-
placements {w(i)}d

i=1, which spans the tangent space at x(0).
The evolution transports this hypercube along the trajectory
x(t ) and simultaneously deforms it. The tangent vectors {w(i)}
evolve according to the so-called variational equation,

ẇ(t ) = A[x(t )] · w(t ), (27)

where A[x(t )] = ∂f
∂x |x(t ) is usually called the linear stability

matrix. The formal solution to this linear equation is

w(t ) = U [x(t )]w(0), (28)

where U [x(t )] = T exp
∫ t

0 dτ A[x(τ )] is the evolution opera-
tor, and T exp denotes the time-ordered matrix exponential.
The deformation of the hypercube in time is captured by
inspecting the (positive) eigenvalues ν1(t ) � ν2(t ) � · · · �
νd (t ) � 0 of the symmetric matrix,

G(t ) = U (t )T · U (t ), (29)

that we refer to as the Oseledets matrix [136]. The asymptotic
Lyapunov spectrum is then defined as

λk = lim
t→∞

1

t
ln
√

νk (t ). (30)

The existence of this limit for almost all initial data is the
content of the celebrated Oseledets multiplicative theorem
[137]. In particular, one has λ1 ≡ λ. In nonergodic dynamics,
the numbers {λk} may still depend on the particular trajectory.

The Lyapunov spectrum allows one to access the
Kolmogorov-Sinai entropy rate �KS, a fundamental quantifier
of irreversibility in dynamical systems. The latter is related to
the asymptotic loss of information on the state of the system
induced by an arbitrarily fine coarse-graining of the phase
space [8,9]. By Pesin’s theorem [10], one has

�KS =
∑

k : λk>0

λk. (31)

It is important to stress that the characteristic Lyapunov
exponents are defined by a long-time limit [see Eq. (30)].
Accessing the latter may be challenging in numerical sim-
ulations. The by-now-standard algorithm for a robust com-
putation of the Lyapunov spectrum has been proposed by
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Benettin et al. in a series of papers around 1980 [138–140].
The convergence of the computations is typically quite slow
in Hamiltonian systems. This is especially relevant in those
undergoing an order-to-chaos transition, on which we will be
concerned in the following. For finite observation-time win-
dows, one naturally defines the local or finite-time Lyapunov
exponents {λk (t )} as in Eq. (30) without taking the long-time
limit. This notion is particularly important in semiclassical
dynamics due to the relatively short-time window before
saturation, as we will extensively discuss in Sec. V C.

In Appendix C 1, we recall further properties of the Lya-
punov spectrum with emphasis on Hamiltonian systems and
in Appendix C 2 we briefly review the algorithm of Benettin
et al. in view of its importance later on in this paper.

V. RELATIONSHIP BETWEEN ENTANGLEMENT
GROWTH AND CHAOS

In this section, we begin by reviewing how quantum
fluctuations evolve around the limiting classical trajectory.
We then show how they yield the evolution of SA(t ), fQ(t ),
and c(t ) in the semiclassical regime. Hence, we discuss how
the dynamics of entanglement and chaos is determined by
the structure of the underlying classical phase-space and its
chaoticity. Finally, we outline the range of validity of the
semiclassical description and discuss the saturation due to
finite-size effects.

A. Dynamics of quantum fluctuations

As reviewed in Sec. III A, collective interactions allow
for a reformulation of the nonequilibrium dynamics as an
effective few-body system in the semiclassical regime, where
the impact of quantum fluctuations is controlled by the system
size N via the relation h̄eff = 1/N . The generality of this
approach has been discussed in Sec. III C.

A system in this class is thus described by n degrees of free-
dom, compactly denoted ξ̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n), satis-
fying the canonical commutation relations [q̂i, p̂ j] = ih̄effδi j ,
or [ξ̂, ξ̂] = ih̄effJ . Here we have introduced the symplectic
unit J , given by the 2n × 2n antisymmetric matrix J =
( 0n 1n

−1n 0n
), which satisfies J 2 = −12n. The evolution is gov-

erned by the Hamiltonian Ĥ = h̄−1
eff Hcl(ξ̂) and the Heisen-

berg equations read ˙̂ξ = J ∂Hcl(ξ̂) [141]. As discussed in
Sec. III D, the relevant initial states |�0〉 in our study of
entanglement dynamics are quasiclassical states, i.e., states
which satisfy

〈�0|(ξ̂ − ξ(0))(ξ̂ − ξ(0))|�0〉 = O(h̄eff ), (32)

with ξ(0) ≡ 〈�0|ξ̂|�0〉 = O(1). The meaning of this condi-
tion is that initial quantum fluctuations around the average
are of the order of the minimal uncertainty allowed by the
Heisenberg principle.

We now aim at describing the evolution of quantum fluc-
tuations around the average. We observe that, by virtue of
Eq. (32), the average 〈ξ̂(t )〉 moves along the classical trajec-
tory to the leading order in h̄eff,

d

dt
〈�(t )|ξ̂|�(t )〉 = J ∂Hcl(〈�(t )|ξ̂|�(t )〉) + O(h̄eff ), (33)

i.e., 〈�(t )|ξ̂|�(t )〉 = ξcl(t ) + O(h̄eff ).
Quantum fluctuations around the average are encoded in

the dimensionless variables

δξ̂ ≡ h̄−1/2
eff (ξ̂ − ξcl(t )), (34)

which satisfy the commutation relations [δξ̂, δξ̂] = iJ , and, by
construction, 〈δξ̂(t )〉 = O(h̄1/2

eff ) [142].
In systems of collectively interacting spins, the quan-

tum fluctuations δξ̂ = (δq̂, δ p̂) as in Eq. (34) describe
the collective spin fluctuations transverse to the instanta-
neous spin polarization direction, cf. Sec. III B. These spin
fluctuations can be introduced in the formalism by per-
forming a time-dependent Holstein-Primakoff trasformation
around the instantaneous average spin [143,144] (see also
Refs. [73,145,146]). This standard transformation [147] maps
the transverse fluctuations of a quantum spin to a canonical
bosonic mode. When these fluctuations are small compared
to the size of the collective spin, one can approximate the
transformation to the quadratic order, obtaining

Ŝα

Ns
= Xα (t )

(
h̄eff

s

)1/2

δq̂ + Yα (t )

(
h̄eff

s

)1/2

δ p̂

+ Zα (t )

(
1 −

(
h̄eff

s

)
δq̂2 + δ p̂2 − 1

2

)
+ O((h̄eff/s)3/2), (35)

with α = x, y, z.
Here, the time-dependent unit vector Z(t ) represents the

classical dynamics of the collective spin polarization direc-
tion. It can be parameterized through the spherical angles φ(t )
and θ (t ) as in Eq. (9). The transverse directions identified by
the unit vectors X(t ), Y(t ) can be parameterized as

X(t ) ≡
⎛⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞⎠, Y(t ) ≡
⎛⎝− sin φ

cos φ

0

⎞⎠, (36)

and span the orthogonal space to Z(t ). The short-hand no-
tation in Eq. (35) Xα (t ), Yα (t ), Zα (t ) denotes the αth com-
ponents of the basis vectors X(t ), Y(t ), Z(t ) in Eqs. (9)
and (36) (i.e., Xz = − sin θ , Yz = 0, Zz = cos θ , ...). One can
check that the bosonic operators δq̂, δ p̂ introduced via the
Holstein-Primakoff transformation, correspond to the rescaled
fluctuations δξ̂ introduced above for the collective spin when
the Bloch sphere is parametrized through the canonical phase-
space variables q = φ and p = cos θ .

When the system comprises M > 1 collective spins, of
magnitude Njs � 1, j = 1, . . . , M, one can perform the anal-
ogous transformation (35) on their components Ŝα

j to obtain
the joint semiclassical description.

The general transformation (34) is time dependent. The
exact evolution equations for the quantum fluctuations δξ̂ are
thus generated by the modified Hamiltonian:

ˆ̃H (t ) = h̄−1
eff Hcl

(
ξcl(t ) + h̄1/2

eff δξ̂
)− h̄−1/2

eff ξ̇cl(t ) J δξ̂. (37)

We can now expand the Hamiltonian with respect to the small
parameter h̄eff, obtaining the time-dependent Hamiltonian:

ˆ̃H (t ) = h̄−1
eff Ĥ0(t ) + h̄−1/2

eff Ĥ1(t ) + Ĥ2(t ) + O
(
h̄1/2

eff

)
.

(38)
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Here, Ĥ0(t ) = Hcl(ξcl(t )) is just a classical quantity (the
classical energy along the classical trajectory), and the linear
term Ĥ1(t ) = [∂Hcl(ξcl(t )) − ξ̇cl(t )J ]δξ̂ vanishes identically

by construction, consistently with the vanishing of 〈δξ̂(t )〉 to
the leading order in h̄eff. The operator expansion thus starts
from the (finite) quadratic order. Within the semiclassical
regime, and for a timescale that diverges as h̄eff → 0 (the
so-called Ehrenfest timescale, see below), we can neglect the
remainder O(h̄1/2

eff ) in the expansion. The evolution of the
quantum fluctuations in this regime is determined by a linear
homogeneous differential equation,

d

dt
δξ̂ = A(t ) δξ̂ ≡ J ∂2Hcl(ξcl(t )) δξ̂, (39)

identical with the classical variational equation for the evo-
lution of infinitesimal displacements away from the classical
trajectory [cf. Sec. IV D, Eq. (27)]. In fact, the classical and
quantum evolutions generated by a quadratic Hamiltonian
coincide, as is well known.

The solution to this equation is formally written as

δξ̂(t ) = U (t ) δξ̂(0), (40)

where U (t ) ≡ T exp
∫ t

0 dτ A(τ ) is the tangential map, which
encodes the evolution of infinitesimal classical displacements.
Due to the asymptotic Gaussian description for small h̄eff,
all the information on the quantum state is encoded in the
correlation matrix

[G(t )]i j = 1
2 〈�(t )|δξ̂i δξ̂ j + δξ̂ j δξ̂i|�(t )〉 , (41)

with i, j = 1, . . . , 2n. This matrix is symmetric and positive
definite; the square root of its eigenvalues quantify the width
of the quantum fluctuations around the classical average and
are constrained from below by the Heisenberg principle (see,
e.g., Ref. [83]). Notice that the rescaling by h̄1/2

eff in Eq. (32)
is equivalent to the statement that G(t ) = O(1). The evolution
of the correlation matrix G(t ) can be directly expressed via
Eq. (40) as

G(t ) = U (t )T G(0) U (t ). (42)

B. Semiclassical expressions of entanglement
and chaos quantifiers

In this section, we will analytically derive the relation
between the entanglement quantifiers of Sec. IV and the chaos
indicators in the semiclassical regime.

1. Semiclassical entanglement entropies

We consider a quantum collective model and introduce a
bipartition (A, B) of its degrees of freedom as discussed in
Sec. IV A. Within the semiclassical description, the bipar-
tite system can be represented by two sets of semiclassical
variables ξ̂ = (ξ̂A, ξ̂B), with nA and nB collective degrees of
freedom, respectively (nA + nB = n) [148]. In this regime,
the entanglement between the two subsystems is encoded in
the entanglement between their bosonic quantum fluctuations
δξ̂A, δξ̂B. The extent of these quantum fluctuations is collected
in their correlation matrix G(t ) in Eqs. (41) and (42). It is
convenient to define the subsystem reduced correlation matrix

GA(t ) as the 2nA × 2nA submatrix of G(t ) built out of the
coordinates of subsystem A alone, i.e.,

[GA(t )]i j = 1
2 〈�(t )|δξ̂i δξ̂ j + δξ̂ j δξ̂i|�(t )〉1 � i � 2nA

1 � j � 2nA

. (43)

Due to the asymptotic Gaussian description for small h̄eff,
the reduced density matrix ρ̂A(t ) is also Gaussian and fully
determined by the matrix GA(t ).

The entanglement entropies can thus be computed via
standard techniques [149].

The dynamics of the entanglement entropies in bosonic
systems governed by quadratic Hamiltonians has been derived
and discussed in full generality in Refs. [35,37]. It is shown
therein that the second Renyi entropy (18) can be expressed
as the logarithm of the phase-space volume spanned by the
time-evolving phase-space distribution associated with the
reduced state of the subsystem, i.e.,

S(2)
A (t ) = 1

2 ln det(2GA(t )). (44)

While the global evolution preserves the total volume, i.e.,
det (2G(t )) ≡ 1, the information loss generated by projecting
the collective quantum fluctuations onto a subsystem with
nA < n yields an increase of entropy, whose origin is rooted in
the development of quantum entanglement. By Eq. (44), this
increase may be visualized as an enhancement of the projected
volume spanned by the reduced quantum fluctuations within
the subsystem’s phase space, due to the progressive stretching
of the global phase-space volume spanned by the quantum
fluctuations. Similarly, the von Neumann entanglement en-
tropy (19) can be computed as

SA(t ) =
nA∑

i=1

S(νi(t )) with

S(ν) = ν + 1

2
ln

ν + 1

2
− ν − 1

2
ln

ν − 1

2
, (45)

where ±νi(t ) (νi(t ) � 1) are the so-called symplectic eigen-
values of 2GA(t ) [150]. The entanglement entropy SA(t ) is
bounded above and below by the second Renyi entropy up to
a constant, and hence their growths are superimposed after a
finite transient, SA(t ) ∼

t�1
S(2)

A (t ), see Ref. [35]. Their common

asymptotic behavior generically depends on the subsystem
only via its number nA of degrees of freedom and their
evolution is completely determined by that of G(t ).

As discussed in Sec. IV A, in many interesting semiclas-
sical models, the relevant subsystem A is made of only one
collective degree of freedom, i.e., nA = 1. These include
both the paradigmatic models discussed below, namely, the
quantum kicked top and the Dicke model. In this case, Eq. (45)
simplifies and SA(t ) can be expressed as a function of the
determinant of GA(t ), i.e.,

SA(t ) = 2
√

det GA arccoth(2
√

det GA)

+ 1
2 ln

(
det GA − 1

4

)
. (46)

From this equation, the asymptotic result of Ref. [35]
immediately follows, i.e., SA(t ) ∼

t�1

1
2 ln det GA(t ), since

det GA(t )�1, in agreement with the second Renyi entropy in
Eq. (44).
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In the case of collective spin systems of the form of Eq. (7),
one considers bipartitions between two sets of NA = fA N and
NB = fB N spins ( fA + fB = 1), and a further simplification
occurs. By performing a change of variables to the dynamical
collective fluctuations and the frozen relative fluctuations of
the two spins [151], it is easy to compute that [73]

det GA = 1
4 + fA fB〈n̂exc〉, (47)

where n̂exc = (δq̂2 + δ p̂2 − 1)/2 represents the number of
bosonic excitations of the collective spin Ŝ. This allows us to
compute SA(t ) in a closed form, without the need to compute
the reduced correlation matrix GA(t ) [73,152]. It is then clear
that SA vanishes for 〈n̂exc〉 → 0 and grows as 1

2 ln〈n̂exc〉 for
〈n̂exc〉 � 1. Hence, Eqs. (46) and (47) clarify that the state
of subsystem A (or B) is pure only if 〈n̂exc〉 = 0, i.e., if the
spin system is fully polarized (coherent), as occurs in the
absence of interactions. Conversely, the state is entangled in
the presence of collective quantum excitations.

As we will see in the next sections, the entanglement
entropy of a collective spin system can been quantitatively
related to the QFI and to the spin squeezing.

2. Semiclassical quantum Fisher information and spin squeezing

The QFI for collective spin systems is given by the max-
imal variance of the collective spin operators [cf. Eq. (23)].
This information is encoded in the correlation matrix G(t )
(41), which describes the dynamics of the fluctuations in the
transverse direction. Therefore, the semiclassical QFI is given
by the maximum eigenvalue of the correlation matrix G(t ):

fQ(t ) = 4max[eigvals G(t )]. (48)

In the case of a fully connected spin system (Sec. III B),
one can determine the QFI explicitly, by computing the eigen-
value of the 2 × 2 spin correlation matrix. This yields the
equation

fQ(t ) = 1 + 2〈n̂exc(t )〉 + 2
√

〈n̂exc(t )〉(〈n̂exc(t )〉 + 1), (49)

where 〈n̂exc(t )〉 is the number of bosonic excitations of the
collective spin Ŝ [cf. Eqs. (35) and (47)].

As discussed in Sec. IV B, spin squeezing represents a con-
venient indicator of multipartite entanglement in spin systems.
At the semiclassical level relevant here, quantum fluctuations
are Gaussian, and one derives [153]

ξ 2(t ) = 1 + 2〈n̂exc(t )〉 − 2
√

〈n̂exc(t )〉(〈n̂exc(t )〉 + 1). (50)

Equations (46), (47), (49), and (50) express the quantitative
link—pictorially illustrated in Fig. 1—between the entangle-
ment entropy SA, the QFI fQ, and the spin squeezing param-
eter ξ , in collective spin models in the semiclassical regime
in and out of equilibrium. In particular, in this regime the
inequality discussed in Sec. IV B is saturated, i.e., fQ = 1/ξ 2.

3. Semiclassical square commutator

Along similar lines, we can compute the semiclassical
evolution of the out-of-time-order square commutator defined
in Sec. IV C for a system initialized in a quasiclassical state.
Starting from the definition in Eq. (24) and expanding the op-
erators up to the quadratic order in the quantum fluctuations,

one readily finds

ci j (t ) ≡ −h̄−2
eff 〈�0|[ξ̂i(t ), ξ̂ j (0)]2|�0〉

= (Ui j̄ (t ))2 + O(h̄eff ), (51)

where j̄ ≡ ( j + n) mod 2n. The semiclassical square com-
mutator thus directly probes the sensitivity of the classical
trajectories to infinitesimal perturbations.

In the case of fully connected spin systems, the square
commutator between two collective spin operators (25) reads

cαβ (t ) = [Xα (t )(Uqq(t ) Yβ (0) − Uqp(t ) Xβ (0))

+ Yα (t ) (Upq(t )Yβ (0) − Upp(t ) Xβ (0))]2

+ O(h̄eff ), (52)

with the same notation as in Eq. (35). To get this
result, one first plugs the expansion of the spin op-
erators (35) into the definition (25). Then, after sub-
stituting the formal solution for the spin fluctuations
at time t , i.e., δq̂(t ) = Uqq(t ) δq̂(0) + Uqp(t ) δ p̂(0) and
δ p̂(t ) = Upq(t ) δq̂(0) + Upp(t ) δ p̂(0) [cf. Eq. (40)], the equal-
time commutators between the conjugate variables yield the
above Eq. (52).

C. Entanglement growth and chaos

In the previous section, we have established how the
semiclassical dynamics of quantum fluctuations determine
the evolution of the entanglement quantifiers of interest, via
the time-dependent correlation matrix G(t ). This connection
highlights that the entanglement growth is determined by
the chaoticity properties of the semiclassical dynamics, in
turn dictated by the stability of the underlying phase-space
trajectories.

The correlation matrix G(t ) in Eq. (41) is equivalent to
the Oseledets matrix that defines the Lyapunov spectrum in
Eq. (30) [154], as the quantum fluctuations evolve in the same
way as the linearized displacements. Hence, the spectrum of
the growth rates of the quantum fluctuations encoded in G(t )
coincides with the finite-time Lyapunov spectrum {λk (t )} of
the underlying semiclassical trajectory within the Ehrenfest
timescale TEh(N ) and converges to the proper asymptotic
Lyapunov spectrum {λk} as N → ∞. On the other hand, for
short times, one can consider the limit t → 0 of the above
expressions and retrieve the correct early-time expansions,
see, e.g., Ref. [155].

When the classical dynamics is integrable, the collective
motion of the system is orderly and takes place along regular
trajectories in phase space, meaning that nearby initial condi-
tions separate linearly in time (generically). This implies that
all Lyapunov exponents vanish. This scenario largely persists
under weak integrability-breaking Hamiltonian perturbations,
as established by Kolmogorov-Arnold-Moser (KAM) theory
[156], whereby regular trajectories gradually leave room to
chaotic portions of the phase space arising from dynamical
resonances. Thus, in integrable or near-integrable semiclas-
sical systems, the temporal growth of the quantum correla-
tions is at most polynomial, Gi j (t ) ∼ t2, as can be shown
explicitly by switching to action-angle variables. Conversely,
in systems with far-from-integrable semiclassical dynamics
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featuring fully developed chaos in phase space, the Lyapunov
spectrum is nonvanishing. This implies an asymptotic expo-
nential growth of quantum fluctuations, generically given by
Gi j (t ) ∼ e2λt , where λ is the maximal Lyapunov exponent. An
immediate consequence of the above observations concerns
the asymptotic growth rate of the square commutator. In
fact, the latter results in being twice the maximum Lyapunov
exponent of the underlying semiclassical dynamics:

c(t ) ∼ e2λt . (53)

Crucially, the chaoticity properties of the semiclassical
dynamics determine the speed of the entanglement growth,
as determined by Eqs. (45) and (48). In fact, by Eq. (48), we
immediately derive that the QFI grows as

fQ(t ) ∼ e2λt . (54)

The determination of the bipartite entanglement entropies
growth requires a more elaborate analysis. In Refs. [35,37],
Bianchi et al. discuss the bipartite entanglement dynamics
generated by quadratic bosonic Hamiltonians. As thoroughly
shown therein, the growth of SA(t ) is generically linear in
time with a rate set by the sum of the largest 2nA Lyapunov
exponents:

SA(t ) ∼
t�1

S(2)
A (t ) ∼ �At =

(
2nA∑
k=1

λk

)
t . (55)

For nA = n/2, the rate coincides with the classical
Kolmogorov-Sinai entropy rate �KS = ∑

λk : λk>0 λk

[8,9,135]. Analogous equations to the three above apply
to the phase-space separatrices when the classical dynamics
is integrable; in this case, the Lyapunov spectrum is given by
the linearized dynamics around the unstable fixed point on
which the trajectory terminates [73,152].

By contrast, for generic trajectories, integrable systems
have �KS = 0. In this case, one has

SA(t ) ∼
t�1

S(2)
A (t ) ∼ c ln t, (56a)

fQ(t ) ∼ t2, (56b)

c(t ) ∼ t2, (56c)

with c an integer.
The classification is concluded by the case of stable equi-

librium configurations, the linearized dynamics of which is
equivalent to that of coupled harmonic oscillators. Accord-
ingly, all the quantities of interest perform bounded (periodic
or quasiperiodic) oscillations. (Note that the same applies
to effective linear semiclassical dynamics with suppressed
anharmonic contribution, as in the recently discovered mecha-
nism in Refs. [157,158].) A summary of the above discussion
is presented in Table I.

Since quadratic Hamiltonians describe the dynamics of
quantum fluctuations around the limiting classical trajectory
in the limit h̄eff → 0 to the leading order [cf. the discussion
in Sec. V A], Bianchi et al. conjecture that their analysis
applies to generic quantum systems in the appropriate semi-
classical regime. In particular, SA(t ) ∼ �At , where �A is the
Kolmogorov-Sinai entropy rate determined by the Lyapunov
spectrum as above. It is one of the main purposes of the

present paper to thoroughly assess this conjecture and firmly
establish its range of validity in quantum many-body systems
possessing a relevant and controlled semiclassical limit.

The asymptotic results of Refs. [35,37] ideally describe
the average asymptotic growth at long times. However, typ-
ical semiclassical systems generally present strong additional
finite-time fluctuations in the entanglement quantifiers. For
example, when the limiting classical trajectory is periodic
with period Tcl, for integrable (chaotic) dynamics one has Tcl-
periodic oscillations superimposed to the logarithmic (linear)
growth of SA(t ) and to the polynomial (exponential) growth
of fQ(t ) and c(t ). For general aperiodic classical trajectories,
the time dependence can be much more complicated. These
effects can obscure the asymptotic growth until the saturation
due to the finite h̄eff. Accordingly, deviations from the asymp-
totic result of Refs. [35,37] can be observed.

In Secs. VI and VII below, we will concentrate on systems
exhibiting a progressive transition to chaos as a parameter is
varied. In such systems, finite-time fluctuations play a major
role due to the complexity of the phase space, featuring a
fractal structure of regular trajectories (KAM tori) and chaotic
regions. For this reason, the correct semiclassical identifica-
tion holds between the growth rate of quantum entanglement
and the finite-time Lyapunov spectrum {λk (t )} rather than
the proper asymptotic one. The discrepancy may be partic-
ularly severe due to the relatively short Ehrenfest timescale in
chaotic systems.

The long-time convergence of the rate of growth of the
relevant entanglement and chaos quantifiers to the asymptotic
ones compatible with the Lyapunov spectrum competes with
their saturation in a finite system at the Ehrenfest timescale
TEh(N ) ∼ ln N . Hence, the theoretical long-time rates of
growth will hardly be accessible in practice.

This point is often overlooked in the recent literature on the
OTOC and its relation to chaos.

We conclude the discussion by commenting that not only
the entanglement entropy SA(t ) has a finite limit as h̄eff → 0,
but this limiting quantity has a natural classical interpreta-
tion in terms of the loss of information under phase-space
coarse-graining during the time-evolution [7,24]—which is
the meaning of the classical Kolmogorov-Sinai entropy in
dynamical systems.

It is also interesting to remark that the growth of entangle-
ment entropy in the semiclassical regime is sensitive to the full
Lyapunov spectrum, unlike the growth of the OTOCs, which
is sensitive to the maximum Lyapunov exponent only.

D. Ehrenfest time and finite-size effects

At this stage, it is natural to comment on the timescale
of validity of the semiclassical description outlined above.
The latter is the well-known Ehrenfest timescale and is esti-
mated as the time at which the size of quantum fluctuations
becomes comparable with the typical length in phase space,
i.e., O(G(t )) = O(h̄−1

eff ). For orderly, integrablelike motion,
quantum fluctuations grow polynomially in time as G(t ) ∼ t2,
which yields TEh ∼ h̄−1/2

eff = √
N . In the presence of unstable,

chaotic evolution, instead, one has G(t ) ∼ e2λt , where λ is the
maximum Lyapunov exponent defined in Sec. IV D. In this
case, thus, TEh ∼ (1/λ) ln h̄−1/2

eff = (1/2λ) ln N .
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At this timescale, the semiclassical analysis described be-
fore breaks down and a full quantum regime takes place,
dominated by interference. From the numerical simulations
for finite systems, we find that the entanglement descriptors
saturate to values compatible with their statistical-mechanical
predictions: in particular, we find

S∞
A ∝ ln h̄−1

eff , f ∞
Q ∝ h̄−1

eff , (57)

which is also compatible with the results of Secs. V B 1
and V B 2 evaluated at TEh. In other words, the asymptotic
state is genuinely multipartite entangled f ∞

Q ∝ N , while the
bipartite entanglement entropy saturates to S∞

A ∝ ln NA. This
is actually related to the usual volume-law scaling of en-
tanglement out of equilibrium [159]. For the chaotic driven
dynamics, the value of the QFI is compatible with the values
of the infinite temperature state: f ∞

Q = 1 + N/3 + O(1/N ).
Likewise, the entanglement entropy saturates to the value
expected for a random state, derived by Page in Ref. [160]
SPage = ln m − m/2n + O(1/mn), with m, n the dimensions of
the Hilbert space of the two subsystems. On the other hand,
in this regime the square commutator (24) is characterized
by a fully quantum nonperturbative growth which leads to
saturation only in the case of a fully chaotic dynamics, while
it grows polynomially in the case of integrable systems. For a
discussion of this effect see, e.g., Ref. [96].

VI. THE QUANTUM KICKED TOP

In this section, we will apply the theoretical analysis devel-
oped in Sec. V to study the quantum kicked top, previously in-
troduced in Sec. III. We will start by deriving the semiclassical
evolution of quantum fluctuations in Sec. VI A. Subsequently,
we numerically compare the semiclassical results with the
exact dynamics in finite-size systems in Sec. VI B and discuss
the results in Sec. VI C.

A. Evolution of the spin fluctuations

We derive the semiclassical evolution of the Gaussian spin
fluctuations δξ̂ = (δq̂, δ p̂) around the classical solution as
a discrete map. We first perform the bosonization of spin
fluctuations around the time-dependent polarization direc-
tion �S (t ) ≡ 〈S(t )〉 ∝ Z via the Holstein-Primakoff transfor-
mation in Eqs. (35). The stroboscopic evolution from time
t = n to t = n + 1 of the 2 × 2 correlation matrix G(n) =
〈δξ(n)δξ(n)〉 is given by the composition of the following two
maps:

G′
qq = cos2(ψ − ψ ′) Gqq + sin[2(ψ − ψ ′)]Gqp

+ sin2(ψ − ψ ′) Gpp

G′
pp = sin2(ψ − ψ ′) Gqq − sin[2(ψ − ψ ′)]Gqp

+ cos2(ψ − ψ ′) Gpp

G′
qp = − cos[2(ψ − ψ ′)] Gqq + cos[2(ψ − ψ ′)]Gqp

+ sin[2(ψ − ψ ′)] Gpp, (58a)

G′′
qq = G′

qq

G′′
pp = G′

pp − 2β sin2 θ ′ G′
qp + (β sin2 θ ′)2 G′

qq

G′′
qp = G′

qp − β sin2 θ ′ G′
qq, (58b)

where we have defined the angles ψ = − arctan (tan φ/cos θ ),
ψ ′ = − arctan (tan φ′/cos θ ′), with θ ′, φ′ given by the inter-
mediate classical point before the kick, cf. Eqs. (13). The de-
tails of the calculation are reported in Appendix B 1. Together
with Eqs. (13) and the appropriate initial conditions, they give
a complete description of the semiclassical dynamics of the
quantum kicked top at stroboscopic times. This analysis is
valid before the Ehrenfest timescale TEh.

B. Numerical simulations

We compare the predictions of the semiclassical dynamics
with the entanglement and chaos indicators obtained via exact
numerical computations, specifically via exact diagonaliza-
tion (ED).

Our general scheme is the following. We start from an ini-
tially polarized state on the Bloch sphere, which corresponds
to a spin-coherent state parametrized by the two spherical
angles angles (θ0, φ0) as

|ψ0〉 = |θ0, φ0〉 = eiφ0 Ŝz eiθ0 Ŝy |S, S〉, (59)

where Ŝ are the collective spin operators in Eq. (6) and
|S, S〉 = |S = N/2, Sz = N/2〉 is the fully polarized state in
the z direction.

Then, we let it evolve with the Floquet operator (12)
generated by the Hamiltonian (11), and we compute the
stroboscopic time evolution of the entanglement entropy (19),
the QFI (22), and the square commutator (24) at times tn =
nτ = 0, 1, 2, . . . (recall that we have fixed τ = 1). In all our
simulations, we fix α = π/2, while β ranges in a sufficiently
large interval to appreciate the order-to-chaos transition in the
classical limit.

Let us provide a few details on the ED simulations. We
construct the initial state in Eq. (59) following Ref. [161] and
compute the entanglement entropy using the decomposition in
Ref. [30]. The numerical QFI is given by the maximal eigen-
value of the covariance matrix cov(Â, B̂) = 4〈ÂB̂〉 − 4〈Â〉〈B̂〉
with Â, B̂ = Ŝx,y,z [162]. For the square commutator (24), we
choose Â = B̂ = Ŝz/S, for definiteness.

For the semiclassical analysis, we apply the discrete-
time map in Eqs. (13a) and (13b) for the classical phase
space—the Bloch sphere, parameterized by the canoni-
cally conjugated variables cos θ and φ as in Eqs. (13)—
and in Eqs. (58) for the quantum fluctuations. The ini-
tial conditions are (cos θ (0), φ(0), Gqq(0), Gpp(0), Gqp(0)) =
(cos θ0, φ0, 1/2, 1/2, 0), which represent the state in Eq. (59).
From the time evolution, we directly compute the entangle-
ment entropy, QFI, and czz(t ) from Eqs. (46), (47), (49), and
(52), respectively.

A remark is in order concerning the semiclassical numeri-
cal methods. For these kinds of simulations, it is crucial that
the numerical integration is symplectic. For single degrees
of freedom, simplecticity reduces to the conservation of the
volume in phase space, i.e., det G(t ) ≡ 1/4. Although the map
in Eqs. (58) is exact, we find violations of this conservation
law after a few kicks in the chaotic regime, due to machine-
precision errors. To the aim of presenting accurate results
for the time windows shown in the figures below, we have
resorted to a multiprecision arithmetic library [163] and fixed
the precision to at least 400 digits.
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FIG. 2. Dynamics of the quantum kicked top with α = π/2 in the predominantly ordered and chaotic regimes with β = 0.5 and 8,
respectively. Top panels: Poincarè map (stroboscopic phase-space trajectory) for the regular and chaotic dynamics, on the left (a) and
right (b) panels, respectively. The black diamond and dot represent the initial condition of the orange (full line) and red (dotted) trajectory,
respectively. This initial condition (φ0 = 0 and θ0 = π/4) corresponds to the initial state for the quantum simulations in the bottom panels via
Eq. (59). Bottom panels: We compare the corresponding analytical prediction [the black (upper) line] for the entanglement entropy (c), (d);
quantum Fisher information (e), (f) and square commutator (g), (h); valid in the thermodynamic limit, with exact computations at finite system
size N = 50, 200, 800. Here λ1 = 1.12 is the maximal Lyapunov exponent computed in Appendix C 3.

C. Discussion

We study, as a function of the kicking strength β, how the
qualitative change in the semiclassical phase space across the
order-to-chaos transition determines a change in the dynamics
of the entanglement.

In Fig. 2, we present the numerical results deep in the
two orderly and chaotic phases. For small β (left panels),
the phase-space trajectories are mostly regular KAM tori.
In this case, the classical Lyapunov exponent is vanishing.
Accordingly, the asymptotic growth of quantum fluctuations
in the semiclassical regime is polynomial in time. The theory
in Sec. V predicts a logarithmic growth of the bipartite entan-
glement entropy and an exponential growth of the QFI and of

the square commutator. As shown in Figs. 2(c), 2(e), and 2(g),
the ED numerical data follow the semiclassical curves for a
time window TEh(N ) ∼ √

N that increases with the system
size.

Conversely, for large β (right panels), chaos is fully devel-
oped in the classical phase space, and the motion is practically
ergodic. The Lyapunov exponent λ is thus positive and almost
uniform. The theory in Sec. V predicts a linear growth of the
bipartite entanglement entropy, with an asymptotic average
slope λ, and an exponential growth of the QFI and of the
square commutator, with an asymptotic average rate 2λ. As
shown in Figs. 2(d), 2(f), and 2(h), the ED numerical data
follow the semiclassical curves for a time window TEh(N ) ∼
ln N that increases slowly with the system size.
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FIG. 3. Dynamics of the quantum kicked top with α = π/2, in the intermediate regime across the order-to-chaos transition, with β = 2.3.
Top panel (a): Poincarè map (stroboscopic phase-space trajectories). The black dot and diamond, giving rise to the red (dotted) and orange
(full line) trajectories, indicate the initial condition of the simulations in the bottom panels. Bottom panels: Comparison between the analytical
prediction [the black (upper) line] for the entanglement entropy (b), (c); quantum Fisher information (d), (e); and square commutator (f),
(g); valid in the thermodynamic limit, and exact computations at finite N = 50, 200, 800. Left panels: Initial condition θ0 = π/4, φ0 = 0
corresponding to a regular trajectory. Right panels: Initial condition θ0 = π/4, φ0 = 2.7 corresponding to a chaotic trajectory. Here λ1 = 0.08
is the maximal Lyapunov exponent computed in Appendix C 3.

Hence, we turn to the intriguing intermediate regime across
the order-to-chaos transition, characterized by a complex
structure of phase-space trajectories featuring persisting KAM
tori forming stability islands in a growing chaotic sea (we
adopt here the standard figurative terminology in the litera-
ture). It is widely known that the point-to-point and finite-
time fluctuations of the Lyapunov spectrum are typically
strong in Hamiltonian systems with a mixed phase space.
The comparison in Fig. 3 allows us to test the theory of
Sec. V. Even in this case, the finite-size numerical data of
the quantum evolution approach the result of the semiclassical
computation as N → ∞ for an increasing time window. The
behavior of the entanglement and chaos indicators for both the
sample regular and chaotic initial states are partially masked
by enhanced oscillations as compared to the corresponding

evolution in Fig. 6. Despite this effect, the distinction between
the two qualitative behaviors is apparent.

In all cases, we observe some extent of discrepancy be-
tween the slope or rate of the transient growth of our indi-
cators, and those compatible with the asymptotic Lyapunov
exponent. This discrepancy is typically more pronounced
when the phase space is complex and mixed [cf. Fig. 3] than
in a fully chaotic phase space [cf. Fig. 2]. In Appendix C 3,
we show that this is reflected in the rate of convergence of the
numerical computations of λ.

VII. THE DICKE MODEL

In this section, we will apply the theoretical analysis of
Sec. V to the Dicke model introduced in Sec. III F. We
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will first derive the semiclassical evolution of the quantum
fluctuations in Sec. V A. Then, in Sec. VII B we compare
our analytical predictions with exact numerics in finite-size
systems only for the entanglement entropy dynamics. Note
that the QFI and the square commutator have been explored
in the same context recently [72,104–112].

A. Evolution of the quantum fluctuations

The evolution of the quantum fluctuations around the
classical coupled evolution of the collective spin and of the
cavity mode (17) can be obtained by adapting the method
of Secs. V A and V B. The collective spin fluctuations may
be described via a Holstein-Primakoff expansion around
the time-dependent direction of the average spin orientation
�S (t ) ≡ 〈Ŝ(t )〉 ∝ Z, i.e., Eq. (35). The cavity-mode fluctua-

tions are represented by deviations away from its macroscopic
expectation value (16):

Q̂ =
√

NQ(t ) + δQ̂

P̂ =
√

NP (t ) + δP̂. (60)

The quantum fluctuations are thus compactly denoted by
δξ̂ = (δQ̂, δP̂, δq̂, δ p̂). As explained in Sec. III F, the

√
N

scaling of classical variables may be understood as the oc-
currence that all terms in the Hamiltonian are extensive and
balance each other in equilibrium. Conversely, typical quan-
tum fluctuations in equilibrium, quantified by the expectation
values of quadratic bosonic operators, are of order O(1), i.e.,
subextensive. This corresponds to having an effective Planck’s
constant h̄eff = 1/N .

The semiclassical equations of motion are found by ap-
plying the method of Sec. V A. Substituting the expansions
in Eqs. (35) and (60) into the Dicke Hamiltonian (14) and
truncating it at the quadratic order, one finds the same struc-
ture as in Eq. (38). The classical trajectory Q(t ),P (t ), and
Z(t ) is determined by the vanishing of the linear term in the
quantum fluctuations, i.e., Ĥ1(t ) ≡ 0. Their dynamics are thus
regulated by the quadratic Hamiltonian Ĥ2(t ), from which we
find Eq. (39), i.e.,

d

dt
δξ̂ = A(t ) δξ̂, (61)

with

A(t ) =

⎛⎜⎜⎜⎜⎝
0 ω 0 0

−ω 0 − γ√
2

cos θ cos φ
γ√

2
sin φ

− γ√
2

sin φ 0 0 −γQ cos φ

sin θ

− γ√
2

cos θ cos φ 0 +γQ cos φ

sin θ
0

⎞⎟⎟⎟⎟⎠.

(62)

Hence, the evolution of the correlation matrix G(t ) is
determined via Eq. (42) from A(t ) by integrating Eq. (61).
The details of the calculation to obtain Eq. (62) are reported
in Appendix B 2. Together with Eqs. (17) and with the appro-
priate initial conditions, Eqs. (61) and (62) give a complete
description of the semiclassical dynamics of the Dicke model,
before the Ehrenfest timescale TEh.

B. Numerical simulations

We now compare the semiclassical predictions for en-
tanglement and chaos indicators with the numerical results
obtained via ED of the Hamiltonian.

We start from an initial state, which is a tensor product of
a spin coherent state of the atomic ensemble and a bosonic
coherent state for the cavity, namely,

|�0〉 = |θ0, φ0〉 ⊗ |α〉 with α = Q0 + iP0√
2

, (63)

where |θ0, φ0〉 is the spin coherent state defined in Eq. (59),
while the bosonic coherent state |α〉 = ei(αb̂†+α∗b̂)|0〉 is ob-
tained by displacing the standard bosonic coherent vacuum
|0〉 (defined by b̂|0〉 = 0, 〈0|0〉 = 1) by the complex vec-
tor α. This quantum initial state corresponds to a minimal-
uncertainty Gaussian distribution in the classical phase space,
centered around the point (Q0,P0, cos θ0, φ0) (see, e.g.,
Refs. [12,76]). Then, we let evolve the system with the Dicke
Hamiltonian (14) and we study the temporal development of
quantum correlations.

We perform ED using QUTIP, an open-source software for
quantum optics dynamics [164,165]. The spin Hilbert space
is treated exactly, while we set a large cutoff Ncut on the
photon Hilbert space, checking that the results are converged
upon increasing Ncut. In all simulations, we take a maximum
Ncut = � × N , where N is the number of spins and � ∼ 4 ÷ 8
varies depending on the trajectory. A convenient way to a
priori estimate the needed magnitude of � is to evaluate the
maximum of (Q2(t ) + P (t )2)/2 along the reference classical
trajectory in the target time window.

In the semiclassical simulations, we start from the classical
initial conditions corresponding to the quantum state (63). We
fix P0 = 0 and the value of the energy E . The classical initial
condition is then (Q0(E , φ0, θ0), 0, cos θ0, φ0).

We then numerically integrate Eqs. (17) and (61). Since
the Dicke Hamiltonian (14) is nonseparable—i.e., it cannot be
decomposed as H(q, p) = K (p) + V (q)—efficient symplec-
tic integrators are not available. For this reason, we employ
an autoadaptive fourth-order Runge-Kutta algorithm, fixing
the relative and absolute accuracy to 10−14. The lack of
symplecticity of the numerical integration is witnessed, e.g.,
by violations of the phase-space volume conservation. This
limitations restricts the validity of the classical simulations to
relatively short times in the chaotic regimes.

Time evolution is visualized via Poincaré sections at
fixed energy E = H (Q0, 0, cos θ0, φ0) and P = 0 in the four-
dimensional phase space: the diagrams trace out the sequence
of points in the cos θ − φ plane where the trajectory pierces
the Poincaré section with Q > 0. The natural entanglement
bipartition in the Dicke model consists in subdividing the
degrees of freedom of the atoms and the cavity mode. For
any initial state (63), the semiclassical entanglement entropy
is thus computed from Eq. (46).

C. Discussion

Similarly to the analysis of the quantum kicked top, we
investigate all the qualitative dynamical regimes of the Dicke
model and validate the correspondence between the entangle-
ment dynamics and chaoticity properties in the semiclassical
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FIG. 4. Entanglement dynamics for the Dicke model in the regular (a) and chaotic (b) regime with E = 3, γ = 0.85 and E = 1.5,
γ = 5. (a), (b): Poincaré maps with P = 0 and Q > 0 at fixed energies. The black diamond and dot correspond to the initial condition
(Q0, P0, θ0, φ0) = (Q(E , θ0, φ0), 0., θ0, φ0 ) with θ0 = arcos(0.1) and φ0 = 1.4 chosen for the simulation of the entanglement entropy below.
(c). (d): Comparison between the semiclassical result [the black (upper) line] with exact ED computations at finite N = 10, 20, 40, 80.
(c) Dynamics in regular phase-space E = 3, γ = 0.85. (d) Dynamics in chaotic phase-space E = 1.5, γ = 5. Here λ1 = 0.7 is the maximal
Lyapunov exponent computed in Appendix C 3.

regime. Unlike the quantum kicked top, the Dicke model
represents an isolated (undriven) system, so the energy is
conserved. As its value of E and/or of the coupling γ are
varied, the accessible phase space may undergo a progressive
order-to-chaos transition [100]. This allows us to test the
theoretical conclusions of Sec.V for autonomous dynamics.

In Fig. 4, we show the Poincaré sections in two limit-
ing cases of predominantly regular and chaotic behavior, in
the top left and right panels, respectively. The initial state
in Eq. (63) associated with the classical phase-space point
denoted by a black marker is selected and the corresponding
time evolution of the von Neumann entanglement entropy
between atoms and cavity mode is shown in the bottom
panels. As is apparent, the relation between orderly collective
motion and slow logarithmic growth of entanglement on one
side and between collective chaos and fast linear growth of
entanglement on the other side, is strongly corroborated by
the outcome of the simulations.

In Fig. 5, we turn to the intermediate regime of mixed
classical phase-space across the order-to-chaos transition. The
system is prepared in the two initial states corresponding to
the phase-space points marked in black in the Poincaré section
(top panel), representative of regular and chaotic trajectories,
and the relative nonequilibrium dynamics of the entanglement

entropy between atoms and cavity is displayed in the bottom
panels. Similarly to the case of the quantum kicked top,
the asymptotic growth of the entanglement entropy is partly
obscured by pronounced oscillations and strong finite-time
fluctuations. However, convergence to the semiclassical pre-
diction upon increasing the number N of atoms is observed
over an increasing time window.

As in the case of quantum kicked top, we observe de-
viations between the slope or rate of the transient growth
of the entanglement entropy, and that compatible with the
asymptotic Lyapunov spectrum. Even in this case, this effect
tends to be more pronounced when the phase space is complex
and mixed [cf. Fig. 5] than in a fully chaotic phase space
[cf. Fig. 4]. Appendix C 3 discusses the rate of convergence
of the numerical computations of the Lyapunov spectrum,
highlighting the connection with the discrepancies presented
in Figs. 4 and 5.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented a unifying framework un-
derlying the growth of entanglement in systems character-
ized by a well-defined classical limit, in agreement with
previous suggestions in the literature [6,35,72]. Overall, the
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FIG. 5. Entanglement dynamics for the Dicke model in the mixed regime with E = 1.5 and γ = 0.85. (a) Poincarè map with P = 0 and
Q > 0 at fixed energy E = 1.5 with γ = 0.85. The black diamond (dot) corresponds to regular (chaotic) initial conditions (Q0, P0, θ0, φ0) =
(Q(E , θ0, φ0), 0., θ0, φ0) with θ0 = arcos(0.1) and φ0 = 0.6 (φ0 = 1.4). (b), (c): Comparison between the semiclassical entanglement entropy
[the black (upper) line] with exact ED computations at finite N = 10, 20, 40, 80. (b) Dynamics starting from the regular initial condition
φ0 = 0.6 [diamond in (a)]. (c) Dynamics starting from the chaotic initial condition φ0 = 1.4 [dot in (a)]. Here λ1 = 0.03 is the maximal
Lyapunov exponent computed in Appendix C 3.

established picture that the transient entanglement growth
happens via decoherence was confirmed, and the exact rela-
tionship between the notions of bipartite entanglement, mul-
tipartite entanglement, and scrambling was clarified in the
semiclassical regime. Quantum entanglement indicators ap-
proach a finite limit as the effective Planck constant vanishes,
h̄eff → 0 [7,24], and this limit possesses a clean interpretation
in terms of the subsystem quantum fluctuations around the
classical trajectory. Their temporal growth is associated with
the chaoticity properties of the underlying classical phase
space. This allows us to make clear quantitative predictions on
the asymptotic entanglement growth based on the knowledge
of the classical limit: Before the Ehrenfest time, for regular
dynamics the entanglement entropy SA(t ) grows only loga-
rithmically in time, while the QFI and the square commutator
polynomially; for chaotic dynamics, SA(t ) undergoes a linear
growth with a coefficient given by the classical Kolmogorov-
Sinai entropy rate, while the QFI and the square commutator
grow exponentially with a rate set by twice the largest clas-
sical Lyapunov exponent. This discussion is summarized in
Table I. For the entanglement entropy dynamics, this classi-
fication builds on the results of Refs. [35,37] for quadratic

bosonic Hamiltonians. Our results in this paper constitute a
general prediction for the dynamics of the QFI and collective
spin squeezing in the semiclassical limit. We further discussed
the finite-time fluctuations of entanglement quantifiers, cru-
cial in finite quantum systems with a relatively short saturation
time, and relate them to the underlying classical trajectories.
We finally corroborated our analysis via detailed numerical
computations in paradigmatic many-body collective quantum
systems of current experimental relevance which undergo an
order-to-chaos transition, namely, the quantum kicked top
and the Dicke model, finding excellent agreement with the
analytical predictions in all dynamical regimes.

The semiclassical analysis presented here underlies the
slow growth of entanglement in spin systems with alge-
braically decaying interactions [73]. The same approach could
be applied to the entanglement growth in open systems, where
it has been already shown that quantum fluctuations around
the mean-field observables are the responsible for the growth
of the entanglement negativity [142].

A very challenging problem is to understand how quantum
interference effects enter the game after the Ehrenfest time,
causing a saturation of the entanglement quantifiers [126].
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In fact, the intriguing occurrence that the long-time average
of entanglement quantifiers bears signatures of the underly-
ing classical phase space even for intermediate h̄eff is still
incompletely understood and is a matter of ongoing debate
[166,167].

It is worth stressing that our results contribute to estab-
lish a clear predictive framework for the study of entangle-
ment dynamics in more general semiclassical approaches,
such as those based on time-dependent variational principles
[158,168,169]. Also, they can likely be extended to match
complementary approaches to entanglement dynamics such as
that in Ref. [91].

We finally reiterate that the connection between entangle-
ment dynamics and chaos studied here has direct experimen-
tal relevance for the detection of entanglement and its dy-
namics via measurements of collective quantities [50,51,78],
the experimental accessibility of which is well-established
with standard techniques and tools of quantum atomic
experiments—see Fig. 1 and the relative discussion.
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APPENDIX A: DYNAMICS IN FULLY CONNECTED
MODELS: MAPPING TO AN EFFECTIVE

CLASSICAL DYNAMICS

In this Appendix, we review the general mapping, due to
Sciolla and Biroli [52], of the quantum dynamics of permu-
tationally symmetric systems onto the effective semiclassical
dynamics of their collective variables in the thermodynamic
limit.

With reference to the setting and notations of Sec. III A,
one observes that possible off-diagonal transitions gov-
erned by the permutationally symmetric Hamiltonian Ĥ are
uniquely identified by a set of integers m1, . . . , mq:

|N1, . . . , Nq〉 → |N1 + m1, . . . , Nq + mq〉. (A1)

For convenience, we turn the occupation numbers Nα into
fractions xα ≡ Nα/N , with 0 � xα � 1 and

∑q
α=1 xα = 1, and

denote basis states by |x〉, where x = (x1, . . . , xq ). Hence, we
write the matrix elements of Ĥ as [170]

Hx,x′ ≡ 〈x|Ĥ |x′〉 = V (x) δx,x′ −
∑
m 
=0

Tm(x)δx,x′+m/N , (A2)

with m = (m1, . . . , mq ) ∈ Zq. Terms in the Hamiltonian Ĥ
involving up to k bodies yield “local” transitions in the TSS
basis, characterized by |m| ≡ ∑

α |mα| � 2k. By the extensiv-
ity of the Hamiltonian Ĥ , both V (x) and Tm(x) are extensive:

V (x) ∼ N v(x), Tm(x) ∼ N tm(x). (A3)

Crucially, the densities v and t are smooth functions of x, as
they generally result from combinatoric factors of the occupa-
tion numbers which are insensitive to small changes Nα 	→
Nα ± 1, 2, . . . to the leading order in the thermodynamic
limit N → ∞ [52]. These properties allow one to rewrite the

Schrœdinger equation for the TSS wave function ψ (x, t ) as

i

N

∂

∂t
ψ (x, t ) =

{
v(x) −

∑
m

tm(x) cosh

(
m
N

· ∂

∂x

)}
ψ (x, t ).

(A4)
Defining the operators

xα 	→ q̂α, −ih̄eff
∂

∂xα

	→ p̂α, (A5)

one recognizes that the evolution in Eq. (A4) is governed by
the effective Hamiltonian

Hcl(q̂, p̂) ≡ v(q̂) −
∑

m

tm(q̂) cos(m · p̂), (A6)

with an effective Planck’s constant

h̄eff ≡ 1

N
(h̄ = 1 in our units) (A7)

that approaches zero in the thermodynamic limit. Thus, the
dynamics of the original system of all-to-all interacting q-
level units is equivalent to the semiclassical dynamics of
q − 1 collective degrees of freedom via Eq. (A6) (due to the
constraint

∑q
α xα ≡ 1).

APPENDIX B: DERIVATION OF THE SEMICLASSICAL
EVOLUTION EQUATIONS

In this Appendix, we derive the equations of motion of the
classical collective variables and of the quantum fluctuations
for the quantum kicked top and the Dicke model.

1. Kicked top

We start by deriving the stroboscopic map for the classical
limit of the kicked top, cf. Eqs. (13). With reference to the
setting and notations of Sec. III E, we adopt a convenient
parametrization of the spin via spherical coordinates along the
z axis via (9), so the nonlinear part of the evolution—the kick
Ûβ—looks simple. The discrete classical map that describes
the stroboscopic evolution of the collective spin on the Bloch
sphere is the composition of two maps, respectively generated
by Ûα and Ûβ .

The classical map generated by Ûβ reads
θ ′′ = θ ′

φ′′ = φ′ + β cos θ ′. (B1)
Due to the our choice of coordinates, obtaining the free pre-
cession described by Ûα is less straightforward. One strategy
is to work it out in spherical coordinates with polar axis along
x and to transform into the original coordinates before and
after the application of Ûα . To this aim, we reparameterize the
time-dependent collective spin direction as

Z =
⎛⎝ cos η

sin η cos ξ

sin η sin ξ

⎞⎠, (B2)

where η and ξ are, respectively, the polar and azimuthal angle
in spherical coordinates with respect to the x axis. With this
choice, the classical precession is described as

η′ = η

ξ ′ = ξ + α. (B3)
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The expression in the original coordinates is obtained by
mapping (η, ξ ) one-to-one to (θ, φ) by equating the two
expressions of Z in Eqs. (9) and (B2). This transformation
yields Eqs. (13).

Let us now determine the evolution of the quantum fluc-
tuations. The transformation generated by Ûβ can be ob-
tained straightforwardly following the procedure described in
Sec. V A. One gets H̃2 = 1

2β sin2 θ δq̂2 in Eq. (38), and hence

δq̂′′ = δq̂′

δ p̂′′ = δ p̂′ − β sin2 θ ′ δq̂′. (B4)

To obtain the discrete transformation generated by Ûα , we can
again resort to the adapted coordinates (η, ξ ). We define the
rotated frame (X̄, Ȳ, Z) with the new spherical angles θ → η,
φ → ξ , i.e.,

X̄ ≡ ∂ηZ/|∂ηZ|, Ȳ ≡ ∂ξ Z/|∂ξ Z|, (B5)

such that (X̄, Ȳ, Z) is an orthonormal frame adapted to the
(η, ξ )-parameterization of the sphere. Along these lines, we
define the corresponding transverse spin components and
the associated bosonic variables via the truncated Holstein-
Primakoff transformation:

ŜX̄ ≡ X̄ · Ŝ �
√

Ns δq̄, ŜȲ ≡ Ȳ · Ŝ �
√

Ns δ p̄. (B6)

In this description, the free precession around x generated by
Ûα is exactly canceled by the inertial term, and one obtains

δq̄′ = δq̄

δ p̄′ = δ p̄. (B7)

Now, we only need to find the relation between (δq̄, δ p̄) and
(δq̂, δq̂). This can be obtained by noting that both (X̄, Ȳ) and
(X, Y) are orthonormal bases of the tangent plane to the unit
sphere at the point Z. Therefore, they must be related via a
rotation, i.e.,

X̄ = + cos ψ X + sin ψ Y

Ȳ = − sin ψ X + cos ψ Y (B8)

for some angle ψ ∈ [0, 2π ). This angle can be determined by
noting that, by construction, X̄ belongs to the plane generated
by x and Z, and hence the equation

X̄ · (x × Z) = 0 (B9)

holds. Substituting the first of Eqs. (B8) as well as the third of
Eqs. (9), we find

ψ = − arctan

(
tan φ

cos θ

)
, (B10)

which determines ψ up to the ambiguity ψ ↔ ψ + π . Equa-
tion (B8) immediately yields

δq̄ = + cos ψ δq̂ + sin ψ δ p̂,

δ p̄ = − sin ψ δq̂ + cos ψ δ p̂, (B11)

hence one finds

δq̂′ = + cos(ψ − ψ ′) δq̂ + sin(ψ − ψ ′) δ p̂

δ p̂′ = − sin(ψ − ψ ′) δq̂ + cos(ψ − ψ ′) δ p̂. (B12)

Substituting the two maps in Eqs. (B4) and (B12) into the
definition (41) of the correlation matrix G(t ), one directly
obtains the desired, ambiguity-free, discrete-time evolution
Eqs. (58) for the quantum fluctuations.

2. Dicke model

Here, we derive the equations for the classical trajectory
(17) and for the evolution of the quantum fluctuations around
it (62) generated by the Dicke Hamiltonian (14) for large N .

Collective spin fluctuations can be described via a
Holstein-Primakoff expansion around the time-dependent di-
rection of the average orientation, as discussed in Sec. V B 1.
Cavity mode fluctuations are represented by deviations away
from its macroscopic expectation value. With reference to the
setting and notations of Sec. III F, one has

Ŝα � Xα (t )

√
N

2
δq̂ + Yα (t )

√
N

2
δ p̂

+ Zα (t )

(
N

2
− δq̂2 + δ p̂2 − 1

2

)
, (B13)

Q̂ =
√

NQ(t ) + δQ̂, (B14)

P̂ =
√

NP (t ) + δP̂, (B15)

with α = x, y, z. The classical functions Q(t ), P (t ) and Z(t )
are chosen in such a way that they account for the classical
dynamics of the system. As a consequence, the quantum
bosonic operators (δq̂, δ p̂) and (δQ̂, δP̂) have vanishing ex-
pectation values and describe quantum fluctuations around
the classical dynamics. The

√
N scaling of classical vari-

ables may be understood as the occurrence that all terms
in the Hamiltonian are extensive (and balance each other
in equilibrium). Conversely, typical quantum fluctuations in
equilibrium, quantified by the expectation values of quadratic
bosonic operators, are of order O(1), i.e., subextensive. This
corresponds to having an effective Planck’s constant h̄eff =
h̄/N .

The semiclassical time evolution of the system can be
obtained by substituting the time-dependent expansion above
into the Hamiltonian and truncating to quadratic order, cf.
Eq. (38). We obtain

Ĥ = N Hcl +
√

N Ĥ1 + Ĥ2 + O

(
1√
N

)
, (B16)

with Hcl given by Eq. (15),

Ĥ1 =√
s(ω0 Xz + γQXx ) δq̂ + √

s(ω0 Yz + γQYx ) δ p̂

+ (ωQ + sγ Zx ) δQ̂ + (ωP ) δP̂, (B17)

and

Ĥ2 = −(ω0 Zx + γQ Zx )
δq̂2 + δ p̂2 − 1

2
+ ω

δQ̂2 + δP̂2 − 1

2

+ √
sγ (Xx δq̂ δQ̂ + Yx δ p̂ δQ̂). (B18)

The dynamics of quantum fluctuations are generated by
the modified Hamiltonian H̃ = Ĥ − i ˙̂V (t )V̂ †(t ), which in-
cludes the inertial terms, due to the time dependence of the
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transformation:

H̃1 = Ĥ1 − (
√

s Ẏ · Z δq̂ + √
s Ż · X δ p̂ − Ṗ δQ̂ + Q̇ δP̂),

H̃2 = Ĥ2 + Ẋ · Y
δq̂2 + δ p̂2 − 1

2
. (B19)

For the quadratic approximation to be self-consistent, one
must appropriately choose the classical functions Q(t ), P (t )
and Z(t ) in such a way that linear terms in the bosonic
variables vanish, i.e., H̃1 ≡ 0. This results in the classical
dynamics of the collective spin and the radiation field:

Q̇ = ωP

Ṗ = −ωQ − γ

2
Zx

Ẏ · Z = ω0 Xz + γQXx

Ż · X = ω0 Yz + γQYx. (B20)

The dynamics of quantum fluctuations is regulated by the
equations of motion generated by the quadratic Hamiltonian
H̃2:

˙δQ̂ = +ωδP̂

˙δP̂ = −ωδQ̂ − √
sγ (Xx δq̂ + Yx δ p̂)

δ ˙̂q = −(ω0 Zz + γQ Zx − Ẋ · Y)δ p̂ + √
sγ Yx δQ̂

δ ˙̂p = +(ω0 Zz + γQ Zx − Ẋ · Y)δq̂ − √
sγ Xx δQ̂. (B21)

With the usual choice of parametrization of the rotating frame
(9)–(36), one has

Ẏ · Z = − sin θφ̇, Ż · X = θ̇ , Ẋ · Y = cos θφ̇. (B22)

From these equations, by substituting explicitly the coor-
dinates (9)–(36), one gets the classical equations of mo-
tion in Eq. (17) in the main text, and, for the fluctuations
δξ̂ = (δQ̂, δP̂, δq̂, δ p̂), Eq. (B21) can be written as

d

dt
δξ̂ = A(t ) δξ̂, (B23)

with the 4 × 4 matrix A(t ) expressed by Eq. (62) in the main
text.

APPENDIX C: LYAPUNOV EXPONENTS: THEORY
AND NUMERICAL APPLICATIONS

In this Appendix, we will first recall the main definitions
and properties of the Lyapunov spectrum in Sec. C 1. Then,
in Sec. C 2, we will review the standard algorithm of Benettin
et al. (1980) [140] for computing it numerically. We conclude
in Sec. C 3 by showing the application of the algorithm to the
quantum kicked top and the Dicke model.

1. The Lyapunov spectrum and the maximum
Lyapunov exponent

We recall here some elementary but important properties of
the Lyapunov spectrum concerning the K-dimensional ordi-
ented volumes delimited by K tangent vectors, i.e., volK (t ) =
vol[w(1)(t ), w(2)(t ), . . . w(K )(t )]. An important consequence
of the Oseledets theorem states that the expansion and/or
contraction rate of volK (t ) is given by the sum of the first K

exponents as

�K =
K∑

k=1

λk = lim
t→∞

1

t
ln

[
volK (t )

volK (0)

]
. (C1)

This corresponds to the total expansion rate of a (generic)
K-dimensional submanifold corresponding a subsystem of
K � d degrees of freedom. In particular, �d is the total
expansion rate of the flow, i.e., the average of div f (x(t ))
along the trajectory, which vanishes in conservative systems.
For time-independent (autonomous) systems, one has λk = 0
for some k, because the direction of the trajectory is neither
stretched nor shrunk. For Hamiltonian systems, which are
the focus of this paper, Lyapunov exponents come in conju-
gate pairs λk = −λ2n−k due to the symplectic nature of the
phase space flow. In this case, Liouville-integrability of the
dynamics is signalled by λk ≡ 0 for all k and in the whole
phase space. By contrast, generic Hamiltonian systems do
not possess analytic integrals of motion beyond their energy
and their constant-energy surfaces may present a complex
structure with invariant submanifolds (KAM tori) intertwined
by chaotic regions. In these cases, the Lyapunov spectrum
presents strong phase-space and temporal fluctuations.

2. Benettin et al. algorithm for computing
the Lyapunov spectrum

The by-now-standard numerical algorithm for a robust
computation of the Lyapunov spectrum has been proposed
by Benettin et al. in a series of papers around 1980, see
Refs. [138–140]. Its central idea is based on the evolution
of K tangent vectors (w(1), . . . w(K ) ) and the use of Eq. (C1)
to compute the volumes volK (t ) and the resulting Lyapunov
exponents {λk}K

k=1. In chaotic systems, numerical errors grow
exponentially fast in time and infinitesimal displacements
w(k)(t ) might result in computer overflows at large t . To solve
these issues, the method relies on the periodic orthonormal-
ization of the evolved tangent-space basis, after a suitable
time interval s. (This allows one to disregard the numerical
instability due to the use of nonsymplectic integrators.) In
Ref. [140], the authors show that by choosing the Gram-
Schmidt orthonormalization procedure, one can evaluate all
the volumes {volk}K

k=1 at once.
Fixing initial condition x(0) = x0, the procedure goes as

follows. Choose K independent tangent vectors at random at
t = 0, i.e., {w(k)

0 }K
k=1. Then, for 1 � i � n:

(1) Evolve the vectors {w(k)
(i−1)s} for a time interval s via

Eq. (27) and initial conditions x(i−1)s; this yields {w(k)
is }.

(2) Apply Gram-Schmidt procedure,

α
(1)
i = ∣∣w(1)

is

∣∣, w′(1)
is = w(1)

is

/
α

(1)
i , (C2)

where | · | is the euclidean norm [171]. For 2 � k � K ,

α
(k)
i =

∣∣∣∣∣w(k)
is −

k−1∑
l=1

(
w′(l )

is · w(k)
is

)
w′(l )

is

∣∣∣∣∣, (C3a)

w′(k)
is = 1

α
(k)
i

(
w(k)

is −
k−1∑
l=1

(
w′(l )

is · w(k)
is

)
w′(l )

is

)
. (C3b)

(3) Reinitialize the vectors w(k)
is = w′(k)

is for 1 � k � K .
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FIG. 6. Convergence of the maximum Lyapunov exponent (C4)
for the kicked top dynamics in the predominantly regular and chaotic
regimes. The trajectories shown here correspond to those in Fig. 2
with initial condition φ0 = 0 and θ0 = π/4: a regular one for β =
0.5, with s = 2 (top panel) and a chaotic one for β = 8, with s = 10
(bottom panel).

From this, the finite-time Lyapunov spectrum {λk (x0)} is
computed as

λ
(n,s)
k (x0) = 1

ns

n∑
i=1

ln α
(k)
i (C4)

for k � 1 � K . Convergence as n → ∞ yields the proper,
asymptotic Lyapunov spectrum. Notice that λ

(n,s)
k (x0) should

not depend on the time interval s and on the number of
iterations n independently, but rather via the product r = s n,
i.e., λ

(r)
k (x0). As r increases, λ

(r)
k approaches a well-defined

limit, the kth Lyapunov exponent λk = limr→∞ λ
(r)
k .

3. Lyapunov exponents for the kicked top and the Dicke model

We report the computation of the Lyapunov exponents
of the kicked top (see Sec. VI A) and of the Dicke model
(see Sec. VII) obtained via the algorithm described in

101 102 103 104 105

r = n s

10−1

2 × 10−1

β = 2.3, φ0 = 0.0, θ0 = π/4

λ1 = 0.075 ± 0.004

λ
(r)
1

101 102 103

r = n s

10−2

10−1

β = 2.3, φ0 = 2.7, θ0 = π/2

λ
(r)
1

FIG. 7. Convergence of the maximum Lyapunov exponent (C4)
for the kicked top dynamics in the intermediate regime with a mixed
phase space. The trajectories correspond to those in Fig. 3, with β =
2.3: a regular one with θ0 = π/2 and φ0 = 2.7 (top panel), and a
chaotic one with θ0 = π/4 and φ0 = 0 (bottom panel). Here we have
fixed s = 5.

Appendix C 2. We apply that procedure to the kicked top
evolution at stroboscopic times (13) by evolving the linear dis-
placements via the map in Eqs. (B4)–(B12). We fix a number
s of kicks and we study the black trajectories in Figs. 2 and 3.
The results are shown in Figs. 6 and 7, respectively. We plot
the finite-time maximum Lyapunov exponent λ

(r)
1 in Eq. (C4)

as a function of r. The maximum Lyapunov exponent λ1

(green in the plots) is extracted numerically by averaging over
the last two decades of the time window. For regular initial
conditions, it approaches zero in the long-time limit r → ∞,
while for chaotic trajectories it clearly converges to a finite
value, at very large times r � 104. As expected, the Lyapunov
exponent for the chaotic trajectory in the intermediate regime
with a mixed phase space is much smaller than the one for the
fully chaotic phase, and convergence to the asymptotic value
is much slower.
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FIG. 8. Convergence of the maximum Lyapunov exponent (C4)
for the Dicke model dynamics in the predominantly regular and
chaotic regimes. Top panel: Regular trajectory with E = 3, γ = 0.85
Bottom panel: Chaotic trajectory with β = 1.5, γ = 5. The common
initial condition φ0 = 1.4 and cos θ0 = 0.1 corresponds to the two
trajectories in Fig. 4. Here we have set s = 0.5.

The same procedure is applied to the classical dynamics
of the Dicke model (17), fixing s = 1. The results for the
regular and chaotic regimes are plotted in Fig. 8 and for
the intermediate regime with a mixed phase space in Fig. 9.

100 101 102 103 104

r = ns
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FIG. 9. Convergence of the maximum Lyapunov exponent (C4)
for the Dicke model dynamics in the intermediate regime with a
mixed phase space. Here, E = 1.5, γ = 0.5. Top panel: Regular
trajectory with initial condition cos θ0 = 0.1 and φ0 = 0.6. Bottom
panel: Chaotic trajectory with initial condition cos θ0 = 0.1 and
φ0 = 1.4. The parameters and initial conditions chosen here corre-
spond to the two highlighted trajectories in Fig. 7. Here we have
set s = 1.

Because of the conservation of energy, the second Lyapunov
exponent λ2 always vanishes. As for λ1, similar remarks to the
case of the kicked top apply.
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