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Vector properties of entanglement in a three-qubit system
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We suggest a dynamical vector model of entanglement in a three-qubit system based on isomorphism between
su(4) and so(6) Lie algebras. This model allows one to write an evolution equation for three-qubit entanglement
parameters under an arbitrary pairwise qubit coupling. Generalizing a Plücker-type description of three-qubit
local invariants we introduce three pairs of real-valued three-dimensional vectors (denoted here as AR,I , BR,I ,
and CR,I ). Magnitudes of these vectors determine two- and three-qubit entanglement parameters of the system.
We show that evolution of vectors A, B, and C under local SU(2) operations is identical to SO(3) evolution
of single-qubit Bloch vectors of qubits a, b, and c correspondingly. At the same time, general two-qubit su(4)
Hamiltonians incorporating a-b, a-c, and b-c two-qubit coupling terms generate SO(6) coupling between vectors
A and B, A and C, and B and C correspondingly. It turns out that dynamics of entanglement induced by different
two-qubit coupling terms is entirely determined by mutual orientation of vectors A, B, C. We illustrate the
power of this vector description of entanglement by solving quantum control problems involving transformations
between W , Greenberg-Horne-Zeilinger, and biseparable states.
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I. INTRODUCTION

Generation, control, and characterization of entanglement
of multipartite quantum states is one of the foci of ongoing
theoretical and experimental research in quantum informa-
tion processing [1–3]. Three-qubit entangled states, such as
Greenberg-Horne-Zeilinger (GHZ), W , and various three-
qubit cluster states has been generated with trapped ions [4]
and photons [5,6]. However, a theoretical description of dy-
namics and control of multipartite entanglement is practically
absent in the literature.

Previous work dedicated to entanglement in quantum infor-
mation focused on static characteristics of entanglement (e.g.,
local invariants [1–3]). In contrast, the model presented here
provides insight into the dynamics of entanglement induced
by qubit-qubit coupling.

Quantitative description of multipartite entanglement of
pure three-qubit systems is based on the idea of a
CP7/SU(2)⊗3 quotient space: two three-qubit quantum states
belong to the same equivalence class if they are related by
a set of local single-qubit transformations [CP7 space here
is simply a space of normalized three-qubit states equivalent
up to a global U(1) phase multiplication]. It has been iden-
tified that there are, in general, five independent invariants
which can be used as coordinates on such a space [7–14].
Physically important insight into the properties of three-qubit
entanglement has been established in Refs. [15,16] where the
three-tangle was identified as an important physical parameter
characterizing genuine three-body entanglement. This param-
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eter is related to two-body entanglement via the so-called
Coffman-Kundu-Wootters (CKW) inequality [15].

Further progress in clarifying the physical meaning of
three-body entanglement was achieved by Peter Lévay in a
series of papers where he used mathematical ideas of fiber
bundle theory [17–20]. This approach revealed an alternative
geometric way of quantifying entanglement whereby three-
qubit states are projected onto the Klein quadratic embedded
in CP5 space [18]. In the context of this approach a set
of six Plücker coordinates on a Grassmannian G(4, 2, C)
manifold [21] appears as a natural algebraic tool allowing
us to factor out the action of single-qubit local operations
in a consistent geometric form (see also the recent paper
[22]). In the paper on three-qubit entanglement [18] Peter
Lévay used isomorphic mapping of the SL(2) ⊗ SL(2) group
onto the SO(4, C) group (this technique first appeared in the
context of classification of two-qubit entangling operations in
the form of SU(2) ⊗ SU(2) = SO(4) isomorphism [23,24]).
However, this approach is limited to only local operations pro-
viding little insight into the dynamics of entanglement under
qubit-qubit coupling. SU(2) ⊗ SU(2) = SO(4) isomorphism
involves only single qubit transformations. It is embedded
in a larger SU(6)/Z2 = SO(6) isomorphism (which is at the
foundation of our work). The crucial difference is that the
latter includes qubit-qubit coupling operators while the former
contains only local qubit transformations. In the present paper
we address the following problem: how does entanglement
change under the action of a nonlocal set of transformations
including qubit-qubit coupling terms?

Since a general two-qubit group is the set of SU(4) op-
erations, the action of this group on six Plücker coordi-
nates generates a six-dimensional representation of SU(4)
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isomorphic to the SO(6) group of real orthogonal rotations.
However, the situation is little bit more complicated than the
standard abstract description of su(4) = so(6) Lie algebra iso-
morphism [25]: (i) su(4) action on Plücker coordinates does
not manifest itself in a canonical form of so(6) real-valued
6 × 6 antisymmetric generators, (ii) six-dimensional space
of Plücker coordinates is a complex six-dimensional space
C6 ≡ R6 ⊕ R6, i.e., a direct sum of two real six-dimensional
vectors spaces (denoted as R6).

As mentioned above, original Plücker variables need to be
modified by a U(6) transformation (see details in Sec. IV) in
order to obtain a canonical representation of SO(6) in the form
of real-valued 6 × 6 antisymmetric generators. This operation
results in a modification of original Plücker variables; here we
refer to a new set of variables as quantum Plücker variables, or
simply q variables (or q-vectors). These new coordinates have
a set of interesting useful properties. By construction original
Plücker variables are explicitly partition dependent. However,
there exist trivial relations between q-vectors characterizing
three different partitions [a(bc), c(ab), and b(ca), which we
will also label as partitions (1), (2), and (3), respectively].
These relations immediately allows us to reduce redundant
18 = 6 × 3 Plücker complex parameters describing all three
partitions to only three complex three-dimensional vectors
(we call them A, B, and C in order to reflect their relation to
qubits a, b, and c correspondingly). Partition-independent de-
scription of three-qubit entanglement requires only three pairs
of real three-dimensional vectors AR = Re(A), AI = Im(A),
BR = Re(B), BI = Im(B), CR = Re(C), CI = Im(C). Inter-
estingly, these vectors obey the same set of dynamic equations
as three single-qubit Bloch vectors (details are presented in
Sec. IV below).

Since two- and three-tangles are related to magnitudes of
vectors A, B, C in a very trivial algebraic fashion, these
vectors provide a transparent geometric description of en-
tanglement dynamics under two-qubit coupling making the
quantum Plücker description of the three-qubit system a very
useful tool for solving quantum control problems. Geometric
operations (rotations) of vectors A, B, C can be easily tailored
to achieve a desired goal of transforming one state to another
state. Due to the existence of an explicit algebraic relation
between SO(6) and SU(4) rotations [26,27] we can establish
a protocol when a desired quantum state transformation is
visualized and constructed as a two-stage set of rotations:
three-dimensional (3D) Bloch-type rotations of vectors A, B,
C followed by a set of qubit-qubit couplings which take the
form of couplings between these three-vectors. As soon as
appropriate rotations and couplings of vectors A, B, C are
established using geometric considerations, one can immedi-
ately derive a set of corresponding SU(4) quantum operations
which physically implement the desired transformation of a
quantum state.

The outline of this paper is as follows. In Sec. II we define
the Plücker variables for pure tripartite quantum states and list
some of their properties. In Sec. III we discuss the important
accidental Lie group isomorphism between local two-qubit
operations and orthogonal transformations of complex four-
vectors. We review Lévay’s [18] derivation of the three- and
two-tangles as invariants of a six-component Plücker vec-
tor. In Sec. IV we introduce a modification of the Plücker

vector that will allow us to efficiently investigate two-qubit
entangling operations. We derive the evolution of this new
Plücker vector (which we call q vector) under a general
two-qubit coupling Hamiltonian. In Sec. V we show how
the q-vectors for each partitioning of the three qubits behave
like Bloch vectors. In Sec. VI, we show the relationship of
the q-vectors in each qubit partitioning to each other, and
show that systems reduce down to three complex Bloch-like
three-vectors A, B, C. In Sec. VII, we show how the three-
and two-tangles are related to invariants of A, B, C. After the
previous mathematical reduction of three-qubit operations as
transformations of the relevant Bloch-like vectors A, B, C,
in Sec. VIII we show how nonintuitive entanglement control
and manipulation in quantum state space is greatly facilitated
by intuitive operations in q space. As nontrivial examples we
show how one can transform a W state into a GHZ state,
a biseparable state into a GHZ state, and a W state into a
biseparable state. In Sec. IX we present a discussion of our
work and indicate avenues for future research.

II. PLÜCKER VARIABLES: DEFINITION

Consider a pure three-qubit state,

|ψ〉 =
∑

i, j,k=0,1

ci jk|i, j, k〉. (1)

Ignoring normalization, eight coefficients ci jk belong to
a linear complex eight-dimensional space C8. Single-qubit
operators V(a,b,c) ⊂ SL(2, C), acting on qubits a, b, and c cor-
respondingly, induce transformations of coefficients ci jk →
c′

i jk given by

c′
i jk =

∑
n=0,1

V (a)
in V (b)

jm V (c)
kp cnmp. (2)

In matrix notations

C(1,2,3) → C(1,2,3)[V(a,b,c)]T . (3)

Three 4 × 2 matrices C(1,2,3) emerge due to three bipartite
arrangements of qubits: a(bc), b(ca), and c(ab). We label
these partitions in Eq. (3) as 1, 2, and 3 (note: for ease of
notation, C(1,2,3) refers collectively to any of matrices C(1),
C(2), or C(3) constructed for all three partitions). We will con-
sistently use the following notation rule concerning labeling
partitions and qubits: operators and variables referring to a
specific partition have partition number as a superscript; at the
same time letter superscripts (a), (b), (c), (bc), (ca), and (ab)
denote operators acting on specific qubits or pairs of qubits.
For example, operator V(a) in Eq. (3) is a 2 × 2 matrix of
the local operator acting on qubit (a), while C(1) refers to a
4 × 2 matrix arrangement of state coefficients ci jk specific for
partition a(bc). This matrix is given by the equation

C(1) = (
c(1)

0 , c(1)
1

)
,

c(1)
0 = (c000, c001, c010, c011)T , (4)

c(1)
1 = (c100, c101, c110, c111)T .

Matrices C(2) and C(3) are generated by cyclic permuta-
tions of subscript indexes i jk → jki → ki j and simultaneous
cyclic change of partition number 1 → 2 → 3 in Eq. (4).
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Since Det (V(a,b,c) ) = 1, subdeterminants of matrices C(1),
C(2), and C(3) do not change under transformations given
by Eq. (3). These subdeterminants are quadratic polynomial
invariants of local transformations acting on qubits a, b, and c,
correspondingly. However, subdeterminants of C(1), C(2), and
C(3) will change under local transformations acting on qubits
b or c, qubits c or a, and qubits a or b, correspondingly. In
other words, subdeterminants of C(1), C(2), and C(3) generate
three sets of six quadratic polynomials; each of these sets
is invariant only under corresponding single-qubit groups of
local operations. All entanglement parameters of three-qubit
states, except for the Kempe invariant [10], can be expressed
in terms of Plücker variables. We will show a natural method
of constructing symmetric partition-independent description
of three-qubit measures of mutual entanglement.

From a geometric point of view one can associate a
set of subdeterminants with Grassmannian manifolds [18].
Subdeterminants of C(1,2,3) = (c(1,2,3)

0 , c(1,2,3)
1 ) provide ho-

mogeneous (Plücker) coordinates on the G(2, 4, C) manifold.
Explicitly, we have

P (1)
(n,m),(k,l ) = c0,n,mc1,k,l − c1,n,mc0,k,l ,

P (2)
(n,m),(k,l ) = cm,0,ncl,1,k − cm,1,ncl,0,k,

P (3)
(n,m),(k,l ) = cn,m,0ck,l,1 − cn,m,1ck,l,0.

(5)

To simplify notations we use decimal-binary conversion
by introducing indexes r = 2n + m + 1 and r′ = 2k + l + 1,
r, r′ = 1, . . . , 4, such that

P(1,2,3)
r,r′ = P (1,2,3)

(n,m),(k,l ). (6)

Since P(1,2,3)
n,m = −P(1,2,3)

m,n each matrix P(1,2,3) has only six
independent parameters which can be rearranged in the form
of vectors p(1,2,3) ∈ C6,

p(s) = (
P(s)

1,2, P(s)
1,3, P(s)

1,4, P(s)
2,3, P(s)

2,4, P(s)
3,4

)T
, s = 1, 2, 3. (7)

As we know [28] there exists an additional constraint on
these variables called Plücker relation. In terms of vectors
p(1,2,3), given by Eq. (7), this relation can be written as a
bilinear quadratic form

pT · � · p = 0. (8)

Here the symmetric 6 × 6 matrix � has six nonzero antidi-
agonal entries,

�1,6 = �3,4 = �4,3 = �6,1 = 1, �2,4 = �4,2 = −1. (9)

Invariance of Plücker variables under local transforma-
tions, including nonunitary SL(2, C) operators, make them
instrumental in the geometric description of entanglement
properties of multiqubit systems [17–20,22]. For example,
Plücker coordinates provide a link between twistor theory
and geometric description of different classes of entanglement
[18].

III. PLÜCKER INVARIANT FORMS FOR TWO-QUBIT
LOCAL TRANSFORMATIONS AND

SL(2, C) ⊗ SL(2, C) ≡ SO(4, C) ACCIDENTAL LIE
GROUP ISOMORPHISM

Special linear SL(2) groups emerge naturally as an ex-
tension of the SU(2) group in the context of single-qubit
operations involving measurements [see, for example, review
[2], third paragraph after Eq. (101)].

To simplify equations in this section we chose a specific
partition (1)-a(bc). Equations for partitions (2)-b(ca) and (3)-
c(ab) are obtained by trivial cyclic relabeling of qubits.

A key mathematical relation in this section is the isomor-
phism between the Lie group of local operators SL(2, C)(b) ⊗
SL(2, C)(c) acting on qubits b and c and the group of complex
orthogonal rotations SO(4, C), acting on vectors c(1)

0 , c(1)
1 ⊂

C4 defined by Eq. (4). To fix notations, Lie algebra sl(2, C)
is spanned, as a linear space over real numbers, by a set
of six traceless complex matrices, which may be chosen to
be iσx,y,z and σx,y,z, for example. Skew Hermitian matrices
iσx,y,z span compact su(2) subalgebra (also known as Lorentz
rotations) of sl(2, C) and the set σx,y,z (boosts) generates
the Cartan complement ℘. Lie algebra sl(2, C) = su(2) ⊕℘.
Commutators [su, su] close in su, [su,℘] close in ℘ and [℘,℘]
close in su.

Importance of the isomorphism between two-qubit lo-
cal unitary transformation and SO(4) Lie group for clas-
sification of two-qubit unitary entangling transformations
was established in series of papers [23,24]. At the level
of Lie algebra we have su(2)(b) ⊕ su(2)(c) ≡ so(4, R). Since
complexification of su(2) [sometimes denoted as su(2)C] is
apparently isomorphic to sl(2, C), the complexification of
su(2)(b) ⊕ su(2)(c) is isomorphic to so(4, C), i.e., sl(2, C)(b) ⊕
sl(2, C)(c) ≡ su(2)(b)

C ⊕ su(2)(b)
C ≡ so(4, C).

The so(4, C) Lie algebra is a 12-dimensional lin-
ear space of antisymmetric complex matrices. The iso-
morphism between sl(2, C)(b) ⊕ sl(2, C)(c) and so(4, C)
takes a trivial form in the magic Bell basis [29]
representation: |�+〉 = −i/

√
2(|0, 1〉bc + |1, 0〉bc), |�−〉 =

−1/
√

2(|0, 1〉bc−|1, 0〉bc), |�−〉=−i/
√

2(|0, 0〉bc − |1, 1〉bc),
|�+〉 = 1/

√
2(|0, 0〉bc + |1, 1〉bc). The corresponding unitary

transformation matrix is

UB = 1√
2

⎛
⎜⎝

0 i i 0
0 −1 1 0
i 0 0 −i
1 0 0 1

⎞
⎟⎠. (10)

In the Bell basis a generator χ ∈ sl(2, C)(b) ⊕ sl(2, C)(c)

takes the form χB = UBχU†
B. Twelve sl(2, C)(b) ⊕

sl(2, C)(c) generators (1(b) ⊗ σ (c)
x,y,z, i1(b) ⊗ σ (c)

x,y,z, σ (b)
x,y,z ⊗

1(c), iσ (b)
x,y,z ⊗ 1(c)) map onto a set of 12 complex-valued

antisymmetric matrices spanning so(4, C): 1(b) ⊗ σ (c)
z →

−1 ⊗ σy, σ (b)
x ⊗ 1(c) → −σx ⊗ σy, σ (b)

y ⊗ 1(c) → −σy ⊗ 1z,
σ (b)

z ⊗ 1(c) → σz ⊗ σy, 1(b) ⊗ σ (c)
x,y → −σy ⊗ σx,z. Note that

vectors Z and W introduced in Ref. [18] are equal to
Z = UBc(1)

0 , W = UBc(1)
1 . In the Bell basis antisymmetric

matrix P(1) from Eq. (6) takes the form

P(1)
B = UBP(1)UT

B . (11)
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Matrix elements P(1)
B,i, j = ∑4

m,k=1 UB,i,mP(1)
m,k UB, j,k can be

also expressed as P(1)
B,i, j = ZiWj − ZjWi. Note that P(1)

B is also
an antisymmetric matrix.

For an arbitrary local operator V ∈ SL(2, C)(b) ⊗
SL(2, C)(c) inducing an action c(1)

0,1 → c(1)′
0,1 = Vc(1)

0,1 matrix
P(1) transforms as P(1) → P(1)′ = V P(1) V T . Since in
the Bell basis operator V takes the form of canonical
SO(4, C) operator VB = UBVU†

B obeying a standard relation
VT

B = V−1
B , transformation of Plücker matrix P(1)

B takes an
explicit form of an adjoint SO(4, C) action

P(1)
B → P(1)′

B = VB P(1)
B V−1

B . (12)

Induced transformations of six-dimensional Bell basis
Plücker vector pB, defined in Eq. (7), generates a six-
dimensional irreducible adjoint representation of SO(4, C).

Since SO(4, C) preserves the dot product, for any two
matrices PB and RB, obeying transformation relation (12),
we have Tr(PBRB) = Tr(P′

BR′
B). Since Tr(PBRB) = −2pB ·

rB = −2
∑

i pB,irB,i, the (standard Euclidean) dot product be-
comes an invariant pB · rB = p′

B · r′
B, in particular, pB · pB =

p′
B · p′

B. Taking into account that both vectors p(1) and p(1)
B

by design do not change under the SL(2, C)(a) set of op-
erations acting on qubit a, the dot product p(1)

B · p(1)
B rep-

resents a three-qubit SL(2, C)(a) ⊗ SL(2, C)(b) ⊗ SL(2, C)(c)

polynomial invariant. Peter Lévay found that a three-tangle
[15] is equal to four times the absolute value of this
invariant,

τabc = 4
∣∣p(1)

B · p(1)
B

∣∣
= 4

[(
Re

[
p(1)

B · p(1)
B

])2 + (
Im

[
p(1)

B · p(1)
B

])2]1/2
. (13)

Plücker Bell basis vectors in Eq. (13) are elements of C6

space [satisfying additional constraint (8)]. As described in the
next section Eq. (13) can be rewritten in the form of equation
involving only two real-valued vectors from R3 space (for
each partition). These vectors obey transformation properties
identical to Bloch vectors describing single-qubit states. In the
next section we will also clarify an algebraic relation between
three vectors p(1,2,3) related to three possible partitions of
the three-qubit system and we show that partition invariance
of the three-tangle |p(1)

B · p(1)
B | = |p(2)

B · p(2)
B | = |p(3)

B · p(3)
B | re-

duces to a trivial relation between a set of vectors in R3

space.
The complex SO(4, C) group does not preserve the Her-

mitian norm 〈pB | pB〉. However, if SL(2, C)(b) ⊗ SL(2, C)(c)

action is restricted to SU(2)(b) ⊗ SU(2)(c) then SO(4, C)
reduces to a real form SO(4, R) and the Hermitian norm
〈pB | pB〉 ≡ 〈p | p〉 = ∑

i p∗
i pi becomes a three-qubit local

invariant quantity. It turns out that algebraically it repro-
duces the (squared) concurrence between qubits a and
(bc) [18],

τa(bc) = 4Detρa ≡ 4Detρbc = 4〈p(1) | p(1)〉 = 4 p∗(1) · p(1).

(14)
Equations (13) and (14) explicitly demonstrate a close

relation between Plücker coordinates and entanglement prop-
erties of a three-qubit system. In this paper we use alge-
braic technique based on homomorphism between SU(4) and
SO(6) to derive a new set of Plücker coordinates, which we

call q-vectors. These vectors are obtained by a special linear
transformation of the original Plücker coordinates. Strictly
speaking, the set of three vectors q(1,2,3), describing three
possible qubit partitions, consists of 18 complex numbers.
However, due to a very simple interpartition relation between
q(1), q(2), and q(3) all information about entanglement proper-
ties of the system is encoded in only three three-dimensional
complex vectors. We denote these vectors as A, B, and C.
Under local single-qubit operations on qubits a, b, and c
vectors A, B, and C evolve exactly as if these vectors are
single-qubit Bloch vectors. However, in contrast to Bloch
vectors, pairwise coupling between qubits results in coupling
between corresponding pair of vectors A, B, and C. Inter-
estingly, two-tangles τ(bc), τ(ca), and τ(ab) can be identified
with (squares) of magnitudes or imaginary parts (AI ) of these
vectors, for example τ(bc) = 8AI · AI . We also found that
spatial orientation of these three-vectors determines which
two-qubit coupling operators are required for entanglement
control. We illustrate this technique by using Plücker q repre-
sentation for finding an efficient two-qubit coupling sequence
for (i) transforming a W state to a GHZ state, (ii) trans-
forming W state to biseparable state, and (iii) transforming
biseparable state to GHZ state. These are nontrivial quantum
state transformations that, we shall show, are greatly aided
by the introduction of geometric Bloch-type description using
q variables.

IV. TRANSFORMATION OF PLÜCKER VARIABLES
UNDER A SET OF SU(4) TWO-QUBIT ENTANGLING

OPERATIONS: INTRODUCING MODIFIED
PLÜCKER VARIABLES

In this section we address the problem of transformation
of Plücker variables p(1), p(2), and p(3) under SU(4) two-
qubit operations acting on subsystems (bc), (ca), and (ab)
correspondingly. It happens that an answer to this problem
also provides a key to establishing a relation between 18
homogeneous polynomials p(1,2,3)

1,2...6 corresponding to Plücker
coordinates for all three partitions.

To address the problems of SU(4) action on vectors p(1,2,3)

we will reformulate this problem at the level of su(4) Lie
algebra. An arbitrary operator U = e−iH ∈ SU(4) can be gen-
erated by a continuous evolution V(t ) = e−iHt with a time-
like parameter t changing from 0 to 1 such that U = V(t =
1). Matrix H is usually interpreted as a physical Hamilto-
nian, generator iH ∈ su(4). Let us denote matrix entries of
the Hamiltonian of subsystem (bc) as H (bc)

n,k , n, k = 1, ..., 4.

Taking into account that id/dtc(1)
0,1 = H(bc)c(1)

0,1, evolution of
the Plücker matrix P(1) [Eq. (6) is given by id/dtP(1)

n,m =
H (bc)

n,k P(1)
k,m + H (bc)

m,k P(1)
n,k . In matrix notation,

id/dtP(1) = H(bc)P(1) + P(1)H(bc)T
. (15)

The corresponding six-dimensional complex vector p(1)

defined in Eq. (7) satisfies the following evolution equation:

id/dtp(1) =H̃(bc) p(1) . (16)
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The Hamiltonian H̃(bc) is a 6 × 6 matrix,

H̃(bc) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
H (bc)

11 + H (bc)
22

)
H (bc)

23 H (bc)
24 −H (bc)

13 −H (bc)
14 0

H (bc)
32

(
H (bc)

11 + H (bc)
33

)
H (bc)

34 H (bc)
12 0 −H14

H (bc)
42 H (bc)

43

(
H (bc)

11 + H (bc)
44

)
0 H (bc)

12 H (bc)
13

−H (bc)
31 H (bc)

21 0
(
H (bc)

22 + H (bc)
33

)
H (bc)

34 −H (bc)
24

−H (bc)
41 0 H (bc)

21 H (bc)
43

(
H (bc)

22 + H (bc)
44

)
H (bc)

23

0 −H (bc)
41 H (bc)

31 −H (bc)
42 H (bc)

32

(
H (bc)

33 + H (bc)
44

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Lie algebra defined by Eq. (17) is a 15-dimensional (the
number of independent real components of the Hermitian
matrix H(bc)) subalgebra of 35-dimensional Lie algebra su(6).
This subalgebra is a six-dimensional representation of su(4)
generated by H(bc) acting on vectors c(1)

0,1. If H is Hermitian
then H̃ is also Hermitian and 〈 p(1) | p(1)〉 = const. One can
also verify that if iH ∈ sl(4, C) then iH̃ ∈ sl(6, C) because
Tr(H̃) = 3 Tr(H) from (17). As we discuss below in the
case when iH matrices generate a set of SU(4) unitary two-
qubit transformations Lie algebra (17) is isomorphic to so(6).
However, to map (17) onto a canonical form whereby so(6)
is represented by real-valued antisymmetric 6 × 6 matrices
one has to identify a proper similarity transform. To find this
transformation we analyze an additional invariant of dynamic
equation (16) associated with Plücker identity, Eq. (8).

One can easily verify that H̃T � + � H̃ = Tr(H) �. For
generators iH from su(4) or sl(4) algebras Tr(H) = 0, con-
sequently

H̃T � + � H̃ = 0. (18)

By differentiating bilinear quadratic form xT � y using (16)
and (18) one can immediately verify that xT � y is an invariant
bilinear form characterizing the group of transformations
generated by matrices defined by Eq. (17).

The diagonal form �D of the symmetric real-valued ma-
trix � contains three positive (+1) diagonal elements and
three negative elements (−1). Therefore matrices iH̃ span a
subalgebra of so(3, 3, C) [a complexification of so(3, 3) pseu-
doorthogonal Lie algebra]. Algebra so(3, 3, C) is isomorphic
to algebra so(6, C) which comprises a real-valued so(6, R)
algebra as a maximal compact subgroup (for technical details
see, for example, [30]). For a set of matrices defined by
Eq. (17) we have iH̃ ⊂ so(6, C) ∩ su(6) ≡ so(6, R). In other
words, the six-dimensional representation of su(4) algebra
provided by Eq. (17) is isomorphic to so(6) algebra. Notice
that at the level of Lie groups we have homomorphism be-
tween SU(4) and SO(6) groups SO(6) ≡ SU(4)/Z2, analo-
gous to a well-known homomorphism between SU(2) and
SO(3) groups (see, for example, [25]).

In order to map generators (17) onto a canonical so(6) form
of real-value antisymmetric matrices we find unitary matrix
Upq such that UT

pq �Upq = 1. Then variables pi are expressed
as a linear combination of a new set of variables qi as follows:

p(1,2,3) = Upqq(1,2,3); q(1,2,3) = U†
pqp(1,2,3). (19)

The matrix Upq is given by

Upq = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

i 1 0 0 0 0
0 0 0 −1 i 0
0 0 −i 0 0 1
0 0 i 0 0 1
0 0 0 1 i 0
−i 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (20)

In the space of variables qi the invariant bilinear form
xT � y reduces to a standard dot product,

pT � p′ = (Upqq )T �Upqq′ = q · q′. (21)

Dynamic equation (16) takes the form

d/dtq(1) = − i U†
pqH̃(bc) Upqq(1) . (22)

As we explicitly show in the next section, matrices
−i U†

pqH̃(bc) Upq are real antisymmetric matrices generating
orthogonal SO(6) rotations in six-dimensional space of com-
plex vectors q(1). This is a simple consequence of the fact that
the bilinear invariant form associated with dynamic equation
(22) is a standard Euclidian dot product as described in
Eq. (21).

The structure of the SO(6) group is directly related to
the properties of the original SU(4) group [25–27,30–32].
Consider the most physically important subgroup of SU(4)—
a group of local SU(2) ⊗ SU(2) transformations. The im-
age of this subgroup in SO(6) is a SO(3) × SO(3) block-
diagonal subgroup, i.e., a pair of SO(3) matrices acting
in three-dimensional subspaces (q1, q2, q3) and (q4, q5, q6).
Next, there are nine two-qubit coupling generators iσ (b)

x,y,zσ
(c)
x,y,z.

These generators span a Cartan complement of su(2) ⊕ su(2)
subalgebra of su(4) [23,24]. These coupling terms take the
form of nine 3 × 3 off-diagonal submatrices of so(6), repre-
senting a Cartan complement of so(3) ⊕ so(3) subalgebra of
so(6). To demonstrate these properties explicitly we represent
the Hamiltonian H(bc) as a sum of single-qubit operators σ (b)

x,y,z,
σ (c)

x,y,z and nine coupling terms σ (bc)
xx,xy...zz. Then we substitute

that expression in Eq. (22) and simplify it. To carry this
calculation in a meaningful fashion one needs to establish a
map between su(4) and generators and so(6) generators.

V. SO(6) DYNAMICS OF q VARIABLES: A GENERAL
CASE OF QUBIT-QUBIT COUPLING

First we arrange su(4) generators in the form of an
antisymmetric 6 × 6 matrix; each element of this ma-
trix contains one of 15 su(4) generators (mathemati-
cal details for constructing such a matrix are presented
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in the Appendix):

t(bc) = iτ (bc) = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −σ (b)
z σ (b)

y σ (bc)
xx σ (bc)

xy σ (bc)
xz

σ (b)
z 0 −σ (b)

x σ (bc)
yx σ (bc)

yy σ (bc)
yz

−σ (b)
y σ (b)

x 0 σ (bc)
zx σ (bc)

zy σ (bc)
zz

−σ (bc)
xx −σ (bc)

yx −σ (bc)
zx 0 −σ (c)

z σ (c)
y

−σ (bc)
xy −σ (bc)

yy −σ (bc)
zy σ (c)

z 0 −σ (c)
x

−σ (bc)
xz −σ (bc)

yz −σ (bc)
zz −σ (c)

y σ (c)
x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

For convenience in Eq. (23) we also included a Hermitian
form τn,m of generators tn,m. It turns out that commutation
relations for operators t(bc)

n,m take a closed analytical form,

[tn,m, tk,p] = 2(δm,ptn,k + δn,ktm,p − δm,ktn,p − δn,ptm,k ).
(24)

Equation (24) defines structure coefficients for su(4) al-
gebra. These coefficients are identical to structure coeffi-
cients of so(6) algebra: choose 15 generators ln,m of so(6)
algebra to be 6 × 6 real antisymmetric matrices with matrix
entries (ln,m)i, j = −δi,nδ j,m + δi,mδ j,n. Commutation relations
for these matrices (multiplied by a factor of 2) exactly repro-
duce Eq. (24),

[2 ln,m, 2 lk,p]

= 2(δm,p2 ln,k + δn,k2 lm,p − δm,k2 ln,p − δn,p2 lm,k ). (25)

Thereby we have Lie algebra isomorphism tn,m ↔ 2ln,m.
Notice that e2π lm,k = 1, while eπtm,k = −1, i.e., SO(6) is iso-
morphic to a quotient group SU(4)/Z2 (here Z2 is a group
consisting of numbers 1 and −1).

Matrices τ
(bc)
2,1 , τ

(bc)
3,1 , τ

(bc)
3,2 ... τ

(bc)
6,5 defined in Eq. (23) form

a complete orthogonal basis in the space of Hermitian 4 × 4
matrices: Tr(τn,mτ p,q) = 4δn,pδm,q, m < n. The Hamiltonian
H(bc) can be represented in the form of a sum over generators
τ (bc)

n,m as follows:

H(bc) =
6∑

n=2

n−1∑
m=1

f (bc)
n,m τ (bc)

n,m . (26)

Here

f (bc)
n,m = 1/4Tr

[
H(bc)τ (bc)

n,m

]
. (27)

Matrices τ (bc)
n,m are Hermitian and for Hermitian Hamilto-

nians H(bc) coefficients f (bc)
n,m are all real-valued. While for

simplicity we assume that the sum in Eq. (26) runs only over
m < n, one can formally expand definition (27) to arbitrary
values of indices m = 1, 2...6 and n = 1, 2...6. Since accord-
ing to definition (23) τ (bc)

n,m = −τ (bc)
m,n , we have fn,m = − fm,n

and 6 × 6 matrix f , consisting of elements fn,m, represents
an antisymmetric real-valued generator from so(6) algebra
f ∈ so(6).

Substituting expression (26) in Eq. (22) and performing a
set of simplifications we obtain a standard form of evolution

equation describing SO(6) rotations

d

dt
q(1,2,3)

n = 2
6∑

m=1

f (bc,ca,ab)
n,m q(1,2,3)

m , n = 1, 2...6. (28)

For the sake of clarity, we have explicitly included in
Eq. (28) all three partitions.

Notice that local Hamiltonian of qubit b appears only in the
upper 3 × 3 block of matrix f : H(b) = 1/2

∑3
n,m=1 f (bc)

n,m τ (bc)
n,m .

Local SU(2)(b) transformations on qubit b affect only co-
efficients q(1)

1 , q(1)
2 , and q(1)

3 . Qubit b transformations are
generated by a group of SO(3) rotations represented by a
set of orthogonal 3 × 3 matrices embedded in the upper-
diagonal 3 × 3 block of SO(6) matrix. Similarly, SU(2)(c)

acting on qubit c are generated by a lower 3 × 3 block
of matrix f , H(c) = 1/2

∑6
n,m=4 f (bc)

n,m τ (bc)
n,m such that transfor-

mations acting on qubit c act only on q(1)
4 , q(1)

5 , and q(1)
6

components of vector q(1), leaving q(1)
1 , q(1)

2 , and q(1)
3 in-

tact. Apparently, generators from these two blocks com-
mute with each other, as do local Hamiltonians H(b) and
H(c). Coupling operations between qubits c and b are repre-
sented by a 3 × 3 off-diagonal block of matrix f (bc): H(bc) =∑6

n=4

∑3
m=1 f (bc)

n,m τ (bc)
n,m . In other words, under the SU(4) →

SO(6) map the SU(2)(b) ⊗ SU(2)(c) subgroup of SU(4)(bc)

takes the block-diagonal form of SO(3)(b) × SO(3)(c) sub-
group of SO(6)(b,c).

Suppose that for the problem of entanglement control a
certain transformation R ∈ SO(6) should be implemented in
the space of Plücker q(1) coordinates (22). The corresponding
physical Hamiltonian H(bc) which will drive this transforma-
tion can be obtained via Lie algebra isomorphism tn,m ↔
2ln,m. If transformation R is represented in the exponential
form R = exp(

∑
n,m xn,mln,m) a desired physical transforma-

tion acting in the Hilbert space of qubits b and c is given by
UR = exp(1/2

∑
n,m xn,mtn,m) where a set of coefficients xn,m

is exactly the same as for matrix R. The physical Hamilto-
nian driving the desired quantum transformation is H(bc) =
1/2

∑
n,m xn,mτn,m. If several sequential control operations

are being implemented such that R = RnRn−1...R1 then due
to Lie group homomorphism we have UR = URn URn−1 ...UR1 .
Such a situation is ubiquitous in control theory. For exam-
ple, Cartan KAK ′ representation [23,24] of an arbitrary two-
qubit operation requires a decomposition of control operation
onto a product of a sequence of two-qubit local operation
and a coupling operation followed again by two-qubit local
transformation. Note that inverse operation of finding matrix
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RU ∈ SO(6) for a given matrix U ∈ SO(6) does not necessar-
ily require representing U in the exponential form because it
can be achieved via algebraic technique involving Pfaffians,
for example [33].

VI. BLOCH SO(3) EVOLUTION EQUATIONS
AND INTERPARTITION RELATIONS FOR

PLÜCKER q VARIABLES

Let us first introduce notations adequately reflecting the
fact that vector space of q(1) coordinates is physically parti-
tioned into two three-dimensional subspaces due to the fact
that local operations generated by Hamiltonians h(b) and h(c)

are completely decoupled being represented by 3 × 3 subma-
trices in Eq. (28).

Three possible qubit arrangements, a(bc), b(ca), and
c(ab) produce three sets of six-dimensional complex vec-
tors q(1,2,3) = (q(1,2,3)

1 , q(1,2,3)
2 ..., q(1,2,3)

6 ). Let us partition six-
dimensional vectors q(1,2,3) into pairs of three-dimensional
vectors α(1,2,3) and β(1,2,3):

α(1,2,3) = (
q(1,2,3)

1 , q(1,2,3)
2 , q(1,2,3)

3

)
,

β(1,2,3) = (
q(1,2,3)

4 , q(1,2,3)
5 , q(1,2,3)

6

)
. (29)

Plücker q vectors are represented as a direct sum q(s) =
α(s) ⊕ β(s), s ∈ (1, 2, 3). Notations (29) facilitate deriving re-
lations connecting Plücker variables for all three partitions.

Consider local operation SU(2)(a) on qubit a. Its action
on Plücker q variables is represented by SO(3)(a) real 3 × 3
submatrix and it affects only two vectors, α(3) and β(2). Evolu-
tion of these vectors is induced by one local Hamiltonian h(a).
Dynamic equation (28), written for partitions 3 and 2, reduces
to a Bloch-type evolution equation for vectors α(3) and β(2),

d

dt
x = 2�(a) × x; x = α(3),β(2), (30)

where real three-dimensional vector �(a) is defined
via coefficients of matrix f appearing in Eq. (28) for
partitions c(ab) and b(ca): �(a) = ( f (ab)

32 ,− f (ab)
31 , f (ab)

21 ) ≡
( f (ca)

54 ,− f (ca)
64 , f (ca)

65 ). The local Hamiltonian driving qubit a
is simply h(a) = �(a) · σ . Notice that the Bloch vector of
qubit a, defined as m(a)

n = Tr(ρaσn), n = 1, 2, 3, satisfies a
dynamic equation identical to Eq. (30): ṁ(a) = 2�(a) × m(a).
Since vectors α(3) and β(2) undergo the same SO(3) evolution
one may expect that α(3) and β(2) are algebraically related.
Indeed, comparing these vectors expressed as polynomials
in coefficients ci, j,k given by Eqs. (5), (19), and (20) we
find that β(2) = −iα(3). This relation establishes a trivial
linear dependence between vectors α(3) and β(2) consistent,
obviously, with dynamic Eq. (30). Likewise, for other
configurations we get cyclic interpartition relations

β(1) = −iα(2); β(2) = −iα(3);

β(3) = −iα(1) ⇒ q(1) = (α(1),−iα(2) ),

q(2) = (α(2),−iα(3) ),

q(3) = (α(3),−iα(1) ). (31)

Evidently, the full set of three six-dimensional q-vectors
reduces to a set of three linearly independent three-
dimensional complex vectors. For simplicity, one can take

these vectors to be α(1), α(2), and α(3). Equations (31) establish
a link between Plücker q-vectors for all three-qubit configura-
tions.

An additional relation satisfied by Plücker variables is
identity (8), which due to Eq. (21) takes the form q · q =
0. Therefore, for all partitions α(n) · α(n) = −β(n) · β(n), n =
1, 2, 3. Combining this relation with Eq. (31) we get

α(1) · α(1) = α(2) · α(2) = α(3) · α(3) = −β(1) · β(1)

= −β(2) · β(2) = −β(3) · β(3). (32)

At this point we would like to introduce notations reflecting
physical meaning of equations involving vectors α(1), α(2),
and α(3) [vectors β(1,2,3) are related to vectors α(1,2,3) via
Eq. (31)]. Local rotations of qubit b are affecting vector α(1)

in q(1) = (α(1),β(1) ) ≡ (α(1),−iα(2) ) in partition (1)-a(bc).
Therefore, we denote it as α(1) = B. Next, vector α(3) in q(3) =
(α(3),β(3) ) ≡ (α(3),−iα(1) ) in partition (3)-c(ab) is rotated by
local operations on qubit a, so we denote α(3) = A. Finally,
vector α(2) in q(2) = (α(2),β(2) ) ≡ (α(2),−iα(3) ) in partition
(2)-b(ca) so we denote it as α(2) = C. These notations also
adequately reflect coupling between qubits: h(bc) couples vec-
tors B and C, h(ca) couples C and A, etc. In new notations
Eq. (32) takes the form A · A = B · B = C · C.

VII. RELATION BETWEEN PLÜCKER q VARIABLES
AND ENTANGLEMENT PARAMETERS

Let us establish a connection between Plücker q variables
and quantities characterizing entanglement in the system of
three qubits. First, consider the evolution of complex vector
B ≡ α(1) under local operations on all three qubits. Note that
from (31), vector α(1) appears in q(1) in partition (1)-a(bc)
and in q(3) in partition (3)-c(ab). Therefore, vector B does
not change under local operations on qubit a because Plücker
vectors p(1) as well as q(1) do not change (by design) under
the action of operations on qubit a in partition (1). Similarly,
vector B also is not affected by local operations acting on
qubit c in partition (3), as discussed above. Vector B changes
its orientation under local operations on qubit b. However,
these transformations, being represented by SO(3) matrices,
do not affect the dot product B · B. Therefore B · B represents
a polynomial three-qubit invariant. Indeed, a straightforward
comparison of three-tangle τabc [15] and B · B reveals that
τabc = 8|B · B|. In view of equality (32) we immediately have
partition-independent definition of a three-tangle:

τabc = 8|B · B| = 8|C · C| = 8|A · A|. (33)

Now we evaluate (squared) concurrences τa(bc), τc(ab),

τb(ca), Eq. (14). Since vectors p and q are related by unitary
transformation (19) we have 〈p | p〉 = 〈q | q〉 and Eq. (14)
takes a partition-symmetric form

τa(bc) = 4q(1)∗ · q(1) = 4(B∗ · B + C∗ · C),
τb(ca) = 4q(2)∗ · q(2) = 4(C∗ · C + A∗ · A),
τc(ab) = 4q(3)∗ · q(3) = 4(A∗ · A + B∗ · B).

(34)

As one expects, (squared) concurrence τa(bc) does not
change under the full set of SU(4)(bc) operations, which are
represented as SO(6, R)(bc) rotations acting on vectors q(1) =
(α(1),β(1) ) ≡ (B,−iC).
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In order to establish a relation between vectors q(1,2,3) and
Wootters two-tangles τ(bc),(ac),(ba) we need to make one more
algebraic transformation of vectors A, B, C. An intuitive driv-
ing idea is to make the dot product entering Eq. (33) purely
real. For example, for vector A we have A2 = A2

R − A2
I +

2iAR · AI , where AR = ReA and AI = ImA. So, one would
wish to orthogonalize vectors AR and AI such that AR · AI =
0. This can be achieved by multiplying the wave function by a
global phase. Alternatively, instead of a global phase one can
introduce additional phase factor directly in the definition of
variables P (1,2,3)

(n,m),(k,l ) in Eq. (5). In any case, such an operation
does not require any actual physical transformation applied to
the system.

Multiplication of wave function coefficients ci, j,k in Eq. (1)
by a phase factor eiφ results in modification of vectors q(1,2,3)

by a factor e2iφ . As a result vector A becomes A = Ae2iφ ,

AR · AI = cos (4φ)AR · AI + 1
2 sin (4φ)

(
A2

R − A2
I

)
. (35)

For the phase

φ = −1/4 arctan
[
2ARAI

(
A2

R − A2
I

)−1]
(36)

the dot product AR · AI vanishes. Alternatively, one can
require the dot product A · A = e4iφA · A to be purely real by
choosing the phase φ as φ = −1/4 arg(A2), which is identical
to Eq. (36). Interestingly, for the gauge φ = −1/4 arg(A2) dot
products BI · BR and CI · CR vanish as well: relation AI ·
AR = BI · BR = CI · CR = 0 is a trivial consequence of the
Plücker identity (8) which is equivalent to A · A = B · B =
C · C.

Assuming, by default, that phase transformation was im-
plemented in such a way that |AR| � |AI |, |BR| � |BI |, and
|CR| � |CI | we have

τabc = 8(AR · AR − AI · AI ) = 8(BR · BR − BI · BI )

= 8(CR · CR − CI · CI ). (37)

Concurrences (34) are given by

τa(bc) = 4(BR · BR + BI · BI + CR · CR + CI · CI ), (38a)

τb(ac) = 4(AR · AR + AI · AI + CR · CR + CI · CI ), (38b)

τc(ab) = 4(AR · AR + AI · AI + BR · BR + BI · BI ). (38c)

Next, we use Coffman-Kundu-Wootters relation [15]
which reads

τabc = τa(bc) − τ(ac) − τ(ab). (39)

Rearranging terms in Eq. (37) we can represent the three-
tangle as τabc = 4(BR · BR − BI · BI + CR · CR − CI · CI ).
Combining this equation with the first equation in Eqs. (38)
and (39) we have

8(BI · BI + CI · CI ) = τ(ac) + τ(ab). (40)

Repeating this operation for other partitions we also get

8(AI · AI + CI · CI ) = τ(bc) + τ(ab),

8(BI · BI + AI · AI ) = τ(ac) + τ(bc). (41)

Solving the system of Eqs. (40) and (41) for τ(ab), τ(ac), and
τ(bc) we have

τ(bc) = 8AI · AI , τ(ac) = 8BI · BI , τ(ab) = 8CI · CI . (42)

For real parts of vectors AR,BR,CR we also get

8AR · AR = (τabc + τ(bc) )

8BR · BR = (τabc + τ(ac) ), (43)

8CR · CR = (τabc + τ(ab) ).

One can also derive a gauge-independent form of
Eqs. (42). For example, for vector A we have AR · AR +
AI · AI ≡ A · A∗ and AR · AR − AI · AI = |A · A| =
[(AR

2 − AI
2)

2 + (2AR · AI )2]1/2 such that AI · AI =
1/2(A · A∗ − |A · A|) and AR · AR = 1/2(A · A∗ + |A · A|).
Equations (42) takes gauge-invariant form

τ(bc) = 1
4 (A · A∗ − |A · A|),

τ(ac) = 1
4 (B · B∗ − |B · B| , (44)

τ(ab) = 1
4 (C · C∗ − |C · C|) .

One can verify that gauge-invariant equations (33), (34),
and (44) result in the Coffman-Kundu-Wootters relation (39).

Let us summarize our main result in this section.
(1) We find that the complete set of Plücker coor-

dinates comprised of variables calculated for all three
partitions contains three pairs of real-value 3D vectors
AR,AI ,BR,BI ,CR,CI .

(2) Magnitudes of these vectors determine all three concur-
rences, the two-tangles, and the three-tangle.

(3) Under local SU(2) operations these vectors behave
exactly like a Bloch vector for corresponding qubits. Coupling
between qubits b and c causes mixing of vectors BR,BI and
CI ,CR, coupling between a and c causes interaction mixing of
AR,CI and AI ,CR, coupling between a and b mixes AR,BI

and AI ,BR.

VIII. EXAMPLES OF ENTANGLEMENT CONTROL:
MANIPULATION OF W AND BISEPARABLE STATES

A. Transforming |W 〉 state to |GHZ〉
According to Dür, Vidal, and Cirac’s classification of en-

tanglement |W 〉 and |GHZ〉, states belong to two separate
classes [34]. Any transformation between states in different
entanglement classes requires qubit coupling. We will apply a
technique developed in the previous section to perform a set of
transformations on a |W 〉 state. The goal is to find an efficient
route for transforming a |W 〉 state to a |GHZ〉 state [35]. The
standard definition of a W state reads

|W 〉 = 1√
3

(|0, 0, 1〉 + |0, 1, 0〉 + |1, 0, 0〉). (45)

Plücker q-vectors for a |W 〉 state are identical for all
partitions for an apparent reason: state (45) is symmetric
relative to all qubit swap operation,

q(1,2,3)
W = (i,−1, 0, 1, i, 0)/3

√
2. (46)

Three-dimensional vectors are AW = BW = CW =
(i,−1, 0)/3

√
2.
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Entanglement parameters, Eqs. (42)–(48), for the |W 〉 state
are

τW
abc = 0,

τW
(ab) = τW

(ac) = τW
(bc) = 4/9, (47)

τW
a(bc) = τW

b(ac) = τW
c(ab) = 8/9.

When defining the |GHZ〉 state we introduce an additional
phase factor φ = exp(−iπ/4) in order to make Plücker vec-
tors A, B, C purely real,

|GHZ〉 = 1√
2

e−iπ/4(|0, 0, 0〉 + |1, 1, 1〉). (48a)

Plücker q-vectors for the |GHZ〉 state are

q(1,2,3)
GHZ = (0, 0, 1, 0, 0,−i)/2

√
2. (48b)

Three-dimensional vectors are AGHZ = BGHZ = CGHZ =
(0, 0, 1)/2

√
2. Straightforward calculation of the three-tangle,

and the two-tangles for the |GHZ〉 state gives

τGHZ
abc = 1,

τGHZ
(ab) = τGHZ

(ac) = τGHZ
(bc) = 0,

τGHZ
a(bc) = τGHZ

b(ac) = τGHZ
c(ab) = 1.

(49)

To design a transformation which will transform a
|W 〉 state into a |GHZ〉 state let us first consider the
partition a(bc) and compare vectors q(1)

W = (Bw,−iCW ) =
(i,−1, 0, 1, i, 0)/3

√
2 and q(1)

GHZ = (BGHZ,−iCGHZ) = (0, 0,

1, 0, 0,−i)/2
√

2. Our resources in changing these vectors are
(i) local SO(3) rotations of vectors BW and CW , plus (ii) cou-
pling of vectors BW and CW by orthogonal rotations generated
by a set of nine coupling generators so(6): l1,4, l1,5, ...l3,6.

Our first transformation is designed to couple the first and
fifth components of vector q(1)

W in order to eliminate imaginary
entry in the first position. The desired rotation is generated
by the operator exp(α l1,5), α = π/4 which performs an or-
thogonal rotation in the 1–5 hyperplane by angle α = π/4.
The rotation results in transformation of vector qW into vector
qW1= (0,−1, 0, 1,

√
2i, 0)/3

√
2 (we have denoted the new

state as |W1〉. Vector BW becomes BW1 = (0,−1, 0)/3
√

2 and
vector CW becomes CW1 = (i,−√

2, 0)/3
√

2. This operation
apparently will not change τa(bc), Eq. (38a), but it will increase
the three-tangle τabc = 8(BR · BR − BI · BI ), Eq. (37). Tech-
nically, this rotation “kills” the imaginary part of vector BW

and adds it to the real component CW such that vector CW,R

changes from (0,−1, 0)/3
√

2 to (0,−1, 0)/3. Let’s clarify
what happens with the three- and two-tangles physically. Ac-
cording to Eqs. (39), (42), and (43), two-tangle τW

(ac) = 8BW,I ·
BW,I and (τW

abc + τW
(ab) ) = (τW

a(bc) − τW
(ac) ) = 8CW,R · CW,R. The

two-tangle τW
(ab) = 8CW,I · CW,I does not change because

CW,I does not change; τa(bc) also does not change because
〈q(1) | q(1)〉 does not change under SO(6)(bc) transformations.
So, physically, while the two-tangle τW

(ac) = 8BW,I · BW,I dis-
appears its value adds up to a three-tangle which changes from
τW

abc = 0 to τ
W1
abc = τW

abc + τW
(ac) = 4/9.

Due to SU(4) − SO(6) homomorphism and associated
map between Lie algebra generators tn,m ↔ 2ln,m one can im-
mediately identify the corresponding unitary SU(4)(bc) opera-
tor acting on the |W 〉-state wave function which generates the

desired SO(6) rotation in the q space. Namely, the SU(4)(bc)

operator corresponding to the SO(6)(bc) operator exp(α l(bc)
1,5 )

is exp(α/2 t(bc)
15 ), t(bc)

15 = iσ (bc)
xy . The new state |W1〉 is equal to

exp(iπ/8 σ (bc)
xy )|W 〉, explicitly,

|W1〉 = 1/
√

6(

√
2 −

√
2|0, 0, 1〉 +

√
2 +

√
2|0, 1, 0〉

+
√

1 + 1/
√

2|1, 0, 0〉 −
√

1 − 1/
√

2|1, 1, 1〉). (50)

Here the |W1〉 state is the state obtained after the first
transformation. Below we use |Wn〉 to denote a state after the
“nth” transformation.

Next, we couple components 2 and 4 of vector q(1)
W1

=
(0,−1, 0, 1,

√
2i, 0)/3

√
2 by 2–4 rotation exp(π/4 l2,4)

in order to obtain the Plücker q-vector q(1)
W2

=
(0,−1, 0, 0, i, 0)/3. This operation kills the imaginary part
of vector CW1 and adds it to the real part of BW1 . Physically,
τ

W1
(bc) vanishes being transformed to a three-tangle which

will change from τ
W1
abc = 4/9 to τ

W2
abc = τ

W1
abc + τ

W1
(ab) = 8/9.

The corresponding quantum operator is exp(π/8 t(bc)
24 ) =

exp(iπ/8 σ (bc)
yx ). The new state has the form

|W2〉 = exp
(
iπ

/
8 σ (bc)

yx

)|W1〉

= 1√
6

(|001〉 + |010〉 +
√

2|100〉 −
√

2|111〉). (51)

Entanglement parameters for this state are

τ
W2
abc = 8/9,

τ
W2
(ac) = τ

W2
(ab) = 0, τ

W2
(bc) = 1/9, (52)

τ
W2
a(bc) = 8/9, τ

W2
b(ac) = τ

W2
c(ab) = 1.

By making two coupling transformations we achieved that
vectors q(1)

W2
= (0,−1, 0, 0, i, 0)/3 become similar to q(1)

GHZ =
(0, 0, 1, 0, 0,−i)/2

√
2. Importantly, we have identified these

two transformations simply by comparing vectors q(1)
W and

q(1)
GHZ.

There are no more coupling transformations on qubits b
and c which can be implemented to transform |W2〉 to |GHZ〉.
We have to arrange transformations coupling qubits a and c or
a and b. The full set of Plücker q-vectors for the |W2〉 state is

q(1)
W2

= 1

3
(0,−1, 0, 0, i, 0),

q(2)
W2

= 1

6
√

2
(0,−2

√
2, 0, 1, 3i, 0),

q(3)
W2

= 1

6
√

2
(i,−3, 0, 0, i2

√
2, 0).

(53)

Let us compare q(2)
W2

= (0,−2
√

2/3, 0, 1/3, i, 0)/2
√

2 and

q(2)
GHZ = (0, 0, 1, 0, 0,−i)/2

√
2. By the same logic, one needs

rotation coupling components 2 and 4 of vector q(2)
W2

in or-

der to modify this vector into q(2)
W3

= (0,−1, 0, 0, i, 0)/2
√

2.
The desired rotation is provided by the operator exp(ξ l(ca) ),
ξ = arctan(1/2

√
2). The corresponding physical coupling op-

erator is exp(ξ/2 t(ca)
24 ) = exp(iξ/2 σ (ca)

yx ). The state |W2〉 is
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transformed into

|W3〉 = exp
(
iξ

/
2σ (ca)

yx

)|W2〉
= 1

2 (|001〉 + |010〉 + |100〉 − |111〉). (54)

For the state |W3〉 we have q(1,2,3)
W3

= (0,−1, 0,

0, i, 0)/2
√

2. Entanglement parameters for the state |W3〉
are identical to entanglement parameters of the GHZ
state, Eq. (49). However, state |W3〉 does not look like a
|GHZ〉 state. To make the final adjustment let us compare
vectors AW3 = (0,−1, 0)/2

√
2 and AGHZ = (0, 0, 1)/2

√
2.

Apparently one needs to perform a rotation exp(−π/2l(a)
23 )

which is represented by local operator exp(−π/4t(ca)
56 ) or

exp(−π/4t(ab)
23 ) = exp(−iπ/4σ a

x ). This operation needs to
be applied to vectors BW3 and CW3 as well, i.e., the operator
exp(−iπ/4σx ) is applied to all three qubits. The state becomes

|W4〉 = exp
[
iπ

/
4
(
σ (a)

x + σ (b)
x + σ (c)

x

)]|W3〉

= 1√
2

(i|000〉 − |111〉). (55)

For this state we have q(1,2,3)
W4

= q(1,2,3)
GHZ = (0, 1, 0, 0,

−i, 0)/2
√

2. The trivial phase rotation exp( iπ/4σz ) and mul-
tiplication by a global phase factor exp(−i3 π/4) result in a
canonical |GHZ〉 state,

|W5〉 = exp(−i3 π/4) exp
(
iπ

/
4σ (a)

z

)|W4〉

= 1√
2

(|000〉 + |111〉). (56)

In physical state space, we have realized the transforma-
tion |W 〉 → |W5〉 = |GHZ〉 via the sequence of nonintuitive
transformations, whose construction is greatly facilitated by
working intuitively in q space:

|GHZ〉 = exp(−i3 π/4) exp
(
iπ

/
4σ (a)

z

)
exp

[
iπ

/
4
(
σ (a)

x + σ (b)
x

+ σ (c)
x

)]
exp

[
i arctan(1/2

√
2)/2σ (ca)

yx

]
× exp

(
iπ/8 σ (bc)

yx

)
exp

(
iπ/8 σ (bc)

xy

)|W 〉.

B. Transforming a biseparable state to |GHZ〉
The next example of state control is transformation of a

biseparable state to a |GHZ〉 state. We define a biseparable
state as

|BS〉 = 1√
2

(|000〉 + |011〉) = |0〉 ⊗ 1√
2

(|00〉 + |11〉).

(57)
For the sake of clarity we calculate all three q-vectors for

this state:

q(1)
BS = (0, 0, 0, 0, 0, 0),

q(2)
BS = (0, 0, 0,−1,−i, 0)/2

√
2,

q(3)
BS = (−i, 1, 0, 0, 0, 0)/2

√
2.

(58)

Entanglement parameters are

τBS
abc = 0,

τBS
(ac) = τBS

(ab) = 0, τBS
(bc) = 1,

τBS
a(bc) = 0, τ

W2
b(ac) = τ

W2
c(ab) = 1.

(59)

We chose to perform transformations on vector q(3)
BS . Ro-

tation exp(α l(ab)
1,5 ), α = π/4, in the 1–6 hyperplane by angle

π/2 transforms this vector to q(3)
BS1

= (0, 1, 0, 0, 0,−i)/2
√

2,

apparently boosting the three-tangle to its maximal possible
value τ

BS1
abc = 1. Quantum transformation corresponding to

this rotation is achieved by the operator exp(iπ/4σ (ab)
xz ). The

state becomes

|BS1〉 = 1

2

(
|000〉 + |011〉 + i

2
|100〉 − i

2
|111〉

)
. (60)

New q-vectors are

q(1)
BS1

= (0, 0, 1, 0, 0,−i)/2
√

2,

q(2)
BS1

= (0, 0, 1, 0,−i, 0)/2
√

2,

q(3)
BS1

= (0, 1, 0, 0, 0,−i)/2
√

2.

(61)

If we compare this set with the q set for the GHZ state,
q(1,2,3)

GHZ = (0, 0, 1, 0, 0,−i)/2
√

2, we see that the only dif-
ference is in A-vectors. These vectors are defined as A =
i(q(2)

4 , q(2)
5 , q(2)

6 ) ≡ (q(3)
1 , q(3)

2 , q(3)
3 ) and for the |GHZ〉 state

we have AGHZ = BGHZ = CGHZ = 1/2
√

2(0, 0, 1) while for
the BS1 state we have ABS1 = 1/2

√
2(0, 1, 0). Apparently we

have to perform a local y-z rotation on qubit a. The cor-
responding operator is exp(π/4t23) = exp(−iπ/4σ (a)

x ). The
state becomes

|BS2〉 = 1√
2

(|000〉 − i|111〉). (62)

Local exp(i3/4πσz ) rotation applied to any qubit performs
a correction of the relative phase,

|BS3〉 = exp
(
i3

/
4πσ (a)

z

) 1√
2

(|000〉 − i|111〉)

= exp (i3/4π )
1√
2

(|000〉 + |111〉). (63)

The state |BS3〉 apparently is a canonical |GHZ〉 state
[up to a global exp(i3/4π ) phase]. Summarizing, we have
transformed the biseparable state in Eq. (57) to the |GHZ〉
state |BS〉 → |GHZ〉 via the sequence of transformations in
quantum state space

|GHZ〉 = exp(−i3/4π ) exp
(
i3

/
4πσ (a)

z

)
exp

(−iπ
/

4σ (a)
x

)
× exp

(
iπ

/
4σ (ab)

xz

) |BS〉. (64)

C. Transforming |W 〉 state into a biseparable state

It is interesting to note that the |W2〉 state, Eq. (51), ob-
tained from |W 〉 after two transformations exp(iπ/8 σ (bc)

xy ) and
exp(iπ/8 σ (bc)

yx ), can be easily transformed into a biseparable
state. To transform |W2〉 to |GHZ〉 we have performed a
rotation of the vector q(2)

W2
= 1

6
√

2
(0,−2

√
2, 0, 1, 3i, 0) in the

plane 2−4 by angle ξ = arctan(1/2
√

2); instead we perform
rotation by angle ς = −(π/2 − ξ ) to get a state

|WBS〉 = exp
(
i ς/2 σ (ca)

yx

)|W2〉 = 1√
2

(|001〉 + |010〉)

= |0〉 ⊗ 1√
2

(|01〉 + |10〉). (65)
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A trivial qubit flip transformation σ (b)
x or σ (c)

x modifies this
state into biseparable state (57).

IX. SUMMARY AND DISCUSSION

In this section we briefly summarize conceptual elements
of our work and discuss possible generalizations.

While the starting point of our work is the same as Lé-
vay’s work [18], where he introduced Plücker coordinated
in a three-qubit problem, we have significantly extended the
mathematical technique of Plücker’s description using the
SO(6)-SU(4) homomorphism. As a result we have found a
concise partition-invariant description of entanglement in the
three-qubit system naturally tailored for geometric analysis of
two-qubit coupling operations. This approach also revealed
that from the point of view of quantum control theory entan-
glement parameters are represented not by scalar quantities
(three- and two-tangles) but by a set of Bloch-type three-
dimensional vectors.

We introduce a new set of variables (quantum Plücker
variables or q-vectors) related to standard Plücker variables
by a unitary rotation. Under this transformation quantum
dynamics induced by two-qubit coupling takes the form of
the orthogonal SO(6) group. We show that there exists a
special global phase rotation which significantly simplifies
relations between two-tangles and components of q-vectors
facilitating direct geometric interpretation of entanglement
dynamics. We have identified that there exists an elegant
relation between q-vectors for all three partitions a(bc), c(ab),
and b(ca) which allows us to reduce the redundant 18 complex
Plücker parameters to only three (complex) three-dimensional
Bloch-type vectors. Under local rotations all three indepen-
dent vectors A, B, C satisfy dynamic equations identical to
standard equations for Bloch vectors (for each qubit), i.e.,
there exist six additional Bloch-type vectors: two real three-
dimensional vectors for each qubit. Relative angles (and dot
products) between these vectors and standard Bloch vectors
are invariant under local rotations indicating that there may
exist additional interesting and useful geometric properties of
multipartite entanglement in the three-qubit system.

As an illustration of our technique we apply it to a few
quantum control problems: Geometric operations (rotations)
of vectors A, B, C can be easily tailored to achieve a certain
goal of transforming one state to another state. Using an
explicit analytical map between SO(6) and SU(4) groups we
can establish a protocol when desired quantum operations
are mapped to 3D local rotations followed by qubit-qubit
coupling in the form of coupling between vectors A, B, and C.
We have shown that the geometric SO(6) description allows
one to find an elegant and efficient solution for these three
problems, which would have been impossible to tackle in the
original SU(4) form.

We would like to note that there may not be any straight-
forward generalization of our method to four-qubit systems
and non-pure-quantum states since the chain of accidental
isomorphism between su and so algebras ends at su(4) alge-
bra. However, we can generalize our approach to processes
involving measurement operations via complexification of su
and so algebras.
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APPENDIX: SU(4)-SO(6) HOMOMORPHISM

Consider an abstract set of elements ei, i = 1, 2..., n, sat-
isfying the following anticommutation relations: {ei, e j} =
−2δi, j . Clifford algebra Cln is a linear space generated by
a set of 2n − 1 elements constructed as multiple products of
first grade elements, i.e., ei, eie j , eie jek … e1e2e3...en. Due
to anticommutation relations such an algebra is closed under
multiplication, i.e., a product of any two elements will always
belong to one of n grades of the algebra. It can be easily
verified that a set of second-grade elements eie j form an
n(n − 1)/2-dimensional Lie algebra isomorphic to so(n) Lie
algebra with commutation relations identical to (23) and (24),

[enem, ekep] = 2(δn,kemep+δm,penek − δn,pemek − δm,kenep).
(A1)

The group generated by this algebra is called Spin(n).
It is a double cover of SO(n) group. Explicitly, the adjoint
action of Spin(n) group on first-grade n-dimensional space
algebraically reduces to an orthogonal rotation (for more
details see [36]):

exp

⎛
⎝ n∑

i, j,i> j

xi jeie j

⎞
⎠ n∑

i=1

λiei exp

⎛
⎝−

n∑
i, j,i> j

xi jeie j

⎞
⎠

=
n∑

i=1

λ′
iei. (A2)

Appearance of the adjoint action is a direct indication that
Spin(6) is a double cover of SO(6).

Let’s take a look at Cl6 more closely. The number of
elements in Cl6 algebra is 2n − 1 ≡ 63 while the number of
elements in the spin(6) algebra is n(n − 1)/2 = 15 (the same
as the number of second-grade elements eie j). Since the entire
Cl6 algebra has 63 elements it cannot be faithfully represented
by 32-dimensional algebra of 4 × 4 complex matrices. To
establish a map between su(4) and so(6) Lie algebras one uses
a compact representation of spin(6) algebra.

Lie algebra spin(6) is isomorphic to Lie algebra designed
as a direct sum of the second and first grade of Cl5. Namely,
commutation relations (A1) hold if one replaces elements
e6e1, e6e2, e6e3, ... by e1, e2, e3, ... . Cl5 has 31 elements
and it can be faithfully represented by a set of 4 × 4 complex
matrices. To establish a relation between su(4) and spin(6)
we first construct a set of first-grade elements e1, e2, ...e5

of Cl5 and then compute pairwise products eie j to generate
the second-grade set. Then {eie j} ∪ {ei} will span a compact
15-dimensional algebra identical to the fundamental represen-
tation of su(4) algebra.

First we need to identify elements of su(4) which will
serve as five first-grade elements of Cl5 algebra. We have
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to choose a set of five elements out of 15 possible can-
didates: iσ (b)

x,y,z ⊗ I (c), iI (b) ⊗ σ (c)
x,y,z, iσ (bc)

xx,xy... ≡ iσ (b)
x,y,z ⊗ σ (c)

x,y,z.
The following conditions have to be satisfied: (1) these five
elements have to anticommute {ei, e j} = 0, for i �= j, and
(2) pairwise products eie j should not belong to the set ei itself.

Let’s first include single-qubit Pauli matrices. We will
choose t65 = e5 = iσ (c)

x and t64 = e4 = −iσ (c)
y . Notice that

the operator iσ (c)
z will be included as a second-grade element

t54 = e5e4 = −iσ (c)
x iσ (c)

y = iσ (c)
z . We will complete the set of

e1,2,3,4,5 by three operators: t63 = e3 = −iσ (bc)
zz , t62 = e2 =

−iσ (bc)
yz , and t61 = e1 = −iσ (bc)

xz . Then all three conditions
specified above are satisfied.

The rest of the task is trivial: by taking pairwise products
of first-grade elements we recover the rest of the table in
Eq. (23):

t21 = e2e1 = (−iσ (bc)
yz

)(−iσ (bc)
xz

) = iσ (b)
z ,

t31 = e3e1 = (−iσ (bc)
zz

)(−iσ (bc)
xz

) = −iσ (b)
y ,

t32 = e3e2 = (−iσ (bc)
zz

)(−iσ (bc)
yz

) = iσ (b)
x ,

t41 = e4e1 = (−iσ (c)
y

)(−iσ (bc)
xz

) = −iσ (bc)
xx ,

t42 = e4e2 = (−iσ (c)
y

)(−iσ (bc)
yz

) = −iσ (bc)
yx ,

t43 = e4e3 = (−iσ (c)
y

)(−iσ (bc)
zz

) = −iσ (bc)
zx ,

t51 = e5e1 = (
iσ (c)

x

)(−iσ (bc)
xz

) = −iσ (bc)
xy ,

t52 = e5e2 = (
iσ (c)

x

)(−iσ (bc)
yz

) = −iσ (bc)
yx ,

t53 = e5e3 = (
iσ (c)

x

)(−iσ (bc)
zz

) = −iσ (bc)
zy ,

t54 = e5e4 = (
iσ (c)

x

)(−iσ (c)
y

) = iσ (c)
z . (A4)

By construction commutation relations for generators ti, j

are the same as generators eie j of spin(6), given by Eqs. (24)
and (A1).
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