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The probabilities of vibronic transitions in molecules are referred to as Franck-Condon factors (FCFs).
Although several approaches for calculating FCFs have been developed, such calculations are still challenging.
Recently it was shown that there exists a correspondence between the problem of calculating FCFs and boson
sampling. However, if the output photon number distribution of boson sampling is sparse, then it can be
classically simulated. Exploiting these results, we develop a method to approximately reconstruct the distribution
of FCFs of certain molecules. We demonstrate its proof of concept by applying it to formic acid and thymine
at 0 K. In our method, we first obtain the marginal photon number distributions for pairs of modes of a
Gaussian state associated with the molecular transition. We then apply a compressive sensing method called
polynomial-time matching pursuit to recover FCFs.
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I. INTRODUCTION

In theoretical molecular spectroscopy, the goal is to obtain
a better understanding of changes in molecular structure and
the force field due to transitions by analyzing spectra of
molecules. Of importance is the vibronic spectra of molecules,
where the spectral lines correspond to transitions between
two vibrational levels of electronic states. The probabilities of
transitions between these levels are given by Franck-Condon
factors (FCFs) which determine the intensities of the spectral
lines. Given a vibronic spectrum, knowing which transitions
contribute to observed spectral lines is helpful in testing a
variety of molecules before synthesizing the most appropriate
one for a particular application. Such applications include,
for instance, increasing the efficiency of solar cells [1–3] or
designing new organic light-emitting diodes (LEDs) [4]. Such
organic LEDs could be used in display devices where narrow
well-separated lines of specific frequencies are desired for
the high-quality performance of the display. Therefore, it is
relevant to develop algorithms to efficiently compute FCFs.

According to the Franck-Condon principle [5], the elec-
tronic levels of molecules are modeled as multimode quantum
harmonic oscillators (HO). Therefore, the vibronic wave func-
tions are multidimensional Hermite polynomials, and their
overlaps are the transition probabilities (FCFs). Determining
the vibronic spectra of molecules is challenging not only
because of the fact that calculating the overlap of Hermite
polynomials is computationally challenging [6] but also due
to the exponential scaling of the number of possible vibronic
transitions with the number of atoms of the molecule.

Franck-Condon factors in the harmonic approximation can
be calculated using the exact iterative schemes [7,8]. The
methods have been revised many times and several explicit
formulas for specific factors have been derived. For instance,
formulas for 141 FCFs with transitions with up to 11 exci-
tations per mode have been discussed in Ref. [9]. Typically,

a large number of FCFs are negligible, and applying direct
methods makes computations inefficient. Therefore, different
strategies of selecting the significant lines have been devel-
oped.

One such approximate strategy [10] involves using a sim-
plified Duschinsky matrix by neglecting mode-mixing terms.
A method based on block diagonalization of the Duschinsky
matrix has been introduced in Ref. [11]. Restricting interest
to a specific energy regime [12,13] or assuming that high
occupation number configurations are negligible also leads to
a reduction of the computational requirements [14–16]. Other
methods rely on calculating spectra for a restricted number
of excited modes, and on limiting the number of excitations
per mode [17], where the parameters are chosen ad hoc.
This can be done based on rigorous analysis which allows
for estimating errors from such assumptions [18,19]. For the
approaches based on the iterative methods, the indexing and
searching of proper values preserved in the computational
memory is one of the most important computational chal-
lenges [20]. A proposal to optimize this procedure has been
given in Ref. [21]. Another approach to the approximate
solutions is given by time-dependent algorithms. A time-
dependent method was proposed in Ref. [22] for calculating
the FCFs’ density function as the Fourier transform of the
overlap of an initial wave function and the wave function
evolving over time. This approach has been developed further;
for instance, see Refs. [23,24]. Parts of these algorithms for
large molecules are designed for supercomputers and allow
for finding billions of spectral lines. Moreover, alternative
approaches to the problem of relating vibronic transitions and
quantum simulations via boson sampling have been proposed
as a potential application of quantum computing [25]. This
problem has also been rephrased in terms of certain quantities
in graph theory [26].

We propose the proof of concept of a method that is faster
and requires less memory than the iterative methods [7,8].

2469-9926/2020/102(3)/032403(10) 032403-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4434-2515
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.032403&domain=pdf&date_stamp=2020-09-08
https://doi.org/10.1103/PhysRevA.102.032403


JACOB, KAUR, ROGA, AND TAKEOKA PHYSICAL REVIEW A 102, 032403 (2020)

However, this method deals with molecules with a highly
sparse spectra. Roughly, we can say that our approach is
appropriate for large molecules for which the number of sig-
nificant lines of the spectra is linear with the number of modes.
Although it is hard to predict in general which molecules
have sparse spectra, we presume that molecules with rigid
cores are likely to have this property. Some favorable fea-
tures of our method are that it avoids memory problems and
that required calculations are theoretically provably efficient.
Moreover, as discussed in the Conclusions, our method’s basic
version presented here can be modified using more advanced
computational techniques, thereby extending its applicability
to a larger class of molecules.

In our method presented here, we apply compressive sens-
ing [27–31] to approximately reconstruct the distribution of
FCFs. Compressive sensing techniques, introduced in the
seminal papers [27–31], are particularly useful for recovering
sparse distributions from compressively sensed data. These
techniques provide an efficient procedure to reconstruct a
large but sparse dataset. In such techniques, compressively
sensed data y are linearly related to a large unknown data
set x via a measurement matrix A, i.e., y = Ax. Although this
system of linear equations is underdetermined, owing to the
sparsity of the data set to be reconstructed, various algorithms
[27,32–37] for efficient recovery of x have been developed.
These techniques have then been applied in various fields such
as image reconstruction [38], communications [39], medical
imaging [40], and quantum-state tomography [41].

In Ref. [42], following the work of Doktorov et al. [7],
it was noted that there exists a parallel between molecular
vibronic transitions and Gaussian boson sampling [43]. In
this paradigm, it is possible to express the excited state
as a Gaussian state [44], which is obtained by a Gaussian
evolution of the ground state. FCFs can then be obtained as
the probabilities of various photon number configurations of
this excited state. However, finding the probabilities of various
photon number distributions of a Gaussian state is known to
be in the complexity class #P [26,45].

If the photon number distribution of the Gaussian state is
sparse, then it is possible to recover this distribution approx-
imately. This is possible by calculating the marginal photon
number distributions over a few modes of the Gaussian state
and then applying compressive sensing techniques to recover
the full distribution. This idea was explored in Ref. [46].
The calculation of marginal photon number distributions
over a few modes of the Gaussian states is computationally
tractable. By employing a technique developed in Ref. [26],
the probabilities of marginal photon number distributions can
be calculated as loop Hafnians of certain matrices related to
the Gaussian state (Sec. II B).

Our contribution is to develop a method to approximately
reconstruct the distribution of FCFs. To this end, we apply
polynomial-time matching pursuit (PTMP) [46] defined in
Sec. II C. This is a first-order greedy algorithm that is a
modification of the matching pursuit algorithm [32]. With
this modification, the runtime of PTMP is polynomial in the
number of modes of the excited Gaussian state. Since the
number of modes is in general 3Na − 6, where Na is the
number of atoms of the molecule, PTMP is efficient when
dealing with large molecules.

The key step of PTMP, which is also its computational
bottleneck, is the identification of a column of the measure-
ment matrix A which has the largest overlap with a specified
vector in each iteration of the algorithm. This maximization
procedure typically takes the time of the order of the size of
the matrix A. However, if only the marginal photon number
distributions of the nearest-neighbor modes are considered,
then the problem can be mapped to an optimization in a one-
dimensional (1D) Ising model [46]. The task is then to find
the highest-energy configuration of a 1D classical spin chain
with the Ising Hamiltonian that can be efficiently obtained.

In Sec. III, we demonstrate the feasibility of PTMP and an-
alyze its performance in practice. We do this by approximately
reconstructing the distributions of FCFs of two molecules:
formic acid (7-mode symmetry block) in Sec. III A and
thymine (26-mode symmetry block) in Sec. III B. In Sec. IV
we discuss our method in comparison with other methods.
Finally in the conclusions, Sec. V, we discuss the possible
extensions of the technique.

II. METHODS

A. Gaussian transformation corresponding
to a vibronic transition

Let us introduce a general formalism for describing
bosonic Gaussian states [47,47–49]. We write the boson cre-
ation and annihilation operators for a given mode u as â†

u and
âu, respectively, where we have the commutation relations
[âu, â†

v] = δuv , where δuv is the Kronecker δ. For simplicity,
we write the annihilation and creation operators of all the N
modes as a vector of length 2N as

�̂ζ = (â1, . . . , âN , â†
1, . . . , â†

N ) (1)

≡ (ζ̂1, ζ̂2 . . . ζ̂N , ζ̂N+1, . . . , ζ̂2N ). (2)

A Gaussian state can be uniquely specified by its covariance
matrix σ and its mean vector �β. In our convention, the
covariance matrix corresponding to a state ρ is defined as

σuv = 1

2
Tr[ρ{ζ̂u, ζ̂

†
v }] − Tr[ρζ̂u]Tr[ρζ̂ †

v ], (3)

where {·, ·} represents the anticommutator, and the mean
vector is a column vector defined as

�β = Tr[ρ �̂ζ ]. (4)

An electronic transition of a molecule defines a new set
of vibrational modes which are displaced, distorted, and ro-
tated with respect to the vibrational modes of the ground
vibronic states. As the electronic excitation of the molecule
may change forces between atoms as well as their mutual
positions, the multimode HO corresponding to the excited
state is usually expressed in a different coordinate system.
If written in terms of normal coordinates, the change of the
coordinate system is described by the linear relation [50]

q′ = Uq + d, (5)

where U is an orthogonal matrix referred to as the Duschinsky
matrix, d is the displacement vector, and q and q′ are the initial
and final coordinates, respectively. These parameters may
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be determined based on ab initio calculations of molecular
structures [51].

In the Heisenberg picture, the transition between the two
states can be expressed in terms of a transformation of the
ladder operators of the multimode quantum harmonic oscilla-
tor. This transformation is a Bogoliubov transformation and is
strictly related to the transformation of the normal coordinates
given in Eq. (5). It was originally derived by Doktorov et al.
[7] and was used recently to show the analogy between the
vibronic molecular system and Gaussian boson sampling [42].
The transformation is

â′† = 1

2
[J − (JT )−1]â + 1

2
[J + (JT )−1]â† + �δ

2
(6)

≡ αâ + βâ† + �δ
2
, (7)

with

J = �′U�−1, (8)

�δ = �′d√
h̄

, (9)

�′ = diag(ω′
1, . . . , ω

′
N )

1
2 , (10)

� = diag(ω1, . . . , ωN )
1
2 , (11)

where U is the Duschinsky rotation matrix, d is the displace-
ment vector from Eq. (5), and {ω′

k} and {ωk} are the harmonic
angular frequencies of the final and initial states, respectively.
These variables are specified for a given molecule.

At any given temperature, the vibrational modes of the
ground state of the molecule are in a thermal state ρi which is
a Gaussian state. Since the evolution of the vibrational modes
is specified by the Bogoliubov transformation in Eq. (6),
the final state of the molecule ρ f is also a Gaussian state.
Therefore, we can apply the Gaussian formalism in order
to find the covariance matrix and mean vector of the final
Gaussian state. The evolution of the covariance matrix is given
as

σ f = SσiS
T , (12)

where σ f is the covariance matrix corresponding to the final
state ρ f , and σi is the covariance matrix corresponding to the
initial state ρi. In our convention,

S =
[

α β

β∗ α∗

]
,

where α and β are defined in Eq. (7). Since α and β are real,
we can simplify the evolution of the covariance matrix as

σ f = SσiS. (13)

Let �d f be the mean vector corresponding to the state ρ f ,
and let �di be the mean vector corresponding to the state ρi.
Then the mean vector evolves as

�d f = S�di + �δ√
2
, (14)

where �δ is defined in Eq. (9). In this work, we assume that the
initial ground state is at 0 K and is thus a vacuum state. There-
fore, the initial covariance matrix σi is the identity matrix, and

the initial displacement di is a null vector. We then evolve the
state according to Eq. (6) with the parameters specified by
the molecule under consideration. Finally, Eqs. (13) and (14)
completely specify the final state.

In order to obtain the photon number distribution of a
few modes of a Gaussian state, we find the marginal state
corresponding to the considered modes. This can be done
by tracing over the irrelevant modes of the original Gaus-
sian state. Alternatively, we can employ a simpler method
to obtain the covariance matrix and the mean vector of the
marginal state [52]. We obtain the covariance matrix of the
marginal state by simply eliminating the rows and columns
of the original state corresponding to the modes that are not
considered. Similarly, we also obtain the mean vector of the
marginal state.

The following subsection describes the procedure of ob-
taining the photon number distributions of these marginal
states.

B. Photon number distributions of Gaussian states

A technique for calculating probabilities of photon distri-
butions of a Gaussian state was developed in Refs. [26,45]
and made concise in Ref. [53]. We now outline the method
to calculate the probability of obtaining photon number distri-
butions of a Gaussian state ρ with a covariance matrix σ and
a mean vector �β. For notational simplicity, we define X as a
2N × 2N block matrix:

X =
[

0 1N

1N 0

]
. (15)

We also define σQ from the covariance matrix σ as

σQ = σ + 1

2
12N . (16)

Following Ref. [53], we can then define

D = X
(
12N − σ−1

Q

)
, (17)

�γ T = �βT σ−1
Q . (18)

In order to obtain the probability of a photon number distribu-
tion �n = (n1 · · · nN ) from the Gaussian state characterized by
σ and �β, we have the following steps.

(i) Calculate matrix B as follows: For each i =
1, 2, . . . , N , the ith row as well as the (N + i)th row of D are
repeated ni times, and the ith column as well as the (N + i)th
column of D are repeated ni times. The resulting matrix B is a
2n̄-dimensional square matrix, where n̄ = ∑

ni.
(ii) Define a vector γ̄ of length n̄ as follows: For each i =

1, 2, . . . , N , the ith element as well as (N + i)th element of γ

is repeated ni times.
(iii) Replace the diagonal entries of B with γ̄ so as to

obtain a matrix C.
The probability of obtaining a photon distribution�n is then

Prob(�n)ρ = F × lhaf(C), (19)

where

F = exp
(− 1

2
�β†σ−1

Q
�β)

√
det(σQ)

∏N
i=1 ni!

, (20)
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and the function lhaf is the loop Hafnian defined as

lhaf(G) =
∑
M∈W

∏
(i, j)∈M

Gi j, (21)

where W is the set of all the perfect matchings of a graph G
with loops. A detailed example of this construction is shown
in Appendix A. In this work, loop Hafnians were obtained by
using an algorithm from Ref. [54].

Calculating loop Hafnians of large matrices is not efficient
[26]. However, as can be observed, C has several repeated
columns and rows. In such cases, one can also use a tailored
formula for structured matrices, as given in Ref. [55], which
allows a faster calculation of loop Hafnians.

The method outlined above is not defined when we are
interested in finding the probability of obtaining vacuum in the
final Gaussian state. This is because the above procedure pro-
duces a zero-dimensional matrix C. Fortunately, the vacuum
probability is the overlap of two Gaussian states for which
there is an efficient formula [56]. For an N-mode Gaussian
state ρ with a covariance matrix σ and a mean vector �β, the
overlap with vacuum is given as

Tr[ρ|0〉〈0|] = exp
[− 1

2
�βT

(
σ + 1

212N
)−1 �β]

√
det

(
σ + 1

212N
) . (22)

This result could also have been obtained from Eq. (19) by
defining loop Hafnians of zero-dimensional matrices as one.

In our approach, we restrict ourselves to two-mode Gaus-
sian states and limit the number of photons to three photons
per mode. This makes the calculation of loop Hafnians easily
tractable with an ordinary desktop computer and is sufficient
for the examples of molecules we consider. The restriction
of calculations to two modes and up to three photons per
mode was a pragmatic choice and not a fundamental limitation
of the method. We observe that for molecules discussed
in Sec. III, the probabilities of transitions with occupation
numbers higher than 3 are negligible. We have tested the
computational time needed to calculate the marginal distri-
butions for two modes and up to six photons per mode. The
computational time on a standard processor of a desktop
computer was around 100 s. The marginal distributions with
higher occupation numbers could be computed in reasonable
time by more powerful machines. Testing this is however
out of the scope of our proof of concept demonstration. The
restriction to two neighboring modes is also not a fundamental
limitation. The algorithm described in the next section can be
easily adapted to deal with three or more neighboring modes
in polynomial time.

C. Polynomial-time matching pursuit

Polynomial-time matching pursuit (PTMP) is a modifi-
cation of the standard matching pursuit iterative algorithm
[32] developed in the context of compressive sensing for
finding a sparse high-dimensional signal x that fits a given
low-dimensional measurement data y. The transformation
from x to y is given by a known rectangular measurement
matrix A, i.e., y = Ax. In the case under consideration x is
the vector of FCFs, and y is a vector of marginal photon

number distributions. Then, A is defined as in Ref. [46]. For
completeness, we provide the exact form of A in Appendix B.

PTMP is applicable when y consists of nearest-neighbor
marginal distributions. The algorithm is as follows.

(i) Initialization: Define residue r0 = y and the recon-
structed vector x0 as the zero vector.

(ii) Support detection: In step i, find the index t of the
column of A with the maximum overlap with the residue ri−1,
i.e., t = arg maxt ′ (AT ri−1)t ′ .

(iii) Updating: Update the residue as ri = ri−1 − sAt ,
where s is a chosen step size and At is a column of A
detected in the previous step. Also, update the t th entry of
the reconstructed vector as xi

t = xi−1
t + s.

We continue the iteration until a stopping criterion is met.
For us, this criterion is when the elements of x sum up to
1. This ensures that the sum of the transition probabilities is
equal to 1. We note that this modification of matching pursuit
relies on the non-negativity of the vectors and the matrices
involved. However, the procedure is easily adaptable to the
general case.

The bottleneck of this algorithm is the support detection
part. Fortunately, when we consider only marginal states of
neighboring modes m and m + 1, AT r has the structure

[1⊗m−1 ⊗ (r0m,0m+1 , r0m,1m+1 , r0m,2m+1 , . . .) ⊗ 1⊗N−m−1]T ,

(23)
where N is the total number of modes and rnm,n′

m+1
denotes

the probability of having n photons in the mth mode and n′
photons in the (m + 1)th mode. Here, 1⊗l is a vector of length
Kl with all entries 1, where K − 1 is the maximum number
of photons in a mode. So, AT r for all pairs of neighboring
modes is the sum of terms (23) and has the structure of the
nearest-neighbor interaction Hamiltonian for 1D spin chains
[57].

The configuration of spins that maximizes the energy of
this system, and thereby the index of the maximum entry
of vector AT r, can be found efficiently using the following
iterative algorithm [58]:

E1(i1) = 0,

Ek (ik ) = max[Ek−1(ik−1) + Hk−1,k (ik−1, ik )], k � 2,

(24)

where matrix Hk−1,k with the two arguments ik−1 and ik is
defined by

Hk−1,k (ik−1, ik ) = r(i−1)k−1,(i−1)k . (25)

In the original algorithm, Ek (ik ) is the optimized energy of
spins 1, . . . , k assuming that spin k is in state ik . In each step,
for each column (ik) the maximization in Eq. (24) allows us
to find the index of the maximum entry in this column. This
index would indicate the state of k − 1 spins if the kth spin
was found in state ik in the final solution. In each iteration,
for each state of the currently considered spin, we have a
unique sequence of states of previous spins that maximizes
the energy. The final maximization determines the correct
sequence of states of the entire spin chain. This enables us
to find the index of the maximum entry of the vector AT r. The
efficiency of PTMP follows from the ability to efficiently find
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the maximum-energy configuration of a classical spin chain in
1D.

This procedure allows us to efficiently find the approximate
distribution of sparse FCFs of molecules from the photon
number distributions of nearest-neighbor marginals. By sparse
FCFs, we mean that either only a few FCFs are nonzero or that
just a few FCFs are significantly higher than the rest.

III. RESULTS: SIMULATION OF FC FACTORS

We now demonstrate the algorithm described in Sec. II C
for formic acid and thymine.

A. Formic acid

As an example, let us consider formic acid. In particular,
we analyze its 7-mode symmetry block with the normal-mode
wave numbers

(3629.9; 3064.9; 1566.5; 1399.7; 1215.3;

1190.9; 496.3)
(
cm−1) (26)

for the electronic transition (11A′′) → (12A′). The parameters
defining this transition are given in Ref. [42].

We obtain the marginal probabilities of photon numbers in
adjacent modes, considering up to three photons per mode.
This result was then used to reconstruct the distribution of
FCFs using PTMP. We emphasize that restricting the marginal
distributions to two neighboring modes does not imply that
our method will miss simultaneous transitions involving more
than two modes. The marginal measurements give us only
constraints for the joint distribution. If there exists a global
solution with simultaneous transitions that involves more than
two modes and that still fits all marginal distributions, it
will be taken into account by our method. The step size
in our algorithm is chosen as s = 0.01, which necessitates
no more than k = 100 iterations of our algorithm. Also, we
do not need to change the parameters s and k for larger
molecules.

As we consider a small molecule and limit the maximum
number of photons per mode, the exact approach by Doktorov
et al. [7] is computationally tractable using a standard desktop
computer. This enables us to plot the result of the reconstruc-
tion by PTMP together with the exact spectrum in Fig. 1. As a
reconstruction quality measure, we use the l1-norm between
the exact FCFs (p) and the reconstructed FCFs (q) defined
as Dtr = ∑

i |pi − qi|. For two positive vectors normalized to
one, this measure can vary between 0 for identical vectors and
2 for vectors with nonoverlapping supports.

The main lines shown in Fig. 1 are described in Table I. We
observe that the main lines correspond to one, two, and three
photons excited in a particular mode. Our reconstruction also
allows us to recognize lines corresponding to simultaneous
excitation in two different modes. In our method we did not
assume a priori that the total number of excitations per mode
should be small or that only a few modes are excited at once.

Notice that the numbers Table I do not sum up to 1. The
reason is that we have stopped iterating when we started
recording contributions for peak 0. We know that this is
an error, as this peak was calculated exactly via Gaussian
overlaps, and its contribution from the residue was removed.

FIG. 1. Franck-Condon factors for transitions between the elec-
tronic ground state (11A′′) and the vibrational states in the electronic
excited state (12A′) of formic acid at 0 K. The blue lines with
crosses represent the spectrum obtained by the exact Doktorov re-
cursive method, the orange lines with circles represent the spectrum
reconstructed from the nearest-neighbors’ marginal distributions by
PTMP. The reconstruction quality (the l1-norm between the recon-
structed distribution and the exact one) is 0.2991.

Further iterations will produce false results. We estimate that
lines of the total probability weight of about 0.147 are not
recognized by the method.

Since formic acid is small enough that its FCFs can be
reconstructed by other methods, we compare the performance
of PTMP with another compressive sensing method. This
method finds a solution which fits the marginal distributions
while minimizing its l1-norm. For this, we use the constrained
l1-norm minimization in MATLAB using the CVX package [59].
The spectrum thus obtained is plotted in Fig. 2.

From Figs. 1 and 2, we infer that the quality of the re-
construction is more accurate while using norm minimization
(0.1988) than while using PTMP (0.2911). It is known that
norm minimization provides more accurate solutions than
first-order iterative algorithms like matching pursuit (see, for
instance, Ref. [36]). However, norm minimization requires
more memory than first-order iterative algorithms. Further-
more, the former scales badly with the size of the problem. In
particular, it is inefficient for finding the distribution of FCFs
of thymine which we consider next. In contrast, PTMP does
not experience computational time or memory problems.

TABLE I. Main FCFs of formic acid reconstructed from
marginal distributions of photon numbers in the nearest-neighbor
modes by PTMP. The modes correspond to the symmetry block with
seven normal modes with wave numbers in Eq. (26).

Wave number (cm−1) Photon number state Probability

0 0000000 0.2228
1566.5 0010000 0.31
3132.9 0020000 0.18
4699.4 0030000 0.07
1215.3 0000100 0.05
1399.7 0001000 0.01
2966.1 0011000 0.01
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FIG. 2. Franck-Condon factors for transitions between the elec-
tronic ground state (11A′′) and the vibrational states in the electronic
excited state (12A′) of formic acid at 0 K. The blue lines with
crosses represent the spectrum obtained by the exact Doktorov re-
cursive method, the orange lines with circles represent the spectrum
of the minimum l1-norm that fits the nearest-neighbors’ marginal
distributions. The reconstruction quality (the l1-norm between the
reconstructed distribution and the exact one) is 0.1988.

B. Thymine

As the second example we consider thymine. Its vibra-
tional degrees of freedom can be decoupled into two separate
blocks of 13 normal modes and 26 normal modes. We con-
sider the transitions at 0 K between the ground electronic state
(11A′′) and 26 vibrational modes of the excited state (12A′)
with normal wave numbers as follows:

(3535.0; 3511.8; 3195.7; 3150.6; 2996.8; 1833.9; 1739.7;

1575.5; 1531.1; 1474.4; 1442.6; 1380.0; 1353.8; 1315.0;

1271.3; 1216.1; 1187.3; 995.9; 893.5; 766.6; 690.7; 581.6;

532.2; 444.4; 392.2; 293.8)
(
cm−1

)
. (27)

Obtaining the spectrum of thymine is more challenging with
standard techniques. This is because, even if we restrict
ourselves to transitions with no more than three photons per
mode, then the number of all possible FCFs is 426. Therefore,
dealing with this molecule using standard methods such as
the exact recursive Doktorov method is infeasible on standard
desktop computers. Also, the l1-norm minimizer cannot deal
with problems of this size.

Based on the parameters of the transition provided in
Refs. [18,25], we obtain the Gaussian state associated with
the excited state of the transition. Next, we find the marginal
states for nearest-neighbor modes and then find their photon
number distributions up to three photons per mode. Finally,
we apply the PTMP algorithm to find the FCFs. We show the
spectrum of FCFs of thymine in Fig. 3 and in Table II.

The approximate spectrum of FCFs of thymine produced
by PTMP agrees well with the spectra produced by other
methods [18]. Although our method is not as precise as the
method given in Ref. [18], the computation time is faster. In
particular, the calculations used to produce the spectrum given
in Fig. 3 take only a few seconds on a standard desktop com-
puter. We observe that in thymine single-photon transitions in
different modes dominate, unlike in the case of formic acid.

FIG. 3. Franck-Condon factors for transitions between the elec-
tronic ground state (11A′′) in 0 K and 26 vibrational modes of an
excited electronic state (12A′) of thymine. This spectrum is recov-
ered by PTMP from marginal distributions for all nearest-neighbor
modes.

Let us comment on the sparsity assumption for our method.
Although the exact spectrum of FCFs of thymine is not sparse
[18,42], there are six lines with probabilities significantly
higher than those of the other lines of the spectrum. This
situation is similar to a sparse signal in the presence of
noise. We observe that even though many small probability
contributions are present, we are still able to reconstruct the
most significant lines of the spectrum. This shows that our
algorithm does not demand strict sparsity of FCFs. However,
recognizing the lines with lower probabilities is out of the
reach and beyond the scope of this approach.

IV. COMPARISON TO OTHER APPROXIMATING
METHODS

Although our method is not designed to be a tool com-
peting with the advanced methods of high-precision vi-
bronic spectroscopy, it can be used as a computational time-
and memory-efficient approximate method for estimating the
main spectral lines, and as such it can support the more
precise and computationally expensive tools. Aside from the
fact that our method is time and memory efficient, it has
some advantages over the existing approximate methods as
described below.

TABLE II. Main FCFs of thymine reconstructed from marginal
distributions of photon numbers in the nearest-neighbor modes by
PTMP. The modes correspond to the symmetry block with 26 normal
modes with wave numbers in Eq. (27).

Wave number (cm−1) Photon number state Probability

0 0 photon in all modes 0.1633
392.2 1 photon in 25th mode 0.14
532.2 1 photon in 23rd mode 0.12
690.7 1 photon in 21st mode 0.09
1315.0 1 photon in 14th mode 0.2
1575.5 1 photon in 8th mode 0.2
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For formic acid, we notice that the positions of the largest
lines correspond to either 0 or the frequency (or its multiplic-
ities) associated with the largest displacement. For thymine
it is similar, although we do not detect multiplicities. If we
approximate the Duschinsky matrix as in Ref. [11], then
we can divide the problem into separate blocks that can
be treated separately. In this way, some rough information
about the spectrum can be taken just from the approximate
Duschinsky matrix and the displacement vector. However,
we notice several advantages that our method may provide.
First of all, the marginal distributions in our approach can be
known exactly with relatively minimal effort. To the best of
our knowledge, this is something that neither exact methods
[7,8] nor approximate methods [10,22] offer without first
calculating the full spectra.

Second, our method allows for estimating which part of
the spectrum has been actually found. This is because we can
see which part of the detected spectrum covers the marginal
distributions which are exact. So, our method is not just
guessing where the main lines are, but allowing us to estimate
the total mass of the lines that we do not observe, albeit
roughly. This is something one does not see if approximate
Duschinsky matrix and displacement vectors are used. How-
ever, precise estimation of the mass of undetected lines needs
further investigation.

It does not seem obvious when multiplicities of the fre-
quencies play an important role or not. This question is related
to prescreening procedures [18]. A third advantage of our
method is that it allows us to test with relative ease whether
transitions involving higher quantum numbers are significant
or not, as this can be readily observed from the marginal
distributions.

Fourth, our method predicts the exact position of the
main lines. With the time-dependent methods [22–24], the
approximate density distributions may be characterized only
with a small resolution; i.e., lines close to each other may
be indistinguishable. In contrast, our method, which shows
the precise positions of main lines, covers complementary
features of the approximate spectrum.

The final argument in favor of our method is its potential
to be extended. Several other methods can be applied to get
more accurate reconstructions from the exact constraints. A
few such extensions are sketched in Sec. V.

V. CONCLUSIONS

In this paper, we provide the proof of concept of an efficient
classical method to approximately reconstruct the distribution
of FCFs of large molecules. This reconstruction is possible
with an efficient compressive sensing algorithm that uses
marginal photon number probability distributions as compres-
sively sensed data. We define and test the performance of
the PTMP algorithm that allows us to efficiently reconstruct
the main peaks of molecular vibronic spectra even for large
molecules.

Our method is restricted to spectra which are sparse or
spectra with just a few FCFs significantly larger than the
rest. In the case of decreasing sparsity, we would need more
marginal distributions to reliably reconstruct significant FCFs.
In such a case, instead of two nearest-neighbor modes, we can

consider three or more nearest-neighbor modes. PTMP can
be easily adapted and is efficient for this case. However, the
computational time for calculating loop Hafnians increases
exponentially with the number of modes that restrict the
method.

An alternative way of extending the method is to use a
marginal distribution from not necessarily nearest-neighbor
modes. In this case, PTMP cannot be used to find the largest
element in a vector in the support detection scheme in the
presented form. This task would be mapped on the Ising
problem with non-nearest-neighbor interactions—a more gen-
eral spin-glass problem. In full generality, this is a chal-
lenge that belongs to the complexity class NP-complete and
is mapped to the max-cut problem in graph theory [60].
However, for special types of graphs called planar graphs,
there exists a polynomial-time algorithm [61,62]. We could
use these algorithms for support detection with constraints
from marginal distributions involving not necessarily nearest-
neighbor modes. The method can be extended even further
when more advanced computational techniques that can deal
with Ising models with nonlocal interactions are used. As
instances of such techniques, we may consider the quantum
Monte Carlo approach or quantum annealing. These tech-
niques show that the method we propose can be strongly
extended and have the potential to deal more accurately with
more complicated problems.

Since we study FCFs at temperature 0 K, we can assume
that each mode of the final state is occupied by only a few
photons. However, when the temperature is finite, the initial
state of the molecule is a thermal state with the average
number of photons per mode obeying the Bose-Einstein dis-
tribution. If the number of photons per mode is high, then
the marginal distributions containing relatively few photons
are improbable. In such cases, although we have to calculate
loop Hafnians of large matrices, these matrices are highly
structured with only a few dissimilar rows or columns. Then,
we can employ the method of Kan [55] to calculate such loop
Hafnians. This is a subject for future studies.

Finally, the method of FCFs recovered from marginal dis-
tributions by compressive sensing may be improved by intro-
ducing algorithms other than PTMP. This can include gradient
pursuit introduced in Ref. [34] as discussed in Ref. [46].
We also think that orthogonal matching pursuit [37] can be
adapted for this purpose.
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APPENDIX A: PHOTON NUMBER DISTRIBUTIONS
OF A GAUSSIAN STATE

As an example of calculating the photon number distri-
bution of a multimode Gaussian state, consider a two-mode
Gaussian state described by a covariance matrix σ and a mean
vector β as follows:

σ =

⎡
⎢⎢⎣

σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

⎤
⎥⎥⎦, (A1)

�β = [
β1 β2 β3 β4

]T
. (A2)

We are interested in the probability of obtaining two photons
in mode 1 and one photon in mode 2. We first calculate the
matrix D as in Eq. (17). Then we construct the 6 × 6 matrix B
as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D11 D11 D12 D13 D13 D14

D11 D11 D12 D13 D13 D14

D21 D21 D22 D23 D23 D24

D31 D31 D32 D33 D33 D34

D31 D31 D32 D33 D33 D34

D41 D41 D42 D43 D43 D44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

Constructing �γ as per Eq. (18), we obtain

γ̄ = [
γ1 γ1 γ2 γ3 γ3 γ4

]T
. (A4)

Next, we replace the diagonal entries of B with γ̄ so as to
obtain

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ1 D11 D12 D13 D13 D14

D11 γ1 D12 D13 D13 D14

D21 D21 γ2 D23 D23 D24

D31 D31 D32 γ3 D33 D34

D31 D31 D32 D33 γ3 D34

D41 D41 D42 D43 D43 γ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)

Finally, the loop Hafnian of the above matrix is calculated
and then used to calculate the concerned probability using
Eq. (19).

We now demonstrate this technique. Consider a two-mode
coherent state ρ = |λ, ζ 〉〈λ, ζ |. The covariance matrix and the
mean vector corresponding to this state as defined in Eqs. (3)
and (4) are

σ = 14

2
, (A6)

�β = [
λ ζ λ∗ ζ ∗]T

. (A7)

For this state, σQ as defined in Eq. (16) is identity, and hence
D as defined in Eq. (17) as well as B defined subsequently are
zero. These simplify our calculations.

Since σQ = 14, we then find from Eq. (18) that �γ = �β.
Thus we obtain

γ̄ = [λ λ ζ λ∗ λ∗ ζ ∗]T . (A8)

We then construct the matrix C. We observe that it is a
diagonal matrix with its diagonal as γ̄ . Using the fact that the
loop Hafnian of a diagonal matrix is just the product of the
diagonal terms, we obtain its loop Hafnian as |λ|4|ζ |2.

A prefactor needed in our final expression is then calcu-
lated from Eq. (20) as

F = exp(−|λ|2 − |ζ |2)

2!
. (A9)

Finally, using Eq. (19) we obtain the probability of obtain-
ing two photons in mode 1 and one photon in mode 2 as

Prob(2, 1)|λ,ζ 〉 = exp(−|λ|2 − |ζ |2)
|λ|4|ζ |2

2!
. (A10)

This expression can easily be verified as obeying the Poisso-
nian distribution of coherent states.

APPENDIX B: MEASUREMENT MATRIX

Since our measurement matrix is large, it is imperative that
we develop a particular representation of the measurement
matrix such that its elements can be efficiently generated by
knowing its indices alone. This makes our algorithm efficient
with respect to its memory requirement.

In order to define the measurement matrix, we first develop
a representation for the vector (x) with all FCFs. To this end,
we define vectors specified by sets of photon numbers in each
mode {n1, n2, . . .}, where ni denotes the number of photons in
the ith mode as follows:

|n1, n2, . . .)T = (· · ·1 · ·) ⊗ (· · 1 · · · ) ⊗ · · ·
↑ ↑

n1 + 1 n2 + 1 · · ·
.

(B1)
Here the lower indices indicate the positions of 1 in each
component of the tensor product, and the remaining entries
are zeros. Using this representation, we can then decompose
the vector x of all FCFs of an N-mode system as follows:

x =
∑

n1,...,nN

αn1,...,nM |n1, . . . , nN ). (B2)

Here, the coefficients αn1,...,nN are non-negative and sum up
to 1.

We now show how to define the measurement matrix in
this representation. For this, let us first define the following
auxiliary vectors:

γni = 1⊗i−1 ⊗ (· · 1 · · · ) ⊗ 1⊗N−i

↑
ni + 1

. (B3)

where 1 = (1, 1, 1, . . .) and (· · 1 · · · ) are K-dimensional vec-
tors and K − 1 is the maximum photon number in a mode.
γni is defined such that γni x gives the marginal probability of
having ni photons in the ith mode. By choosing different ni,
we can then obtain the marginal probability distribution of the
photon numbers in mode i.
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FIG. 4. Depiction of the first 600 columns of the 96 × 16 384
measurement matrix that we used for formic acid. White denotes
the value 1 and black denotes 0. We considered nearest-neighbor
marginals of the 7-mode symmetry block with up to three photons
per mode.

In order to find the marginal distributions of two modes,
we use the entrywise products γni 
 γn j such that (γni 
 γn j )x
is just the marginal probability of simultaneously finding ni

photons in the ith mode and n j photons in the jth mode.

These quantities allow us to write the marginal distributions
of photonic occupations in pairs of modes.

In the problem that we are concerned, the measurement
matrix A consists of rows indexed by (ni, n j ) given as

Ani,n j = γni 
 γn j . (B4)

This matrix describes the transition from the joint distribution
of FCFs for all modes and marginal distributions for pairs of
modes. Using this form of the measurement matrix, the vector
of joint marginal distributions (y) is given as

yni,n j = Ani,n j x. (B5)

We can now apply compressive sensing methods to our prob-
lem. A representation of the measurement matrix that we used
for formic acid is shown in Fig. 4.
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