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We consider quantum transport on generalized scale-free networks (GSFNs) in the continuous-time quantum
walk (CTQW) model. The efficiency of the transport is monitored through the exact and the average return
probabilities. In this model these probabilities are fully determined by the eigenvalues and eigenvectors of the
connectivity matrix. In the case of GSFNs we observe a nontrivial interplay between strong localization effects,
due to starlike segments, and good spreading because of the linear segments. We show that the quantum transport
on GSFNs can be increased by varying the minimum or the maximum allowed degrees, i.e., the limiting number
of links emerging from every node. The same quantum efficiency is reached by considering various combinations
of the construction parameters of the network, which normally show different topological features.
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I. INTRODUCTION

Classical and quantum transport have been applied with
great success to many processes from physics, chemistry, bi-
ology, and computer science. Classical random walks (RWs)
in different kinds of complex systems have been studied in
recent decades [1–7]. The concept of the RW was imple-
mented to solve problems related to configurational properties
of polymers [8], kinetic chemical reactions [2,9,10], diffu-
sion of particles or complex systems [11–13], and epidemic
spreading of diseases or viruses [14,15], to name only a few.
However, some phenomena are better understood by consid-
ering the quantum mechanical variant of RWs: quantum walks
(QWs).

Quantum walks can model purely coherent quantum dy-
namics of excitations on complex systems [16–25]. QWs are
closely related to quantum graphs [26–31], which additionally
take into account the inherited properties of each bond: in
quantum graphs the bonds may be directed, have distinct
coupling strength, or have different lengths. An application
based on quantum walks is the quantum search algorithm for
quantum computation [32–39]. The most prominent examples
are Grover’s search algorithm [40] and Shor’s algorithm [41].
These algorithms search for an unstructured database of qubits
and they improve polynomially and even exponentially the
speedup, compared to the corresponding classical algorithms.
Quantum spatial search algorithms have been implemented
also for complex lattices, such as d-dimensional square lat-
tices [42] and graphene lattices [43]. The consistent increase
of the speedup has also started an avalanche of experimental
works [33,34,44–66].

The walkers’ dynamics can be studied by making use
of one of two distinct models: the discrete-time model and
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the continuous-time model. The same holds true in quantum
transport [67,68], where we have the discrete-time quantum
walk (DTQW) [69] and the continuous-time quantum walk
(CTQW) [70]. However, these two models are not completely
independent; they can be related to each other as shown in
[71]. In the literature one encounters alternatives for these
models, such as the quantum stochastic walk [72–74] and a
Green’s function approach for quantum graphs [75,76]. Here,
we focus on the CTQW model, which solves the dynamics
of the quantum walk by identifying the Hamiltonian with the
transfer matrix. Similarly to the classical case in the CTQW
model, the transfer matrix of any undirected network is as-
sociated with the connectivity matrix [1]. In this model the
quantum transport is practically solved when one knows the
full eigenvalue spectrum of the connectivity matrix. In this
article the efficiency of the walkers’s dynamics (or search)
is evaluated by the probability of returning to its starting
node.

Nowadays, the concept of complex networks is applied to
many scientific studies related to various research areas, such
as physics, chemistry, biology, sociology, ecology, economic
systems, and computer science; see [77–79] and references
therein. The vast majority of these applications can be studied
through three well-established theoretical models, namely the
random network, small-world network, and scale-free net-
work. We focus on the last type due to the fact that many real
networks are scale-free networks. More precisely, we concen-
trate on the most important property of this type of network,
namely the existence of hubs, i.e., nodes with a high number
of connections, and many nodes with few connections. Thus,
we are led to a degree distribution that follows a power law
[80,81]. Here, we add some restrictions to the degree distribu-
tion, such as the minimum and the maximum allowed number
of links [82]. These conditions can be justified by spatial
limitations around each nodes or by some sort of weaker or
stronger interaction strength between nodes.
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We are mainly interested in monitoring the influence of the
above-mentioned parameters on quantum transport on gener-
alized scale-free networks. It is known that we have a strong
relation between the transport and the underlying structure of
the network. The quantum transport on graphs that contain
segments with many branches, such as Cayley trees or stars
[83,84], displays strong localization effects, i.e., high proba-
bility to stay at the initial node. A completely distinct behavior
is found for linear chains, which have a high efficiency for
quantum transport, as shown in the literature [83]. Our gener-
alized scale-free networks are a nontrivial mixture of linear
and starlike segments, with their topology being controlled
by the minimum and maximum allowed degrees and by the
exponent γ of the power-law degree distribution. This last
parameter allows us to switch from networks with a predom-
inant starlike topology, for low values of γ , to networks with
longer linear chains, for high γ values. Our main focus is to
improve the quantum transport and to overcome the localiza-
tion problem encountered in networks with starlike segments.
We have shown that a possible solution is to implement some
mechanisms to increase the length of linear segments. This
can be done by stacking identical copies on top of each other
[85], creating a multilayer network. Another mechanism could
be an internal increase of linear segments by adding links
between nodes from a given structure in a certain manner
[86]. Another possible mechanism to increase the transfer
efficiency is given by introducing noise or decoherence in
the network [87,88]. Here, we choose another mechanism to
increase the quantum transport: restrict the minimum and the
maximum allowed degrees of a certain type of network.

The paper is organized as follows. In Sec. II we focus
on a general description of the continuous-time classical and
quantum models implemented in the paper. In Sec. III we de-
scribe the construction procedure of our networks. Section IV
is devoted to the results, focusing on the eigenvalue spectrum
of the Laplacian matrix and on physical quantities used to
compute the classical and quantum transport in such networks.
Finally in Sec. V we present our conclusions.

II. THEORETICAL FRAMEWORK

In this article we are interested in quantum trans-
port on generalized scale-free networks (GSFNs) using the
continuous-time quantum walk (CTQW) model. For reasons
of comparison, we also study the corresponding classical
model, continuous-time random walks (CTRWs). We under-
stand a network to be a set of N nodes that are connected to
other nodes by links. In this formalism a state |k〉 is associated
with each node and it corresponds to an excitation localized
at node k. The dynamics of a network, for continuous-time
models, depends only on the direct links between the nodes.
This localization of the walks can be completely found out
if one knows the whole set of eigenvalues and eigenvectors
of the connectivity matrix A. This N × N matrix is real and
symmetric, having its nondiagonal elements Ajk equal to −1
if nodes i and j are linked, and 0 otherwise. The diagonal
elements Aj j = k j equal the number of links emerging from
node j. From this matrix construction we inherit only positive
real eigenvalues and a single vanishing eigenvalue, λ1 = 0.

In classical transport we consider for simplicity an equal
transition rate between neighbor nodes, chosen to be equal
to 1. Assuming a Markovian process we obtain the following
master equation for a CTRW to go from node k to node j at
time t [2]:

d

dt
p j,k (t ) =

∑
l

Tjl pl,k (t ), (1)

where Tjl is the transition rate between nodes j and l . In our
model this transfer matrix is proportional to the connectivity
matrix, T = −A. Thus, the transition probability of CTRWs
depends on the eigenvalues λn and the eigenstates |�n〉 (with
n = 1, . . . , N) of the connectivity matrix:

p j,k (t ) =
N∑

n=1

e−λnt 〈 j|�n〉〈�n|k〉. (2)

For quantum transport we assume that all the states | j〉
are orthonormal and complete [70,83]. The dynamics of the
walker is determined from the quantum mechanical Hamil-
tonian, such that Schrödinger’s equation for the transition
amplitudes α j,k (t ) = 〈 j| exp(−iHt )|k〉 is

d

dt
α j,k (t ) = −i

∑
l

Hjlαl,k (t ). (3)

Similarly to the CTRW, the quantum transition probability
from node k to node j at time t is π j,k (t ) = |α j,k (t )|2 =
|〈 j| exp(−iHt )|k〉|2. In this model the Hamiltonian is iden-
tified with the connectivity matrix [70]: H = A. Denoting
the eigenstates of H by |�n〉, and the quantum mechanical
transition probability is

π j,k (t ) =
∣∣∣∣∣

N∑
n=1

e−iλnt 〈 j|�n〉〈�n|k〉
∣∣∣∣∣
2

. (4)

Here we focus on the transport efficiency, and we determine
the average return probabilities and the long-time average.
The probability to remain or return to the initial node k is
averaged over all nodes:

p(t ) = 1

N

N∑
k=1

pk,k (t ) (5)

for CTRWs and

π (t ) = 1

N

N∑
k=1

πk,k (t ) (6)

for CTQWs. For CTRWs we insert Eq. (2) into Eq. (5) and we
obtain that the average return probability depends exclusively
on the eigenvalues of the connectivity matrix:

p(t ) = 1

N

N∑
k=1

exp(−λkt ). (7)

For CTQWs we insert Eq. (4) into Eq. (6) and after some
mathematical manipulations we find that the average return
probability depends also on the eigenstates. However, by mak-
ing use of the Cauchy-Schwarz inequality one gets a lower
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bound for π (t ), which is independent of the eigenstates:

π (t ) = 1

N

N∑
k=1

|αk,k (t )|2 �
∣∣∣∣∣ 1

N

N∑
k=1

αk,k (t )

∣∣∣∣∣
2

= |α(t )|2 =
∣∣∣∣∣ 1

N

∑
k

exp(−iλkt )

∣∣∣∣∣
2

. (8)

However, in this paper we focus on the average return prob-
abilities, p(t ), given by Eq. (7), and π (t ), given by Eqs. (6)
and (4). At this point we stress that a fast decay of p(t ) or
π (t ) implies a fast spreading of the walker and a slow decay
implies a slow propagation throughout the structure. In the
long-time limit one gets from Eq. (7) the equipartition value
1/N for CTRWs, while for CTQWs both π (t ) and |α(t )|2
do not reach a constant value, but they present an oscillatory
behavior around the long-time average value, given by [83]

χ ≡ lim
t→∞

1

t

∫ t

0
dt ′|α(t ′)|2 � lim

t→∞
1

t

∫ t

0
dt ′π (t ′) ≡ χ, (9)

where the Cauchy-Schwarz inequality, Eq. (8), was used.
The average transition probability |α(t )|2 depends only on
the eigenvalue density ρ(λ) of the connectivity matrix A as
[89] |α(t )|2 = ∑

λ,λ′ ρ(λ)ρ(λ′) exp[i(λ − λ′)t]. Inserting the
last equation in χ and identifying the integral with δλλ′ , the
long-time average transition probability can be written as
[89,90]

χ =
∑

λ

ρ2(λ) � ρ2(λ∗) + 1

N
[1 − ρ(λ∗)] ≡ χ∗, (10)

where λ∗ is the most degenerate eigenvalue. The quantum
transport has maximum efficiency if χ = 0 and it is com-
pletely inefficient when χ = 1. Regarding χ∗, it was observed
that it provides a good approximation for stars and linear
chains [89]. For a star with N − 1 arms we have a single
highly degenerate eigenvalue λ∗ = 1 and it can be shown
that χ = χ∗ = [2 + (N − 2)2]/N2. In the limit of very large
structures, χN→∞ = 1, which corresponds to an inefficient
transport. For a linear chain all the eigenvalues are nonde-
generate, which means that ρ(λ) = 1/N for every λ, yielding
χ = χ∗ = 1/N . In the limit of extremely long chains we have
an efficient transport, χN→∞ = 0. In other situations the value
of χ∗ does not provide a good approximation for χ , as we
show for different structures [85,86].

III. GENERALIZED SCALE-FREE NETWORKS

Any complex network is represented by a collection of
nodes connected by links. For each node one can determine
the degree k, which is defined as the number of links emerg-
ing from the node. A basic property of all scale-free models
[80,81,91–93] is a power-law decay for the degree distribu-
tion, i.e., the probability of having a node with degree k is
p̃k ∝ k−γ , where the positive nonzero parameter γ measures
the density of connections in the network. In this article we
construct the treelike scale-free networks by assuming the
probability pk , that the degree of a node equals k, obeys the

following equation:

pk =
{ k−γ∑Kmax

j=Kmin
j−γ

, Kmin � k � Kmax,

0, otherwise,
(11)

where Kmin is the minimum allowed degree and Kmax is the
maximum allowed degree. The sum in the denominator keeps
the sum of all probabilities equal to 1. The topology of our
scale-free networks can be controlled by the three parameters
γ , Kmin, and Kmax, and it ranges from a pure linear network to a
starlike network. Our model is the more general variant of the
scale-free model developed in Ref. [81], which considers only
(Kmin, Kmax) = (2, N − 1), where N is the size of the network.
For this reason we call our networks generalized scale-free
networks (GSFNs) from now on. The construction procedure
starts by fixing the three parameters mentioned above and the
probabilities pk are determined by implementing Eq. (11).
We create the treelike networks by using a growth mecha-
nism with the node degree being chosen from the distribution
(11). When the construction ends the nodes will follow the
degree distribution (11) with the exception of the peripheral
nodes.

For a better understanding of the procedure we illustrate
the algorithm for a particular realization with γ = 2.5, Kmin =
2, and Kmax = 99 in Fig. 1(d). In this figure the numbering was
done according to the chronological order in which the nodes
were built. We start by adding the first node, 1, whose degree
is chosen at random from the degree distribution (11). For this
particular network its chosen degree equals 15, meaning that
we have to add fifteen new nodes connected to 1. In the next
step we choose at random one of the open nodes and we select
randomly its degree from the degree distribution (11). For the
network of Fig. 1(d) the chosen node was 16 and its degree
4. Now we should add only three new nodes since node 16
already has one link with node 1. This procedure is iterated
until we reach the total number of nodes, N . At this point the
growth is finished and we assign to all remaining open nodes
the degree 1.

In Fig. 1 we display several particular realizations of the
algorithm for GSFNs with N = 100 nodes. The parameter
γ is equal to 1.0 in the first row, panels (a)–(c), and 2.5 in
the last two rows, panels (d)–(i). In order to visualize the
influence of parameter Kmin on the topology of the networks
we choose for each column a different value of Kmin, namely
2, 3, and 6, from left to right. For a better visualization of
some structural aspects we depicted by red thicker line the
longest linear path, while the nodes with degree higher than 6
are drawn by larger circles. In order to see the treelike nature
of these networks and to quickly compute the length of the
longest path we drew the central node as a red color square
and nodes with the same distance to the center share the same
color. Full circles denote nodes that during the construction
procedure have received their degree from Eq. (11). As a
general rule one gets networks with higher longest linear path
and with a lower number of hubs, i.e., nodes with very high
degree, when only the parameter γ is increased. For instance
by considering Fig. 1(a) (γ = 1.0) and Fig. 1(d) (γ = 2.5) one
obtains the longest linear paths equal to 4 and 11, respectively.
By fixing the parameters γ and Kmax and increasing the min-
imum allowed degree Kmin we usually increase the number
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FIG. 1. Realizations of generalized scale-free networks with N = 100 nodes and the parameter set (γ , Kmin, Kmax): (a) (1,2,99); (b) (1,3,99);
(c) (1,6,99); (d) (2.5,2,99); (e) (2.5,3,99); (f) (2.5,6,99); (g) (2.5,2,10); (h) (2.5,3,10); (i) (2.5,6,10).

of nodes with higher degree. In this case the length of the
longest linear path depends on all three parameters. One can
find the same length by fine tuning these three parameters, for
instance in both panels (b) and (c) of Fig. 1 the longest linear
path equals 6. For more details regarding this issue one can
follow Fig. 3 of Ref. [82], which focuses on the diameter of
such networks, a quantity directly related to the longest linear

path. One way of increasing the longest linear segment is to
reduce the maximum allowed degree Kmax, while the other
two parameters are kept constant. This feature can be observed
also by direct comparison of panels (d) and (g) of Fig. 1. At
the same time we notice that the number of nodes with degree
higher than 6 increases when Kmax gets lower, but fewer nodes
have very high degree.
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FIG. 2. Degree distribution pk for GSFNs with N = 1000, S =
10 000, and various values of γ , Kmin, Kmax. For comparison we show
the results for the Barabási-Albert model [80].

IV. RESULTS

A. Degree distribution

In Fig. 2 we display in double logarithmic scale the degree
distribution pk obtained from our constructed networks, which
can be directly compared with the theoretical prediction,
Eq. (11). Here we show the results for S = 10 000 realizations
of the algorithm with the same network size, N = 1000 nodes,
with γ = 1.0 and 2.5, and various values of Kmin and Kmax.
We also display the degree distribution of the Barabási-Albert
model [80] for the same parameter set (N, S) and for which we
computed a power-law exponent γ ≈ 2.64. For low and inter-
mediate values of the degree k we recover the theoretically
predicted values, with slopes of 1.0 or 2.5, while for very high
values of k we obtain the common fat tail behavior [80]. This
means that usually we obtain networks with few nodes with
very high degree and many nodes with low degrees. The rate
between them is controlled by the power-law exponent. We
get pk = 0 for k < Kmin and k > Kmax, except for p1, which
corresponds to peripheral nodes of our treelike scale-free net-
works, namely the nodes which did not receive their degree
before finishing the construction. All these facts will have a
big impact on the eigenvalue spectrum and on the classical
and quantum transport.

B. Eigenvalue spectra

In Fig. 3 we plot in double logarithmic scale the eigenvalue
spectrum of GSFNs with (N, S) = (1000, 1000) and different
values of the parameters γ , Kmin, and Kmax. In Fig. 3(a) we
keep constant the parameter set (Kmin, Kmax) and we vary γ .
Thus, we are able to monitor how the topology of the networks
influences the eigenvalue spectrum. Immediately apparent is
the multiplicity of the eigenvalue 1, which is proportional
to the starlike predominance of the network. For reasons of
comparison we display the spectrum for two limiting cases:
a star with N − 1 arms and a linear chain. The star has only
three eigenvalues, namely λ1 = 0, λN = N , and λ2 = · · · =
λN−1 = 1. In the case of a single linear chain all N eigenvalues
are nondegenerate, with values between 0 and 4. In the case of

GSFNs the degeneracy of eigenvalue 1 is higher for low values
of γ , due to an increase in the number of starlike segments,
and it is lower for high γ s, namely networks with predomi-
nant linear topology. The lowest and the highest eigenvalues
decrease when γ gets higher, having their minima when we
have a complete linear chain.

In Fig. 3(b) we monitor the influence of the minimum
allowed degree, Kmin, on the eigenvalue spectrum. Here we
show the results for GSFNs with γ = 2.5, but similar findings
are encountered for other values of γ and Kmax. The lowest
and the highest eigenvalues increase when Kmin gets larger,
which corresponds to networks composed of larger stars. We
also can state that higher value of Kmin brings forth networks
with higher degeneracy of the eigenvalue 1.

In Fig. 3(c) we plot the eigenvalues in progressive order
for GSFNs with variable Kmax and fixed γ and Kmin. One can
easily notice that even big changes of Kmax are less sensitive
to the eigenvalue spectrum. Networks with intermediate and
high γ , say, γ > 1, are predominantly formed by nodes with
low degree, as can be seen also in Fig. 2. Thus, there are a
few nodes which are altered when Kmax is diminished. The
dependence on Kmax becomes more visible when γ is very
low. In general, by decreasing Kmax the lowest nonvanishing
eigenvalues and the highest eigenvalue are diminishing, which
suggests an increase of the linearlike segments and a decrease
in the number of branches. The last statement is strengthened
by the degeneracy of eigenvalue 1, which is lower when Kmax

is smaller.
In Fig. 3(d) we display a comparison between the eigen-

value spectrum of our GSFNs and the scale-free networks
created from the Barabási-Albert model (B.-A.) [80]. In this
model one starts with m0 vertices, chosen to be 3 in this
figure, connected to each other. At each construction step
we add a new node, which will be linked to two previously
created vertices following a preferential attachment rule [80].
The construction stops when we have reached a total of N
vertices. These scale-free networks follow a power-law degree
distribution with exponent γ ≈ 2.6 and they are composed of
loops, different from our GSFNs, which are trees. This as-
pect is responsible for the differences between the eigenvalue
spectra of the models and it will have great consequences
for classical and quantum transport. The presence of loops
increases the total number of links and the net value of all
eigenvalues increases. In general a compact network with m
links between nodes has the eigenvalues’ sum equal to 2m.
Thus, for a treelike network, like our GSFNs, the sum of all
eigenvalues is 2(N − 1), while for the B.-A. networks we have
4N − 6. In Fig. 3(d) we display the results for networks with
N = 100, 500, and 1000. For a better understanding of the
results we choose γ = 2.6 for GSFNs and we normalize the
x axis to the size of the networks, N . We notice that the lower
eigenvalues are very different, but the higher eigenvalues are
comparable. The degeneracy of eigenvalue 1 practically disap-
pears for B.-A., while for GSFNs it maintains a high number.

C. Classical transport

In this section we study the classical transport in GSFNs.
In Fig. 4(a) we investigate the influence of γ , i.e., the topol-
ogy of the GSFN, on the probability of a walker returning
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FIG. 3. Eigenvalue spectrum for GSFNs with N = 1000, S = 1000 and the parameters (γ , Kmin, Kmax) are equal to (a) (variable, 2, 999),
(b) (2.5, variable, 999), and (c) (2.5, 2, variable). In (d) N and S are varied and γ = 2.6, Kmin = 2, and Kmax = N − 1.

to its starting point p(t ), given by Eq. (7). Here we choose
N = 1000, S = 1000 and the minimum and the maximum
allowed degrees are Kmin = 2 and Kmax = 999, respectively.
The asymptotic behavior of the classical average probability
at very long times is well recovered for all networks. The
long-time behavior depends only on the number of nodes, N ,
thus it is independent of their topology. Similar findings were
also encountered in Ref. [94], in which the long-time behavior
of random walks is influenced mainly by the minimum degree
of their vertices. In our model for a star the equipartition value
1/N is reached at teq ≈ 11 and for a linear chain we reach it
at teq ≈ 5 × 105, not shown in the figure due to its extremely
high value. For GSFNs teq has values between the two above-
mentioned limits, with lower values for networks with more
starlike segments, i.e., lower γ ’s. In the intermediate-time
domain the average probability follows a power-law decay
p(t ) ∝ t−α with the exponent α varying from 0.38, obtained
for GSFNs with γ = 1.0, until 0.77, which was encountered
for GSFNs with γ = 4.0. For a single linear chain one also
gets a power-law decay with exponent α = 0.5, while for a
star with N − 1 arms there is no intermediate-time behavior,
only a steep decay. For very short times (t � 100) the situation
changes: we encounter an exponential decay p(t ) ∝ e−βt for

the star and GSFNs with γ � 2.0 and an inverse function
p(t ) ∝ 1

1+εt as the best fit for the linear chain and GSFNs with
γ > 2.0. For a pure star and GSFNs with γ = 1 we found β =
0.98 and for GSFNs with γ = 2.0 we have β = 0.92, while
for the linear chain we found ε = 2.27 and for other GSFNs
we have (γ , ε) = (2.5, 1.71), (3.0, 1.77), and (4.0,1.96).

In Fig. 4(b) we keep the parameter γ constant at 2.5
and we vary the size of the stars by increasing the value
of Kmin. The behavior of the classical probability, Eq. (7),
is strongly influenced by the eigenvalue spectrum, shown in
Fig. 3(b). The convergence towards the equipartition value is
governed by the lowest nonvanishing eigenvalue λ2, known
as spectral gap [77]: the larger λ2, the faster the decay. For
our choice of parameters the spectral gap does not differ too
much, for instance λ2 = 0.0010 for Kmin = 2 to λ2 = 0.0016
for Kmin = 10, which explains why the results are similar in
the intermediate-time region. For higher values of Kmin the
average probability p(t ) of a walker returning to the initial
node gets lower. By increasing the size of the minimum al-
lowed degree Kmin we slowly destroy the power-law behavior
in the region of low intermediate times and there emerges
a small peak, which resembles the steep decay observed in
Fig. 4(a) for a single star. However, this behavior extends
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FIG. 4. Classical probability p(t ) of returning to the starting node as a function of time t for GSFNs with N = 1000, S = 1000, and the
parameters (γ , Kmin, Kmax): (a) (variable, 2, 999), (b) (2.5, variable, 999), and (c) (2.5, 2, variable). In (d) N and S are varied and γ = 2.6,
Kmin = 2, and Kmax = N − 1.

for only one order of magnitude and it can be related to the
degeneracy of eigenvalue 1 and the width of the gap between
this eigenvalue and the next one. This gap enlarges when Kmin

increases, as shown in Fig. 3(b) and highlighted in Fig. 5 of
Ref. [82]. Similar findings were encountered for all values of
the parameters γ and Kmax, while only Kmin is varied.

In Fig. 4(c) we monitor the influence of the maximum
allowed degree Kmax on the probability p(t ). Here we consider
γ = 2.5 and Kmin = 2, thus in the limiting case, Kmin = Kmax,
we obtain a pure linear chain. Here, like in all previous pan-
els, we are mainly interested in the intermediate-time region,
which is the only region with different behavior. Remarkably,
we observed that by decreasing Kmax the probability p(t ) gets
higher and the power-law exponent in the intermediate-time
region keeps the same value, 0.76, but this behavior gets
broader. This is due to an increase in the length of the linear
segments, which also explains the similarity with the behavior
of a single linear chain, shown in Fig. 4(a). From the perspec-
tive of the eigenvalue spectrum, see Fig. 3(c), this change can
be directly related to the highest degenerate eigenvalue, λ = 1.

In Fig. 4(d) we vary the size of our networks, N , keeping
constant the other parameters: (γ , Kmin, Kmax) = (2.6, 2, N −
1). Here, we also realize a comparison between scale-free
networks constructed from our treelike GSFN algorithm and

from the model of Barabási-Albert [80], which provides net-
works with loops. One can easily notice that networks with
loops reach the equipartition constant value 1/N faster and
the time difference is extended over more than three orders of
magnitude. Due to a higher number of links between nodes,
with some of them having a very high degree, the probability
of returning is lower in the Barabási-Albert model, i.e., the
spreading on networks is more effective. This behavior is
similar to a single star or to GSFNs with high Kmin.

D. Quantum transport

1. Spacetime structures

In Fig. 5 we display the contour plots of the quantum return
probability π for three particular realizations of the GSFN
algorithm. These networks with N = 100 nodes are depicted
in Figs. 1(a), 1(d), and 1(f), in which we show also the nodes’
number to facilitate a better understanding of the results. In
the left column, Figs. 5(a), 5(d), and 5(g), we show the results
of a network with (γ , Kmin, Kmax) = (1, 2, 99); in the mid-
dle column, Figs. 5(b), 5(e), and 5(h), we have the network
with the parameter set (2.5,2,99); and in the right column,
Figs. 5(c), 5(f), and 5(i), the network is for (2.5,6,99). For the
sake of comparison we show the same quantum probabilities

032219-7



MACIEL, MENDES, STRUNZ, AND GALICEANU PHYSICAL REVIEW A 102, 032219 (2020)

FIG. 5. Spacetime structures for three GSFNs displayed in Fig. 1, more exactly Fig. 1(a) (left column), Fig. 1(d) (middle column), and
Fig. 1(f) (right column). The rows correspond to πk,center (t ) (top row), πk,periphery(t ) (middle row), and π j,k (t = 10) (bottom row).

for the three networks. Immediately apparent is the symmetry
of the figures, π j,k = πk, j , which is a direct consequence of
the model; see Eq. (4). In the first row, Figs. 5(a)–5(c), we
consider the time evolution of the probabilities from the center
of each network, depicted by red squares in Fig. 1, to all nodes,
πk,center (t ).

In Fig. 5(a) the center is node 2, which is the node with
the highest transition probability for all time values. Node
2 is the core of a star with 76 neighbors and, as is known
from the literature [83,84,95], in the quantum case the stars
show high localization effects, which explains our findings.
The neighbors of node 2, namely the nodes 1 and 4–78,
show higher probabilities for various time values. The second
highest probabilities are found for π30,2, which correspond
to the walker being at the core of the second big star of
our network. The probabilities of reaching the second-order

neighbors, depicted by black in the figure, are smaller for
almost all time values. It is worth stressing that in the case
of single stars when the quantum walk starts at the core it
can be mapped into a walk involving only two nodes [83,96].
However, when the walks starts at a peripheral node, we do
not have such a simple mapping.

In Fig. 5(b) the center is node 1 and it corresponds to a
network with smaller stars, but longer linear segments: its
diameter equals 11. The highest probability continues to be
π1,1, due to the fact that node 1 is the core of a star with
16 arms. However, for almost all time values we have high
probability of the walker going to these sixteen next-nearest
neighbors. We found relatively high probabilities of reaching
more distant nodes, due to an increase of the linear segments.
Similarly to the previous network, the lowest probabilities
correspond to peripheral nodes, i.e., displayed by indigo in
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Fig. 1(d). Overall we can state that the spreading of the quan-
tum walker is much more efficient for this network.

In Fig. 5(c) the center is node 1 and the network is com-
posed of small coupled stars. This network has its diameter
equal to 8, lower than the previous network, but it contains
more nodes with degree higher than 5, more exactly 12 nodes.
This mixture of linear segments and high degree nodes has
strong influence on quantum transport. We notice a not trivial
combination between localization effects and good spread-
ing. The localization effects, due to the starlike segments,
are better seen usually on the next-nearest neighbors of the
center and at the cores of the stars. At the same time the
probability of reaching the peripheral nodes is not as low as in
the previous cases, due to the linear segments.

In the second row of Fig. 5 we focus on the transition prob-
abilities from a peripheral node, which in our case is chosen
to be one of the most distant nodes from the center. This node
is chosen to be 100 for networks shown in Figs. 1(a) and 1(d)
and node 90 for the network displayed in Fig. 1(f). In Fig. 5(d)
we have as the highest probability π100,100, followed by the
probability of the transition from the peripheral node 100 to its
nearest neighbor, node 30. For almost all time values π30,100

is the second highest probability. This probability is followed
by the probabilities of visiting the second-nearest neighbors,
namely nodes 29 and 80–99. These results are perfectly ex-
plained by the topology of the network: practically, two stars
are coupled through link (2,30). Thus, the localization effects
are more pronounced if the walker starts from the periphery
than from the core of one of the stars.

In Fig. 5(e) we focus on network Fig. 1(d) and we choose
a peripheral node that belongs to a linear segment, namely
node 100. Although it is not exactly the most distant node
from the center we choose this node also for being opposite
to the largest star, which has node 59 as its core. Due to a
significant increase of the longest linear path we encountered
higher transition probabilities not only for the next-nearest
neighbors, but also for distant nodes. For instance for node 72,
which is a neighbor of ninth order, we get π ≈ 0.1 for various
time values. This can be explained by the fact that the shortest
path linking node 100 to node 72 passes only through a single
big star. Similar results were found for nodes with the shortest
path to node 100 mainly composed of linear segments, for
instance the nodes 24, 45, to name only a few. We still get low
probabilities of transitions from node 100 to one of the nodes
of the opposite star along the network, namely nodes 78–98.
One concludes that for this network the quantum transport is
more effective, starting from any node of the network.

In Fig. 5(f) we display the time evolution of the transition
probabilities from the peripheral node 90, which belongs to
one of the stars. Our chosen network is composed of twelve
coupled stars, the longest linear segment being the backbone
that links almost all of them. This fact provides a mixture of
strong localization effects, due to the starlike parts, and good
spreading, a consequence of the linear segments. We found
the highest probabilities for transitions from node 90 to nodes
belonging to the same star. However, for time values higher
than 80 we encounter a more homogeneous situation, where
almost all the probabilities are higher than 10−4. A possible
visualization for this behavior is the following: the walker
reaches a star, it stays localized to this new star, and after

awhile it goes to the next star. This process is repeated until
the quantum walker visits all the stars.

In the last row of Fig. 5 we fixed the time value to t = 10
and we compute all the transition probabilities π j,k between
all possible pairs. However, it is important to stress that qual-
itatively we have a similar behavior for any value of time.
For our three considered networks we obtained very high
probabilities of returning to the initial node. For the network
displayed in Fig. 1(a) we observed strong localization effects.
The probabilities are higher than 10−4 only for transitions be-
tween nodes belonging to the same star. For network Fig. 1(d)
we observed a better mixture between localization effects and
good spreading over the whole network. The highest prob-
abilities are between nodes belonging to the same star and
the lowest probabilities are between nodes from two different
and distant stars, for instance the stars with cores 1 and 59.
Due to a higher density of linear segments the nodes from
the star with core 1 show a better spreading. From a pure
visualization perspective these contour plots can ease our way
in determining the number of stars from a network. The same
aspect can be observed in Fig. 5(i): the number of orange-red
colored blocks along the main diagonal gives us a good idea of
how many stars, i.e., nodes with high degree, we are dealing
with. As in the previous two panels related to this network,
Figs. 1(c) and 1(f), we noticed a better mixture between two
extreme behaviors: a linear chain and a star.

2. Average return probabilities

Now we turn our attention to quantum mechanical trans-
port over GSFNs. In Fig. 6 we focus on the quantum average
probability π (t ), given by Eqs. (4) and (6). In Fig. 6(a) we
compare the quantum average probability with the classical
return probability p(t ), Eq. (7), and the lower bound α(t ),
Eq. (8), for GSFNs with γ = 1.0 and 4.0. The minimum
and the maximum allowed degrees are fixed to Kmin = 2 and
Kmax = 999, respectively. For GSFNs with γ = 1.0, which
correspond to networks with predominant starlike topology,
in the quantum case the walks experience strong localization
effects, thus the average probability of returning to the starting
node is high. This fact is evident also from our considered
quantum probabilities, for which the values fluctuate around
0.98 (for π ) and 0.96 (for α). The classical probability is
almost three orders of magnitude lower than its quantum
counterpart and it shows a different time-decay behavior. It
is important to mention that a quantum walker on large stars
has a higher probability of returning to the starting node than
the classical walker. For all structures we obtain that in the
long-time limit the classical return probability equals 1/N . In
the quantum case the probability oscillates around a certain
value, which can be higher than 1/N . One should not conclude
that CTRW is faster than CTQW, but this fact only means
that in the long-time limit the probability is equally distributed
among all nodes [95]. This result is a consequence of having
one highly degenerate eigenvalue in both cases. For networks
with more linear segments, γ = 4.0, the quantum transport
increases significantly, but the localization effects are still
present. For these GSFNs both quantum probabilities show
larger fluctuations, but they reach the long-time average value
faster, comparing with the classical probability. By further
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FIG. 6. Quantum average return probability π (t ) as a function of time t , Eq. (8), for S = 1000 GSFNs with N = 1000 nodes. (a) Com-
parison between classical and quantum probabilities for networks with Kmin = 2, Kmax = 999, and γ = 1 and 4. (b) Quantum probability for
networks with γ variable and (Kmin, Kmax) = (2, 999). (c) π (t ) for GSFNs with γ = 2.5, Kmax = 999, and Kmin variable. (d) π (t ) for GSFNs
with γ = 2.5, Kmin = 999, and Kmax variable.

increasing the value of γ we increase the linear segments
and we obtain stronger fluctuations for the quantum average
probabilities. In the limiting case, namely a single linear
chain, one encounters an important increase in efficiency for
CTQW, because the quantum probability of returning, π (t ),
decays faster than for CTRW [83]. In the region of intermedi-
ate times the CTRW follows a t−1/2 decay, while the CTQW
scales with t−1.

In Fig. 6(b) we show how the networks’ topology influ-
ences the quantum average return probability π (t ). Here, we
display also the results for our extreme cases: a single linear
chain and a star with N − 1 arms, and additionally the orig-
inal Barabasi-Albert scale-free network [80]. All scale-free
networks show decays between the two extreme cases, more
precisely strong localization for a star and good spreading for
a linear chain. All GSFNs reach the long-time average value
faster and the fluctuations around this value become lower by
increasing γ . However for very high γ , the GSFNs approach a
single linear chain situation, for which the big fluctuations get
higher. We notice that the increase in the quantum efficiency
is not that considerable, when γ grows. For instance, in the
long-time limit the quantum probability fluctuates around the
value 0.98 for γ = 1.0 and 0.18 for γ = 4.0. This is a conse-

quence of the fact that even for high γ the number of nodes
with high degree is enough to prevail the localization effects.
An interesting situation occurs when we compare to the B.-A.
model’s networks, which contain loops and have a higher total
number of links. Remarkably, for B.-A. networks the quantum
average probability π is lower than all considered GSFNs,
although its power-law exponent equals 2.64. The treelike
GSFNs with a similar exponent, γ = 2.5, display higher prob-
abilities meaning that the localization effects are stronger.
For B.-A. networks also the fluctuations around the equilib-
rium value 0.12, which is almost two orders of magnitude
lower than the classical limit 1

N , are practically nonexistent.
However, the B.-A. networks are delayed in reaching their
long-time average value if we compare to GSFNs. All these
properties are due to the presence of loops, which increase the
number of linear segments and the total number of links.

In Fig. 6(c) we monitor the influence of Kmin on the quan-
tum average probability for GSFNs with fixed γ = 2.5 and
Kmax = 999. Immediately apparent is an increase of π when
the minimum allowed degree gets higher. GSFNs composed
of bigger stars show a more prominent localization effect.
Regarding the long-time average value, we observe that it is
reached almost at the same time. However, this probability
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FIG. 7. Long-time average probability χ (a) and the relative difference (χ − χ∗)/χ (b) for GSFNs with N = 1000, S = 1000, and Kmax =
999 as function of γ and Kmin.

gets almost double when Kmin grows from 2 to 10, more
exactly π ≈ 0.55 to π ≈ 0.90. We also notice that the strength
of the fluctuations around the long-time average are drastically
diminished when the minimum size of the stars gets higher.
This fact can be also inferred if one compares π of a single
chain and a star with N − 2 arms, both curves being shown in
Fig. 6(b). The behavior of a linear chain is governed by large
fluctuations while for a star they are extremely small.

In Fig. 6(d) we vary the maximum allowed degree Kmax and
we keep constant the other parameters: γ = 2.5 and Kmin = 2.
GSFNs with lower Kmax will increase the spreading over
networks due to an increase in the size of linear segments.
However, differently than other parameters, Kmax shows a
weaker influence on the long-time average value and on the
strength of the fluctuations around this value. This is similar
to the classical probability, and the weak influence on Kmax

does not reside in the sizes of the stars, but in the matter of
having a network composed of stars.

In Fig. 7 we focus on the quantum transport efficiency
and we measure the long-time average χ (left panel) and
the relative difference (χ − χ∗)/χ (right panel), where the
approximation χ∗ is given by Eq. (10). Here, we fix Kmax to
N − 1 = 999 and we consider S = 1000 GSFN realizations
for each value of the parameter set (γ , Kmin). We choose to
display the results in a two-dimensional map, in which the
efficiency strength is represented by colors. The long-time
average χ has values between 0 and 1. The quantum transport
is considered to be efficient if χ is low, with the maximum
efficiency being reached when χ = 0. The transport is less
efficient if χ is high, with the maximum inefficiency being
encountered when χ = 1. From Eq. (10) we can state that
the quantum transport gets better, i.e., lower values of χ ,
when γ increases. This property is valid for all values of Kmin

with other parameters being fixed. For GSFNs with Kmin = 2
we improve the efficiency of the transport by almost two
orders of magnitude by increasing γ from 1 to 4, namely
χ (γ = 1, Kmin = 2) = 0.96 and χ (4, 2) = 0.012. In the same
manner one observes a decrease of quantum efficiency when
Kmin increases while γ is kept constant. All these findings are
directly related to the quantities of stars and linear segments
existing in GSFNs. Remarkably, we obtain the same quantum
efficiency for various values of the parameter set (γ , Kmin),

although the topology of the networks is vastly different. For
a better understanding of this statement one could follow the
white color in Fig. 7(a), which correspond to χ ≈ 0.7. For
example, the quantum efficiency is almost the same for the
parameter sets (1.8,2), (2.0,3), (2.4,5), and (2.6,6), to name
only a few. Practically, for every γ value one finds a proper
value of Kmin that will give the same χ . Similar results are
obtained for all values of χ ; only the values of the considered
parameters change. Regarding the approximate χ∗ values,
we encounter a behavior similar to the exact values χ , not
shown here. This can be seen from Fig. 7(b), where for a
better visualization we show the relative difference between
the exact and the approximate long-time average probabilities:
(χ − χ∗)/χ . The difference between them is at maximum
20% and around 1% on average. Thus, for these networks
the approximation holds [89,90], which is mainly due to a
predominantly discrete nature of the eigenvalue spectrum of
our GSFNs.

V. CONCLUSIONS

In this article we have studied continuous-time quantum
walks on generalized scale-free networks. These networks
were constructed in a treelike manner by making use of a
growth mechanism [82]. The degree distribution followed a
power law with its exponent γ being chosen at the beginning
of the procedure. Additionally, we have considered two mod-
ularity parameters, which enhanced the quantum transport
by a proper choice of their values: the minimum allowed
degree, Kmin, and the maximum allowed degree, Kmax. We
have constructed finite-size treelike networks, meaning that
all networks contain nodes with degree 1, i.e., the peripheral
nodes. In this article we have monitored how classical and
quantum transport are influenced by the above-mentioned pa-
rameters. We have chosen as quantities of interest the average
return probability and the long-time average transition proba-
bility χ . In the continuous-time model these probabilities are
reduced to the complete determination of the eigenvalues and
the eigenvectors of the connectivity matrix. The eigenvalue
spectrum shows a stronger dependence on γ than on the other
two parameters. At the same time, a change of parameter Kmin

is more effective in switching the topology of the networks
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towards a more starlike shape than changing Kmax. Another
important feature, which is more evident for lower γ s, is a
decrease in the degeneracy of the eigenvalue λ = 1 when Kmax

gets lower. This fact is related to an increase of the size of
linear segments.

Both classical and quantum transport on GSFNs have
shown a behavior between two extreme cases: a pure linear
chain and a single star with N − 1 arms. In the classical situ-
ation GSFNs with a predominantly starlike topology revealed
a better transport, while for linear chains the spreading on
the network is slow. In the intermediate-time domain GSFNs
showed a power-law decay with exponents between 0.38 (for
γ = 1.0) and 0.77 (for γ = 4.0). By further increasing the
value of γ we encounter in the intermediate region a more
linearlike behavior, having in the limit of γ → ∞ a pure lin-
ear chain behavior, namely a power law with exponent equal
to 0.5. All CTRWs on networks will eventually decay in the
long-time limit to the equipartition value 1/N . The transport
is considered to be more efficient if the above mentioned
value is reached faster. Thus, if we are looking for scale-free
networks with a good (uniform) and fast spreading we should
aim towards GSFNs composed of larger stars. Here, we have
shown that there are two mechanisms to do this: decrease the
value of γ or increase the minimum allowed degree Kmin.

In the quantum case the situation is different: the efficiency
of the transport, measured through the long-time average
probability, is better for linear chains than stars. For stars
the localization effects are strong: the walkers usually stay

in the neighborhood of the starting node. However, the equi-
librium situation is reached quicker by networks with more
starlike topology. For this type of network we have noticed
a significant decrease of the fluctuations’ strength around the
average efficiency value. Remarkably, we have found that the
same quantum efficiency is encountered for various pairs of
the parameter set (γ , Kmin), i.e., different topologies. More
precisely, for every value of Kmin one finds a value of γ which
gives the same χ . We have shown that the strong quantum
localization effects can be overcome by increasing the value of
γ while the other parameters are kept constant. Another mech-
anism to increase the quantum efficiency is by decreasing the
maximum allowed degree Kmax, but increasing the minimum
allowed degree Kmin yields the opposite effect: a decrease in
the efficiency. Thus, we can state that the quantum efficiency
is optimized by increasing the value of γ , by decreasing Kmin,
or by increasing Kmax, having the pure linear chain as their
upper limit. We have noticed that the speed in reaching the
quantum average long-time return probability does not depend
too much on our construction parameters γ , Kmin, and Kmax,
but it is mainly related to the total number of links.
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