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Optimality of spatial search via continuous-time quantum walks
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One of the most important algorithmic applications of quantum walks is to solve spatial search problems.
A widely used quantum algorithm for this problem, introduced by Childs and Goldstone [Phys. Rev. A 70,
022314 (2004)], finds a marked node on a graph of n nodes via a continuous-time quantum walk. This algorithm
is said to be optimal if it can find any of the nodes in O(

√
n) time. However, given a graph, no general

conditions for the optimality of the algorithm are known and previous works demonstrating optimal quantum
search for certain graphs required an instance-specific analysis. In fact, the demonstration of the necessary and
sufficient conditions that a graph must fulfill for quantum search to be optimal has been a long-standing open
problem. In this work we make significant progress towards solving this problem. We derive general expressions,
depending on the spectral properties of the Hamiltonian driving the walk, that predict the performance of
this quantum search algorithm provided certain spectral conditions are fulfilled. Our predictions are valid, for
example, for (normalized) Hamiltonians whose spectral gap is considerably larger than n−1/2. This allows us
to derive necessary and sufficient conditions for optimal quantum search in this regime, as well as provide
examples of graphs where quantum search is suboptimal. In addition, by extending this analysis, we are also
able to show the optimality of quantum search for certain graphs with very small spectral gaps, such as graphs
that can be efficiently partitioned into clusters. Our results imply that, to the best of our knowledge, all prior
results analytically demonstrating the optimality of this algorithm for specific graphs can be recovered from our
general results.
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I. INTRODUCTION

Quantum walks, the quantum analogue of classical ran-
dom walks, find widespread applications in several areas of
quantum information processing [1]. In particular, they are
a universal model for quantum computation [2,3] and are
central to the design of several quantum algorithms [4].

The problem of finding a marked node in a graph, known
as the spatial search algorithm, can be formulated as a
continuous-time quantum walk (CTQW). In the original work
by Childs and Goldstone [5], it was shown that search by
CTQW can find a marked node in O(

√
n) time [6] for certain

graphs with n nodes such as the complete graph, hyper-
cube, and d-dimensional lattices with d > 4. This implied
a quadratic speedup for the spatial search problem with re-
spect to classical random walks for these graphs. However,
for lattices of d � 4, a full quadratic speedup is lost. Since
then a plethora of results have been published exhibiting an
O(

√
n) running time of the Childs and Goldstone algorithm

(henceforth referred to as the CG algorithm) on certain specific
graphs [7–16].

Although we state the general framework of the CG al-
gorithm in detail in Sec. II, here we mention the algorithm
briefly as this will aid the understanding of our contributions.
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Given a graph G of n nodes, the CG algorithm involves evolv-
ing the following search Hamiltonian:

Hsearch = Horacle + rH, (1)

where r is a tunable parameter (the hopping rate of the quan-
tum walk on G), H is the Hamiltonian encoding the structure
of G (such as the graph’s adjacency matrix or Laplacian),
and Horacle is the oracular Hamiltonian that singles out the
marked node, which we shall denote as |w〉 [17]. Typically,
the algorithm commences from the highest eigenvector of H
which has a small overlap with |w〉 (say

√
ε), and involves

carefully choosing the value of r, such that evolving Hsearch

for the minimum possible time, results in a state that has a
large overlap with |w〉. It can be shown [18] that the algo-
rithm is optimal if it can find the marked node with constant
probability in �(1/

√
ε) time (in many cases ε = 1/n as we

discuss in Sec. II).
Most prior results on the optimality of the CG algorithm,

for particular graphs, have required an analysis specific to
the underlying instance. For example in Ref. [7], the authors
demonstrated, using degenerate perturbation theory, that the
CG algorithm can find a marked node on a strongly regular
graph in O(

√
n) time, a graph that lacks global symmetry.

Using similar techniques it was shown that a marked node
can be found in optimal time on a graph with low algebraic
connectivity [19]. A long standing open problem has been to
obtain the general conditions for the optimality of the algo-
rithm and in particular to quantify the necessary and sufficient
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conditions a given graph must satisfy for the algorithm to
be optimal.

A first attempt towards deriving sufficient conditions for
the optimality of the algorithm was made in Ref. [9] by
connecting the graph spectral properties to the algorithmic
running time. Namely, the authors demonstrated that the al-
gorithm is optimal if the Hamiltonian encoding the graph
structure, i.e., H has a constant spectral gap (without loss of
generality, we assume H to have eigenvalues in the interval
[0,1], see Sec. II for details). However, in the scenario where
the spectral gap is no longer a constant, i.e., it decreases with
the size of the graph, the results of the aforementioned work
are not applicable.

In our work we significantly extend this result and provide
the necessary and sufficient conditions for the CG algorithm
to be optimal, for any H obeying certain general assumptions
(Sec. III). The regime of validity of our results is defined by
a spectral condition which is obeyed, for example, when the
spectral gap of H (say �) is sufficiently larger than the overlap
of the initial state with the marked node, i.e., � � √

ε. To
the best of our knowledge, this condition is general enough to
encompass most prior works predicting optimality of the CG
algorithm for specific graphs. Examples include the complete
graph, hypercube [5], strongly regular graphs [7], complete
bipartite graphs [8], lattices of dimension greater than four
[5], Erdös-Renyi random graphs [9], or balanced trees [10]
(for specific positions of the marked node).

To prove our optimality conditions, we first obtain general
results regarding the best possible performance of the algo-
rithm for any given graph obeying the previously mentioned
validity regime. Precisely, we obtain general expressions, de-
pending on the spectrum of H , for the optimal value of r,
the maximum possible amplitude that can be obtained at the
marked node and the time at which this amplitude is reached
(Theorem 2). The optimality conditions follow by imposing
the maximum amplitude to be constant after a time

√
ε.

These predictions are, however, not valid for graphs with
a sufficiently low spectral gap. Such low spectral gaps ap-
pear, for example, on graphs composed by highly connected
clusters that are sparsely connected among each other, which
find applications in spectral clustering [20]. A simple exam-
ple is the so-called joined-complete graph of n nodes: two
complete graphs of n/2 nodes each, joined by a single edge
between them [see Fig. 1(b)]. If H is defined by the normal-
ized adjacency matrix of this graph, the spectral gap of H is
small enough to violate the spectral condition. However, in
Ref. [19], using an analysis tailored to this particular instance,
the authors showed that the CG algorithm can find a marked
node on this graph in �(

√
n) time.

Such instances are characterized by the following features
in the spectrum of H : (i) A few of the highest eigenvalues
are closely spaced (nearly degenerate), implying an extremely
small spectral gap and (ii) a large gap between the closely
spaced eigenvalues and the rest of the spectrum. We capture
these properties precisely via new spectral conditions and pro-
vide, in Sec. IV, a general theorem regarding the performance
of quantum search on such graphs (Theorem 6). This leads to
a sufficient condition that is able to predict optimal quantum
search on the joined-complete graph and other graphs with
similar spectral properties.

FIG. 1. (a) The bridged-complete graph is a special case of a
Rook’s graph with n1 = 2 and n2 = n/2. This corresponds to two
complete graphs of n/2 edges such that each node in one com-
plete graph is connected to the corresponding node in the other.
(b) Joined-complete graph: Two complete graphs of n/2 nodes each
are connected by a single edge.

In Sec. V we provide an explicit example which com-
pares and contrasts the applicability of Theorem 2 and
Theorem 6, respectively. Therein we consider the quantum
walk of a rook on a rectangular chessboard. This corresponds
to the Cartesian product between two complete graphs, known
as the Rook’s graph (see Fig. 3) [21,22]. By altering the length
and breadth of the chessboard (equivalently, by changing the

FIG. 2. The analysis of Sec. IV is tailored to the study of quan-
tum search on graphs whose spectrum exhibits the features displayed
in this figure. A small number D of quasidegenerate eigenvalues
lie close to the maximum value 1, within an energy gap �D . The
next largest eigenvalue has an energy 1 − �, where � � �D . Such
spectral features appear, for example, in the graphs of Fig. 1 or, more
generally, in graphs composed by highly connected clusters that are
sparsely connected to each other.
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FIG. 3. The possible moves of a rook on a rectangular chess-
board of n1 rows and n2 columns (a) corresponds to a graph which is
the Cartesian product of two complete graphs (Rook’s graph) of n1

and n2 nodes, respectively, as depicted in (b).

size of the complete graphs) the spectral properties of the
graph (namely the spectral gap) can be changed. We identify
different regimes of optimal and suboptimal quantum search,
elucidating how the interplay between different choices of r
affect the algorithmic performance. Finally, we summarize
and discuss upon the results of the article in Sec. VI.

II. PRELIMINARIES

First, we describe the framework of the CG algorithm. Con-
sider any graph G with a set of n vertices labeled {1, 2, . . . , n}
and a Hamiltonian H , which is an Hermitian matrix of dimen-
sion n that encodes the connectivity of the underlying graph.
In other words, we demand that H is local, i.e., its (i, j)th
entry is nonzero if and only if node i (or ith edge) is adjacent
to node j (or jth edge) in G (for example, H could be propor-
tional to the graph’s adjacency matrix). Then, evolution under
the Hamiltonian H implements the continuous-time quantum
walk on the graph that it encodes. Without loss of generality,
it is assumed that H has eigenvalues in the interval [0,1] [23].

As mentioned earlier, the search Hamiltonian correspond-
ing to the CG algorithm is given by

Hsearch = Horacle + rH.

We require that Horacle is local so that it perturbs the node |w〉
in a way that affects only vertices (or edges) in its vicinity.
We will focus on the original formulation of the CG algorithm
where Horacle = |w〉〈w| adds a local energy at node |w〉, leav-
ing the remaining vertices unaffected. In fact, simulating this
oracular Hamiltonian for a time t , corresponds to O(t ) queries
to the oracle of the Grover’s search algorithm [24]. Let us refer
to the eigenstate of H corresponding to eigenvalue 1 as the

Algorithm 1: CG algorithm

Choose some r > 0 such that Hsearch = |w〉〈w| + rH .
(1) Prepare the 1-eigenstate of H .
(2) Evolve the state of 1) under Hsearch for some time T .

1-eigenstate. Then the steps of this algorithm are explained in
Algorithm 1.

We note that our formulation of the CG algorithm is slightly
more general than that of [5], where the authors consider
the Hamiltonian Hsearch = −rL − |w〉〈w|, such that L is the
Laplacian of the graph [25], and choose the initial state |s〉 =
n−1/2∑

i |i〉 which is the 0-eigenstate of L. Our formulation
becomes equivalent to that of [5] if we set H = I − L, where
L is the normalized Laplacian and by suitably rescaling r.

The essential parameter in Algorithm 1 is the value of r,
which has to be chosen judiciously so that the state |�(T )〉
prepared after step 2 has a large overlap with the marked node

α(T ) = |〈w|�(T )〉|, (2)

for the minimum possible T . The marked node can then
be obtained from this final state via a measurement on the
state-space basis, or via amplitude amplification followed by
measurement.

A. Running time of CG algorithm

To fully quantify the cost of running the CG algorithm, it is
important to take into account not only the cost of evolving the
search Hamiltonian for a given time, but also the cost to setup
the initial state and measure the final state. Furthermore, in
some prior works [5,26,27] amplitude amplification has been
used in conjunction with Hamiltonian evolution in order to
find a marked node on lattices. To quantify the cost of such a
procedure, we need to introduce the cost of implementing the
Grover oracle (the cost of evolving Horacle for constant time),
which we denote as Cw.

We use the following notation for the different costs.
Setup cost S: the cost of preparing the initial state of the

algorithm (1-eigenstate of H) [28].
Time-evolution cost T : The cost of implementing the

time-evolution operator eiT Hsearch . A discrete simulation of this
operator would require O(T ) queries to the Grover oracle [29].

Measurement cost M: The cost of performing a measure-
ment in the state-space basis.

Depending on the strategy used to obtain the marked node
from the state |�(T )〉, the overall cost can be quantified as
follows (constant factors are omitted for simplicity):

(i) Amplitude amplification: Applying 1/α(T ) rounds of
the quantum amplitude amplification procedure [30] results
in obtaining the marked node with constant probability. The
overall running time of the CG algorithm along with amplitude
amplification is

Tsearch = 1

α(T )
(S + T + Cw ) + M. (3)

However, amplitude amplification is a discrete-time proce-
dure, which implies that the overall algorithm is no longer
continuous time.
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Furthermore, as evident from Eq. (3), the setup cost plays
a crucial role in the overall running time of the algorithm.
In fact, in prior works on the CG algorithm, the setup cost
S and the cost of making a measurement M have not been
considered in order to compute the overall running time.

It is important to guarantee that it is advantageous to run
the quantum walk, as opposed to using only amplitude ampli-
fication on the initial state and bypassing the walk altogether.
If the initial state of Algorithm 1 has an overlap of

√
ε with

|w〉, the cost of the latter strategy is

TAA = 1√
ε

(S + Cw ) + M, (4)

where Cw is the cost of implementing the Grover oracle
(evolving Horacle for constant time). Clearly for the CTQW to
be advantageous we need TAA to be larger than Tsearch from
Eq. (3).

In the case of the CG algorithm, if the setup cost is reason-
ably large, such as for the applications considered in [31,32],
the aforementioned inequality is indeed satisfied and bypass-
ing the quantum walk will invariably be disadvantageous.
Hence, the choice of r and T should be such that the overhead
due to amplitude amplification is as low as possible, or in other
words α(T ) is as large as possible.

(ii) Repetition: By repeating the time evolution followed
by a measurement in the state-space basis 1/α(T )2 times
would result in obtaining the marked node with a high prob-
ability. The overall running time of the procedure in this
case is

Tsearch = 1

α(T )2
(S + T + M). (5)

Clearly repeating the algorithm results in the overall running
time being quadratically slower [with respect to 1/α(T )] as
compared to that of amplitude amplification. However, if one
assumes access only to the time evolution of Hsearch, then
repeating this procedure is the only way to amplify the success
probability.

B. Optimality of the algorithm

It is natural to ask, in this context, what is the minimum
time needed to find the marked node for any Hamiltonian H .
From the seminal work by Farhi and Gutmann [18], it is easy
to obtain the following lower bound on the evolution time T
required to find |w〉:

T = �

(
1√
ε

)
. (6)

For vertex-transitive graphs, which informally means that
there is no particular structure that allows us to distinguish
a node from any other node, we have that ε = 1/n, recovering
the familiar Grover lower bound T = �(

√
n) [33].

As such, throughout the article we shall say that the CG
algorithm is optimal for a given graph G if Algorithm 1 results
in a state that has a constant overlap with |w〉 after evolving
for a time that matches the aforementioned lower bound, i.e.,
T = �(1/

√
ε). In such a case, the overall search time would

scale as

Tsearch = S + �

( Cw√
ε

)
+ M, (7)

assuming the cost of implementing the walk evolution for time
T = �(1/

√
ε) is dominated by the cost Cw of implementing

the oracle, i.e.,

T = �

( Cw√
ε

)
. (8)

In this scenario, running the walk is advantageous as com-
pared to simply doing amplitude amplification on the initial
state [Eq. (4)] when the set-up cost is considerably larger than
the cost of implementing the oracle.

It is worth noting that in order to quantify a speedup, one
can also compare the running time of quantum spatial search
with the time required by classical random walks to solve the
same problem. In fact, the time required by a classical random
walk to find a marked node on any graph, known as the hitting
time, is bounded as follows:

1

ε
� HT(w) � 1

�ε
, (9)

where � is the spectral gap of the operator defining the ran-
dom walk (such as the normalized adjacency matrix or the
graph Laplacian).

In fact, it has been established that discrete-time quan-
tum walk search algorithms [34–36] as well as the recent
continuous-time quantum walk search algorithm we proposed
[37], can find a marked node on any graph in square root of
the hitting time, resulting in a generic quadratic advantage.
However, such algorithms require a larger Hilbert space and
can be seen as quantum walks on the edges of the underlying
graph. As such, in this article we shall also compare the run-
ning time of the CG algorithm with the hitting time of classical
random walks, towards identifying the regimes for which a
quadratic speedup can be obtained as well as the limitations
of this framework for quantum search.

III. PERFORMANCE OF THE CG ALGORITHM

In this section we derive the main results characterizing
the performance of the CG algorithm. Let H have eigenval-
ues 0 � λ1 � λ2 � · · · λn−1 < λn = 1 with the corresponding
eigenvectors, |v1〉, . . . , |vn〉 such that

H |vi〉 = λi|vi〉. (10)

Also let the gap between the two highest eigenvalues of H
(spectral gap) be given by

� = 1 − λn−1. (11)

It will be convenient to express the marked node in the basis
of the eigenstates of H as

|w〉 =
n∑

i=1

ai|vi〉 (12)

and define the following set of parameters:

Sk =
n−1∑
i=1

|ai|2
(1 − λi )k

, (13)
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for integer k � 1. These parameters depend only on the spec-
tral properties of the graph and the position of the marked
node and turn out to be crucial to understanding the algorith-
mic performance, as it is clear, for example, in the studies of
quantum search on lattices [5] and fractals [13]. We note also
that for vertex-transitive graphs these parameters depend only
on the eigenvalues of H , as all the probabilities |ai|2 = 1/n.

Furthermore, we impose the following spectral condition
that defines the regime of validity of our analysis:

√
ε < c min

{
S1S2

S3
,�

√
S2

}
, (14)

where c is a small positive constant. The reason why we need
to impose this condition will become clear in Sec. III A. In a
nutshell, this condition ensures that we can bound the error
in our perturbative analysis and, furthermore, that the additive
error we obtain in the final amplitude at the marked node is
small enough for our predictions to be meaningful.

In Sec. III C we discuss the generality of this condition
and prove that it is fulfilled for any graph where

√
ε � c�.

However, it is more general than that since it also includes the
critical case of the 4D lattice, where both

√
ε and � scale as

�(1/
√

n).
Our main results regarding the performance of the algo-

rithm are the following. In Sec. III A we demonstrate that the
optimal choice for r is r = S1, provided the spectral condition
from Eq. (14) is respected. In this case we show that the
maximum amplitude at the solution is reached at time

T = �

(
1√
ε

√
S2

S1

)
(15)

and is given by

ν ≈ S1√
S2

. (16)

Furthermore, we show that essentially the same behavior is
maintained if we choose r within a window of |r − S1| =
O(

√
εS2). If r is chosen outside this interval, we show in

Sec. III B that the maximum amplitude reached is o(S1/
√

S2),
independently of the evolution time we choose. This implies
that �(S1/

√
S2) is the maximum amplitude achievable for any

time and any choice of r.
Consequently, we can draw the following necessary and

sufficient condition for optimal quantum search (in the sense
discussed in Sec. II B), within the regime of validity of our
analysis.

Theorem 1 (Optimality of quantum search). Let H be such
that the spectral condition from Eq. (14) is fulfilled. Then the
CG algorithm is optimal iff S1/

√
S2 = �(1).

The proof of this result follows directly from the statements
above. If S1/

√
S2 = �(1), choosing r sufficiently close to S1

ensures that we obtain a constant amplitude at the marked
node after T = �(1/

√
ε) [see Eqs. (15) and (16)], match-

ing the lower bound in Eq. (6). On the other hand, since
�(S1/

√
S2) is the maximum amplitude achievable, if we have

that S1/
√

S2 = o(1) the algorithm is never optimal.
With this necessary and sufficient condition, many hitherto

published results showing that this algorithm is optimal for
specific graphs can be recovered, without the need to do a
graph specific analysis [5,7–12,14,15,38–41]. For example,

it is possible to see, from the fact that S1/
√

S2 �
√

� (see
Lemma 1), that search is optimal for any Hamiltonian H
with a constant spectral gap, and thus recover the main result
from Ref. [9]. This encompasses graphs such as Erdös-Renyi
random graphs, complete bipartite graphs, or strongly regular
graphs. Additionally, our results also predict optimality for
graphs such as hypercubes, lattices of dimension greater than
four even though they do not exhibit a constant spectral gap.

One can wonder whether a simpler and more intuitive suffi-
cient condition for optimality can be derived from Theorem 1.
To our knowledge, all previously known examples of graphs
whose spectral gap is large enough compared to

√
ε can

be searched by quantum walk in optimal time (e.g., lattices
of dimension d � 5), so one could think that

√
ε � � is a

sufficient condition for optimal quantum search. We show ex-
plicitly that this is not the case—there exist graphs for which
the spectral condition is satisfied and the spectral gap is such
that

√
ε � � but nevertheless the value of S1/

√
S2 decreases

with the size of the graph which implies suboptimality. This
is the case, for example, for the normalized adjacency matrix
of the Rook’s graph in some regime (see Sec. V). In fact,
this example shows that this quantum walk algorithm can
also be slower than the square root of the hitting time of the
corresponding classical walk.

A. Performance of quantum search at the critical point (r ≈ S1)

Here we present one of our main results, which character-
izes the performance of quantum search when the parameter r
is close to its optimal value.

Theorem 2. Let H be such that the spectral condition of
Eq. (14) is obeyed, with Sk defined as in Eq. (13). By choosing
r = S1 and

T = �

(
1√
ε

√
S2

S1

)
,

Algorithm 1 prepares a state | f 〉 such that ν = |〈w| f 〉| =
�(S1/

√
S2).

Proof. As defined previously, the Hamiltonian H has
eigenvalues λi and corresponding eigenvectors |vi〉. We denote
each eigenvalue of rH as λ′

i := rλi. First, we express the
solution state |w〉 in terms of the eigenstates of H . We have

|w〉 =
n∑

i=1

ai|vi〉, (17)

such that |an| = √
ε. Now we find the condition for which a

quantum state |ψ〉 defined as

|ψ〉 =
n∑

i=1

bi|vi〉 (18)

is an eigenstate of Hsearch = rH + Horacle. That is,

Hsearch|ψ〉 = E |ψ〉 (19)

⇒
∑

i

λ′
ibi|vi〉 + 〈w|ψ〉︸ ︷︷ ︸

=:γ

|w〉 = E |ψ〉 (20)

⇒
∑

i

(λ′
ibi + γ ai )|vi〉 =

∑
i

Ebi|vi〉. (21)
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This implies that

bi = γ ai

E − λ′
i

. (22)

Note that

γ = 〈w|ψ〉 =
∑

i

a∗
i bi,

where we substitute for bi to get

1 =
∑

i

|ai|2
E − λ′

i

. (23)

This equation gives us the condition for E to be an eigenvalue
of Hsearch. It can be seen that the right-hand side (RHS) of
(23) is a monotonically decreasing function of E within each
interval ]λ′

i−1, λ
′
i[ and λ′

i are poles of this function. This guar-
antees that each of these intervals, as well as as the interval
]λ′

n,+∞[, contains exactly one eigenvalue.
We are interested in finding the two largest eigenvalues

of Hsearch. We choose r = S1 and will look for solutions of
Eq. (23) of the form E = λ′

n + δ, within the interval |δ| <

c′S1� for some small constant c′. Indeed, we will demonstrate
that there are two solutions within this interval.

To show this, we rewrite Eq. (23) in terms of δ and choose
r = S1 to obtain

ε

δ
+
∑
i<n

|ai|2
S1�i + δ

= 1, (24)

where �i = λn − λi. Finding solutions of this equation is
equivalent to finding the zeros of a function F (δ) which can
be written as

F (δ) = ε

δ
+
∑
i<n

|ai|2
S1�i + δ

− 1 (25)

= ε

δ
+
∑
i<n

|ai|2
S1�i

(
1 +

∞∑
k=1

(−δ)k

Sk
1�

k
i

)
− 1 (26)

= ε

δ
− S2δ

S2
1

+
∑
i<n

|ai|2δ2

S3
1�

3
i

∞∑
k=0

(−δ)k

�k
i Sk

1

(27)

= ε

δ

{
1 − S2δ

2

S2
1ε

+ f (δ)

}
, (28)

The term f (δ) can be seen as an error term that can be
bounded as

| f (δ)| � S3|δ|3
S3

1ε

1

1 − |δ|
S1�

� S3|δ|3
S3

1ε

1

1 − c′ . (29)

If this error term was neglected, the function F (δ) would have
zeros at ±δ0, where

δ0 = √
ε

S1√
S2

. (30)

We will see that the presence of the term f (δ) introduces a
relative error in these solutions, i.e., there are two solutions
δ± in the intervals

δ+ ∈ [(1 − η)δ0, (1 + η)δ0], (31)

δ− ∈ [−(1 + η)δ0,−(1 − η)δ0], (32)

where the relative error is given by

η = S3
√

ε

S3/2
2

. (33)

To demonstrate this let us focus on the interval given by
Eq. (53) and show that F (δ) has a zero in this interval [an
analogous derivation can be done for the other interval in
Eq. (54)]. If we take δ+ = δ0(1 + η′), where |η′| � η we can
bound | f (δ+)| as

| f (δ+)| � S3δ
3
0 (1 + η)3

S3
1ε(1 − c′)

� η(1 + η)3

(1 − c′)
, (34)

where we used the definitions from Eqs. (30) and (33). Note
that the spectral condition imposed in Eq. (14) guarantees that
η is small. Using this condition we can show that

η � c
S1√
S2

� c, (35)

where we also used the fact that S1√
S2

� 1 which is demon-
strated later in Lemma 1.

On the other hand, from (28) we have that

F (δ+) = ε

δ+
{2η′ + η′2 + f (δ+)}. (36)

Given the bound (34), we see that the RHS of (36) is positive
if η′ = η and negative if η′ = −η, provided c and c′ are
sufficiently small. This shows that indeed δ+ is in the interval
from Eq. (53). The same reasoning can be used to show that
δ− belongs to the interval in Eq. (54).

We can now verify the validity of the assumption δ+ �
c′S1�, for some small constant c′, which was necessary to
obtain the bound in Eq. (29). We have that

δ+ � δ0(1 + |η|) (37)

� S1√
S2

√
ε(1 + c) (38)

� c(1 + c)S1�, (39)

where in the second step we used Eqs. (35) and (30) and in
the last step we used the spectral condition (14). Hence, for
sufficiently small c the condition δ+ � c′S1� is verified.

Now that we have obtained two approximate solutions to
Eq. (23) E± = λ′

n + δ±, we proceed to compute the overlap
of the corresponding eigenstates |ψ±〉 with the marked node.
From the normalization condition of the eigenstates of Hsearch,
we have

∑ |bi|2 = 1. So from Eq. (22) we can obtain the
following equation for γ± = 〈w|ψ±〉:

∑
i

|γ±ai|2
(E± − λ′

i)
2

= 1 (40)

⇒|γ±|2 =
[

ε

δ2±
+
∑
i<n

|ai|2
(E± − λ′

i )
2

]−1

(41)

⇒ |γ±|2 =
[

ε

δ2±
+
∑
i<n

|ai|2
S2

1�
2
i

(
1 + δ±

S1�i

)2
]−1

. (42)
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Replacing the values of δ± and neglecting terms scaling as
�(η2) we obtain

|γ±|2 = S2
1

2S2
[1 + �(η)] (43)

⇒|γ±| = S1√
2S2

[1 + �(η)]. (44)

Without loss of generality we can choose the eigenbasis of
Hsearch such that the overlaps γ± are positive. Furthermore,
we can calculate the values of b±

n = 〈ψ±|vn〉 from Eq. (22),
which yields

b±
n = γ±

an

δ±
. (45)

Substituting the values of δ± and γ±, we obtain that

b±
n = ± 1√

2
[1 + �(η)]. (46)

So the starting state can be written as

|vn〉 = |ψ+〉 − |ψ−〉√
2

+ |�〉, (47)

where |�〉 is an unnormalized quantum state such that
‖|�〉‖ � �(η).

So evolving |vn〉 under Hsearch for a time t results in

e−iHsearcht |vn〉 = 1√
2

e−iλ′
nt (e−iδ+t |v+〉 − e−iδ−t |v−〉) + �(η).

(48)

Thus after a time T = π
2δ0

= �( 1√
ε

√
S2

S1
), up to a global phase,

we end up in the state

| f 〉 = |v+〉 + |v−〉√
2

+ |�′〉,

such that ‖|�′〉‖ � �(η). The overlap of | f 〉 with the solution
state is given by

ν = |〈w| f 〉| (49)

= S1√
S2

[
1 + �

(
η

√
S2

S1

)]
= �

(
S1√
S2

)
, (50)

where we have used the spectral condition (14) which
ensures that

η

√
S2

S1
=

√
εS3

S1S2
� c.

Subsequently, we show that essentially the same behavior
is maintained if we choose any r within a small enough inter-
val around S1.

Theorem 3. Let H be such that the spectral condition of
Eq. (14) is obeyed and r be chosen such that

|r − S1| � |β|√εS2, (51)

for some small constant β such that |β| � 1. After a time

T = �

(
1√
ε

√
S2

S1

)
,

Algorithm 1 prepares a state | f 〉 such that ν = |〈w| f 〉| =
�(S1/

√
S2).

Proof. The proof of this result follows from the fact that,
for any r within this interval, we still have that the value
of |δ±| = �(δ0). More precisely, by rewriting Eq. (28) for
arbitrary r we have

F (δ) = ε

δ

{
1 + δ

ε

(
S1

r
− 1

)
− S2δ

2

r2ε

}
, (52)

which will have two zeros in the intervals

δ+ ∈ [(1 − η)δ(+)
0 , (1 + η)δ(+)

0 ], (53)

δ− ∈ [−(1 + η)δ(−)
0 ,−(1 − η)δ(−)

0 ], (54)

where

δ
(±)
0 =

∣∣∣∣∣S1
√

ε√
S2

(
β

2
±
√

1 + β2

4

)∣∣∣∣∣+ O(ε), (55)

which is of the same order of the value δ0 from Eq. (30).
Hence, with analogous arguments to those used in the proof of
Theorem 2 we conclude that a deviation to the optimal value
of r as in Eq. (51), only changes the maximum amplitude
and the evolution time needed to reach this amplitude by
constant factors. �

B. Failure of the algorithm away from r ≈ S1

Previously we have established that Algorithm 1 prepares
a state with an overlap of �(S1/

√
S2) with the marked vertex

for any choice of r within the interval

r∗ ∈ [S1 − �
(√

S2ε
)
, S1 + �

(√
S2ε
)
], (56)

after a time

T = �

(
1√
ε

√
S2

S1

)
.

In this section we prove that for any choice of r outside the
window mentioned in Eq. (56), the amplitude of the algorithm
is less than S1/

√
S2, irrespective of T .

Theorem 4. For any r � 0, such that r /∈ r∗,

|〈w|e−iHsearchT |vn〉| � o

(
S1√
S2

)
,

∀T � 0.
Proof. In order to derive this, we require all the eigen-

values and eigenvectors of Hsearch. As such we consider
that Hsearch has eigenvalues En > En−1 > · · · � E1, such that
Hsearch|ψα〉 = Eα|ψα〉. As before, we consider that the eigen-
vectors and corresponding eigenvalues of H are λi and |vi〉,
respectively.

Then for 1 � α � n let

|ψα〉 =
n∑

i=1

b(α)
i |vi〉, (57)

and define

γα = 〈w|ψα〉. (58)

So, by using the fact that Hsearch|ψα〉 = Eα|ψα〉, we obtain

b(α)
i = γαai

Eα − rλi
, 1 � α � n. (59)
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For all 1 � α � n, we use the definition of γα in Eq. (58) and
the expression for b(α)

i in Eq. (59) to obtain

F (Eα ) :=
n∑

i=1

|ai|2
Eα − rλi

= 1. (60)

From the normalization condition
∑

i |b(α)
i |2 = 1, for every

α, we also obtain that

1

|γα|2 =
n∑

i=1

|ai|2
(Eα − rλi )2

. (61)

Now,

〈w|e−iHsearcht |vn〉 =
∑

α

e−iEαt 〈w|ψα〉〈ψα|vn〉 (62)

= √
ε
∑

α

e−iEαtγαb(α)∗
n (63)

= √
ε
∑

α

|γα|2e−iEαt

Eα − r
, (64)

where in the last line we have replaced the value of b(α)
n from

Eq. (59).
Note that from the condition that the amplitude at t = 0 is√

ε we obtain

n∑
α=1

|γα|2
Eα − r

= 1. (65)

Now we shall consider the following two cases, each of
which we treat differently: (i) When r > r∗ and (ii) r < r∗.

(i) r > r∗: We first use Eqs. (64) and (65) to obtain that

|〈w|e−iHsearcht |vn〉| � 2
√

ε|γn|2
En − r

− √
ε. (66)

Let En = r + δ+ and � j = 1 − λ j . From Eq. (61) we have

1

|γn|2 � ε

δ2+
(67)

⇒ |γn|2 � δ2
+
ε

. (68)

Substituting this into Eq. (66), we get

|〈w|e−iHsearcht |vn〉| � 2δ+√
ε

. (69)

Next, using the fact that F (En) = 1 [Eq. (60)], we obtain
an upper bound on δ+ as follows:

ε

δ+
+

n−1∑
j=1

|a j |2
En − r + r� j

= 1 (70)

⇒ ε

δ+
+ S1

r
> 1 (71)

⇒ δ+ <
εr

r − S1
. (72)

Next we substitute the upper bound on δ+ into Eq. (69) to
obtain

|〈w|e−iHsearcht |vn〉| � 2
√

εr

S1 − r
. (73)

For any r = S1 + ω(S2
√

ε) we indeed obtain that

|〈w|e−iHsearcht |vn〉| � o

(
S1√
S2

)
. (74)

(ii) r < r∗: In this region the proof is similar in spirit to
the case where r > r∗. Here we can bound the amplitude by
bounding the value of δ− where En−1 = r − δ−.

In fact, as before, using Eqs. (64) and (65) to obtain that

|〈w|e−iHsearcht |vn〉| � 2
√

ε|γn−1|2
δ−

+ √
ε. (75)

From Eq. (58), it is easy to obtain that

|γn−1|2 � δ2
−
ε

. (76)

This gives us

|〈w|e−iHsearcht |vn〉| � 2δ−√
ε

+ √
ε. (77)

Here we use the fact that F (En−1) = 1 to obtain an upper
bound on δ−. We have

− ε

δ−
+

n−1∑
j=1

|a j |2
−δ− + r� j

= 1 (78)

⇒ − ε

δ−
+ S1

r
< 1 [∵ δ− < r�] (79)

⇒ δ− <
εr

S1 − r
. (80)

We now substitute the upper bound on δ− into Eq. (77) to
obtain

|〈w|e−iHsearcht |vn〉| � 2
√

εr

r − S1
+ √

ε. (81)

Thus any r = S1 − ω(S2
√

ε), we indeed obtain that

|〈w|e−iHsearcht |vn〉| � o

(
S1√
S2

)
, (82)

where in the last line we use the fact that we are in a regime
where

√
ε = o(S1/

√
S2).

This concludes the proof. �

C. Validity of the spectral condition and implications to
algorithmic performance

We have seen that the maximum amplitude at the marked
node is determined by the ratio S1/

√
S2 and hence it is impor-

tant to obtain upper and lower bounds on this quantity, given
any H . We do so via the following lemma:

Lemma 1. If S1, S2, and ε are defined as in Lemma 2, then√
�(1 − ε) � S1√

S2
� 1.

Proof. The lower bound is obtained in a straightforward
manner. Observe that

S1√
S2

=
∑

i<n
|ai|2
1−λi√∑

i<n
|ai|2

(1−λi )2

(83)
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�
√

�
∑
i<n

|ai|2
1 − λi

�
√

�(1 − ε) = �(
√

�). (84)

It is possible to show that this bound is in fact tight. For ex-
ample, we can construct a normalized Hamiltonian for which
|ai|2 = 1/n [42] and the spectrum is such that:

(1) There is one eigenvector with eigenvalue 1.
(2) There are �(n

√
�) eigenvectors with eigenvalue

1 − �.
(3) There are �(n(1 − √

�)) eigenvectors with
eigenvalue 0.

It can be seen in this case the quantity S1/
√

S2 = �(
√

�).
To prove the upper bound, we show that S2

1/S2 � 1, for
which it suffices to prove that

S2 − S2
1 =

∑
i<n

|ai|2
(1 − λi)2

−
(∑

i<n

|ai|2
1 − λi

)2

> 0.

The left-hand side of this inequality can be written as

|an|2
∑
i<n

|ai|2
(1 − λi )2

+
∑
i,k<n

( |ai|2|ak|2
(1 − λi )2

− |ai|2|ak|2
(1 − λi )(1 − λk )

)
.

Clearly the first term is always nonnegative so we now show
that the second term is also nonnegative. The second term can
be written as∑

i,k<n

( |ai|2|ak|2
(1 − λi )2

− |ai|2|ak|2
(1 − λi )(1 − λk )

)

= 1

2

∑
i,k<n

( |ai|2|ak|2
(1 − λi )2

− |ai|2|ak|2
(1 − λi )(1 − λk )

)

+ 1

2

∑
k,i<n

( |ai|2|ak|2
(1 − λk )2

− |ai|2|ak|2
(1 − λi )(1 − λk )

)

=
∑
i,k<n

|ai|2|ak|2
2

(
1

(1 − λi )2
+ 1

(1 − λk )2

− 2

(1 − λi )(1 − λk )

)

= 1

2

⎡
⎣∑

i,k<n

|ai|2|ak|2 (λk − λi )2

(1 − λi )2(1 − λk )2

⎤
⎦ � 0.

This implies that S2
1/S2 � 1 and hence S1/

√
S2 � 1. This

is saturated [up to O(1/n) terms], for example, if H is the
normalized adjacency matrix of the complete graph. �

Furthermore, we need to understand the validity of the
spectral condition imposed in Eq. (14). For this, it will be
useful to write a weaker condition in terms of the spectral gap
�. From the definition of the quantities Sk [see Eq. (13)] it
is possible to see that S2 � �S3 and S1, S2 � 1. Furthermore,
from Lemma 1 we have that S1 � √

S2. Hence, we can bound
the RHS of the spectral condition as

c min

{
S1S2

S3
,�

√
S2

}
� c�S1 � c�. (85)

This implies that our analysis is valid for any graph with√
ε � c�, i.e., with a sufficiently large spectral gap compared

to the overlap of the initial state with the marked node. For
example, for d-dimensional lattices the spectral gap is � ∼
n−2/d and ε = 1/n and so it is easy to see from the bound in
Eqs. (14) and (85) that the spectral condition is satisfied for
lattices of dimension larger than 5. In this scenario, we have
that both S1 and S2 are constants [5] and so we recover the
result that marked node can be found in �(

√
n) time in such

a case as demonstrated by Childs and Goldstone. A similar
behavior appears in certain fractal lattices. The scaling of the
gap depends on the spectral dimension ds as � ∼ n−2/ds and
the coefficients S1 and S2 are constant for spectral dimension
larger than 4 [43]. Hence, it can be shown that quantum search
is optimal in this regime [13].

We notice, in addition, that for regular lattices the per-
formance of quantum search for the critical case d = 4 is
also recovered. For 4D lattices, we have that � = �(1/

√
n),

S1 = �(1), S2 = �(log n), and S3 = �(
√

n) [5]. As such, the
spectral condition is satisfied. Thus, the amplitude of the final
state with the solution node is S1/

√
S2 = �(1/

√
log n) after

a time T = �(
√

n log n). It can be seen, however, that for
dimensions two and three where the algorithm has been shown
to be suboptimal [5], the spectral condition is violated and our
analysis fails.

On the other hand, there exist graphs for which the CG
algorithm can be demonstrated to run in �(

√
n) time, even

though the spectral condition is violated. In the next section
we show how a different analysis helps capture the algorith-
mic performance on such instances.

IV. QUANTUM SEARCH ON GRAPHS WITH
QUASIDEGENERATE HIGHEST EIGENVALUES

In this section we begin by considering examples of graphs
for which the CG algorithm runs optimally even though their
normalized adjacency matrix violates the spectral condition in
Eq. (14).

An example of this is the following vertex-transitive graph,
which we shall refer to as a bridged-complete graph: two
complete graphs of n/2 nodes such that every node in one
complete graph is connected to the corresponding node in the
other [see Fig. 1(a)]. This is a particular case of the Rook’s
graph which we discuss in Sec. V. The normalized adjacency
matrix of this graph (i) has an extremely small spectral gap
[� = �(n−1+o(1) )] and (ii) there exists a constant gap be-
tween the first two eigenvalues and the rest of the spectrum.
The spectral condition is violated, since

min

{
S1S2

S3
,�

√
S2

}
= �(ε) � √

ε, (86)

implying that Theorem 2 is not applicable for analyzing the
algorithmic performance for this graph.

However, intuitively the quantum walk search algorithm
should run optimally for the bridged-complete graph. The
quantum walk starts with an equal superposition of all nodes
and, if we neglect the effect of the bridges connecting the
two complete graphs, it is expected to be able to find a node
marked in any of the two complete graphs of n/2 nodes
with probability 1/2 in ∼√

n/2 time. Moreover, since there
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is a bridge connecting each node in one complete graph
to another node in the other, the walker can transition be-
tween any of the two complete graphs. So one expects that
a marked node would be obtained in �(

√
n) time. A very

similar example, with analogous spectral properties is the
joined-complete graph [two complete graphs joined by a sin-
gle bridge, Fig. 1(b)]. This example was used in Ref. [19]
to show that large spectral gaps are indeed not necessary for
optimal quantum search.

Thus, for both these graphs, we find that the spectrum of
their normalized adjacency matrix satisfies the following two
properties: (i) A few of the highest eigenvalues are closely
spaced (nearly degenerate) and (ii) there exists a large gap
between these highest eigenvalues and the rest of the spectrum
(see Fig. 2). We call the space spanned by the eigenvectors
corresponding to the closely spaced eigenvalues as quaside-
generate. Generally such graphs find applications in spectral
clustering as they can be partitioned into clusters [20].

We show here that a modification of the analysis done
in Sec. III, which explicitly takes into account this quaside-
generacy of the highest eigenvalues, allows us to construct
spectral conditions which are sufficient to predict whether
the CG algorithm is optimal for Hamiltonians that satisfy the
aforementioned properties. In particular, these conditions will
allow us to predict optimality of quantum search for graphs
such as the joined complete, or the bridged-complete graph.

Formally, consider a Hamiltonian H such that its
eigenvalues are

0 � λ1 � · · · � λn = 1,

such that

H |vi〉 = λi|vi〉.
Let us denote by D the space spanned by the D eigenstates
corresponding to the highest eigenvalues of H , i.e.,

D = Span{|vn〉, . . . , |vn−D+1〉}, (87)

such that |D| = D. Consequently, we refer to the space
spanned by the remaining eigenstates by D̄. Furthermore,
we denote the gaps between the eigenvalues λn = 1 and
λn−D+1 as

�D = 1 − λn−D+1, (88)

and the gap between the λn = 1 and λn−D as

� = 1 − λn−D, (89)

as depicted in Fig. 2. Our analysis aims at predicting the
algorithmic performance in cases where �D � √

ε and �

is sufficiently large, for example, when � � ε. Hence, we
say that the D largest eigenvalues are nearly degenerate
or quasidegenerate. The precise spectral properties that the
Hamiltonian H must fulfill are stated precisely in terms of a
new spectral condition later on. Also, note that D = 1 corre-
sponds to the nondegenerate case considered in Theorem 2
with � being the spectral gap of H .

We demonstrate the algorithmic performance for such in-
stances in the following subsections in two steps. We first
assume that D is completely degenerate, i.e., all eigenstates
in D have eigenvalue one (�D = 0) and find the evolution

time and final amplitude of the algorithm based on this as-
sumption (Sec. IV A) [44]. Next, we demonstrate that, given
certain conditions on �D, the algorithmic dynamics for the
aforementioned case is the same as when D is completely
degenerate, up to some small error.

A. Performance of the CG algorithm when D is degenerate

In order to analyze graphs with a D-degenerate highest
eigenvalue (�D = 0), it will be useful to define the following
quantities:

Sk,D̄ =
n−D∑
i=1

|ai|2
(1 − λi)k

, (90)

where k � 1. These parameters are similar to Sk defined in
Eq. (13), except that the sum excludes all the D degenerate
eigenvalues (note that the quantities Sk are not defined if there
is degeneracy of the largest eigenvalue).

Furthermore, we define
√

εD as the overlap of the solution
with the D subspace. If the solution state |w〉 is expressed in
the eigenbasis of H as in Eq. (12), this is given by

εD =
∑
i∈D

|ai|2. (91)

In addition, we define
√

ε = |〈w|vn〉| = |an| as before, ex-
cept that in this case |vn〉 can be any state in the degenerate
subspace D. We introduce the following spectral condition,
analogous to the one in Eq. (14), in terms of the Sk,D̄
parameters:

√
εD � c min

{
S1,D̄S2,D̄

S3,D̄
,�
√

S2,D̄

}
. (92)

Our result regarding the performance of the quantum search
algorithm is the following.

Theorem 5. Let H be such that its largest D highest eigen-
values are degenerate and the spectral condition of Eq. (92)
is obeyed, with Sk,D̄ defined as in Eq. (90). By choosing
r = S1,D̄ and

T = �

(
1√
εD

√
S2,D̄

S1,D̄

)
,

Algorithm 1, starting from any one of the 1-eigenstates of H ,
denoted by |vn〉, prepares a state | f 〉 such that

ν = |〈w| f 〉| = �

(√
ε

εD

S1,D̄√
S2,D̄

)
. (93)

Proof. Let the solution state |w〉 be expressed in the eigen-
basis of H as in Eq. (12). It will be convenient to consider a
rotated basis for the degenerate subspace D such that a single
eigenstate, defined as∣∣v(1)

D
〉 = 1√

εD

∑
j∈D

a j |v j〉, (94)

contains the whole overlap of this subspace with |w〉, i.e.,
|〈w|v(1)

D 〉| = √
εD. We complete the basis with the states

|v( j)
D 〉, 2 � j � D, such that 〈v(l )

D |v(m)
D 〉 = δl,m for any l, m ∈

{1, . . . , D}.
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We note that this choice guarantees that 〈w|v( j)
D 〉 = 0, for

2 � j � D. This implies that these are eigenstates of Hsearch

with eigenvalue 1, since

Hsearch

∣∣v( j)
D
〉 = H

∣∣v( j)
D
〉 = ∣∣v( j)

D
〉
, (95)

for 2 � j � D. This gives us a set of D − 1 eigenstates which
do not play a role in the computation of the final amplitude.
To see this, let us first express the initial state |vn〉 [45] as

|vn〉 =
D∑

j=1

α j

∣∣v( j)
D
〉
, (96)

where
∑D

j=1 |α j |2 = 1 and α1 = √
ε/εD. We can now write

〈w|eiHsearchT |vn〉 =
√

ε/εD〈w|eiHsearchT
∣∣v(1)

D
〉
, (97)

using Eq. (95) and the fact that 〈w|v( j)
D 〉 = 0, for 2 � j � D.

Hence, to analyze the amplitude 〈w|eiHsearchT |v(1)
D 〉 it is

enough to consider the dynamics in the subspace

V = span
{∣∣v(1)

D
〉
, |vi〉, i ∈ {1, . . . , n − D}}. (98)

We do this by applying the same techniques of Sec. III for the
projected search Hamiltonian

H ′
search = PV HsearchPV = |w〉〈w| + PV HPV , (99)

where PV is the projector in the V subspace. Note that the
Hamiltonian H ′ = PV HPV has a single eigenvalue 1 (the state
|v(1)

D 〉) and a spectral gap �. The only difference with respect
to the analysis in Sec. III is that its dimension is n − D + 1.
Hence, we can apply Theorem 2 by replacing the parameters
Sk by Sk,D̄ defined in Eq. (90) as well as replacing the spectral
condition of Eq. (14) by the one in Eq. (92). This implies that,
by choosing r = S1,D̄ and evolving H ′

search for time

T = �

(√
S2,D̄

S1,D̄

1√
εD

)
, (100)

with initial state |v(1)
D 〉, results in a state that has an overlap

with the solution

∣∣〈w|eiHsearchT
∣∣v(1)

D
〉∣∣ = �

(
S1,D̄√
S2,D̄

)
. (101)

Finally, replacing this amplitude in Eq. (97) we obtain that
after this time the amplitude |〈w|eiHsearchT |vn〉| is given by
Eq. (124). �

One can easily see that for D = 1, |ε| = |εD|, S1,D̄ = S1,
and S2,D̄ = S2 we recover the statement of Theorem 2. How-
ever, for D > 1 there is, in general, no way to have |ε| = |εD|
as this would assume we are able to prepare the state |v(1)

D 〉
from Eq. (94), which depends on w via the overlaps ai. Given
this, a possible strategy would be to choose |vn〉 as a random
state in the degenerate subspace D, in which case the expected
value of ε/εD would be 1/D.

Similarly to Theorem 3, it can be shown that the same
algorithmic performance is maintained by choosing r such
that |r − S1,D̄| � εDS2,D̄. An analogous derivation to that of
Theorem 4 shows that any choice of r such that

r �∈ [S1,D̄ − �(
√

S2,D̄εD ), S1,D̄ + �(
√

S2,D̄εD )], (102)

leads to a maximum amplitude of

o

(√
ε

εD

S1,D̄√
S2,D̄

)
. (103)

This implies the following necessary and sufficient condi-
tions for optimality for Hamiltonians with degenerate highest
eigenvalues. Provided that the spectral condition in Eq. (92)
holds, we obtain that the algorithm is optimal, in the sense
discussed in Sec. II B, if and only if

S1,D̄√
S2,D̄

= �(1), (104)

and D = �(1), which ensures that an amplitude of
√

ε/εD =
�(1) after a time T = �(1/

√
ε). More generally, if D is not

constant and provided Eq. (104) holds, we obtain an amplitude

ν ∼
√

ε

εD
,

after a time

T = �

(
1√
εD

)
.

Hence, from Eq. (3), using
√

εD/ε rounds of quantum am-
plitude amplification would also result in finding the marked
vertex in time

Tsearch =
√

εD
ε
S + Cw√

ε
+ M, (105)

which is similar to the optimal performance except that there
is a multiplicative overhead in the set-up cost of

√
εD/ε.

B. Performance of the CG algorithm when D is quasidegenerate

In this subsection we explicitly calculate an upper bound
on the error of the predicted performance of the CG algorithm
when �D, defined in Eq. (88), is larger than 0. In this case we
write H in its spectral form as

H =
∑
j∈D

|v j〉〈v j | +
∑
j /∈D

λ j |v j〉〈v j | +
∑
j∈D

(λ j − 1)|v j〉〈v j |.

(106)
This in turn implies that the search Hamiltonian Hsearch can be
split as

Hsearch = Hdeg
search + Herr, (107)

where Hdeg
search corresponds to the search Hamiltonian assuming

that eigenspace D of H is exactly degenerate with all eigen-
values in D equal to 1, i.e.,

Hdeg
search = |w〉〈w| + r

⎛
⎝∑

j∈D
|v j〉〈v j | +

∑
j /∈D

λ j |v j〉〈v j |
⎞
⎠ (108)

and

Herr = r
∑
j∈D

(λ j − 1)|v j〉〈v j |. (109)

We can quantify the error caused by neglecting Herr in the time
evolution of Hsearch for time T via the Trotter formulas [46].
This leads to the following Lemma.
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Lemma 2. Let Hsearch = Hdeg
search + Herr, with Hdeg

search and
Herr defined in Eqs. (108) and (109), respectively. For any time
T � 1/

√
εD, we have that

〈w|eiHsearchT |vn〉 = 〈w|eiHdeg
searchT |vn〉 + ηqd , (110)

where

ηqd = O(r�D
√

εDT 2). (111)

Proof. Using first order Trotter formula [46] we have

e−iT Hsearch = e−iT (Hdeg
search+Herr ) (112)

= e−iT Hdeg
search e−iT Herr + O(‖[|w〉〈w|, Herr]‖T 2) (113)

= e−iT Hdeg
search e−iT Herr + O(r�D

√
εDT 2), (114)

where we used the bound

‖[|w〉〈w|, Herr]‖ = O(r�D
√

εD ), (115)

which can be demonstrated by using the fact that Herr has
support only on the D subspace.

Moreover, we have that

e−iT Hdeg
search e−iT Herr = e−iT Hdeg

search (I − iT Herr + · · · ) (116)

= e−iT Hdeg
search + O(T ‖Herr‖) (117)

= e−iT Hdeg
search + O(r�DT ). (118)

The error in the approximation can be bounded by combining
Eqs. (113) and (117) as

e−iT Hsearch = e−iT Hdeg
search + ηqd , (119)

with

ηqd = O(r�D max{√εDT 2, T }) (120)

= O(r�D
√

εDT 2), (121)

where in the last step we assumed T � 1/
√

εD. �
Using this Lemma, we can now adapt Theorem 5 to Hamil-

tonians with quasidegenerate highest eigenvalues. To do so,
we need to impose a condition on the spectrum of H , that
guarantees that the error ηqd in Lemma 2 is small enough for
the predictions of Theorem 5 to be meaningful. It can be seen
that this is possible if

√
ε � 1

c1

S3/2
2,D̄�D

S2
1,D̄

. (122)

For a sufficiently small positive constant c1. A simpler, but
less tight form for this condition in terms of the gaps �D and
� can be obtained by using the lower bound in Lemma (1)
(which is valid also for S1,D̄/

√
S2,D̄). It can be shown that if

√
ε � �D

c1�2
, (123)

then Eq. (122) is satisfied. For graphs such as the joined- or
bridged-complete graph, we can take D = 2 in which case
�D = �(1/n) and � = �(1), whereas

√
ε = �(n−1/2), en-

suring this condition is satisfied.
Our general result for search on graphs for which H has

quasidegenerate highest eigenvalues is the following.

Theorem 6. For a given Hamiltonian H , assume there is a
positive integer D such that the conditions in Eqs. (122) and
(92) are true. Then, by choosing r = S1,D̄ and

T = �

(
1√
εD

√
S2,D̄

S1,D̄

)
,

Algorithm 1 prepares a state | f 〉 such that

ν = |〈w| f 〉| = �

(√
ε

εD

S1,D̄√
S2,D̄

)
. (124)

Proof. The proof follows by combining the result of
Lemma 2 with that of Theorem 5. After a time

T = �

(√
S2,D̄

S1,D̄

1√
εD

)
,

we have the following bound for the error term:

ηqd = O

(
�DS2,D̄√
εDS1,D̄

)
(125)

= c1O

(√
ε

εD

S1,D̄√
S2,D̄

)
, (126)

where in the second step we use the condition from Eq. (122).
Hence, for a sufficient small value of constant c1, the ampli-
tude obtained at the solution after evolving for this time T
from Eq. (100) is given by

〈w|eiHsearchT |vn〉 = 〈w|eiHdeg
searchT |vn〉 + ηqd (127)

= �

(√
ε

εD

S1,D̄√
S2,D̄

)
, (128)

where we used Eq. (126) and Theorem 5. �
This result leads to the following sufficient condition

for optimal quantum search: provided there is an integer
D = �(1) such that Eqs. (122) and (92) are satisfied and
S1,D̄/

√
S2,D̄ = �(1), quantum search is optimal. This is the

case, for example, for graphs in which there a constant D
such that �D = o(

√
ε) and a large gap � = �(1), such as

the bridged- or joined-complete graph.
Note that, even though in the fully degenerate case in

Sec. IV A our analysis provided necessary and sufficient con-
ditions for optimal quantum search, here we can only provide
a sufficient condition because our analysis gives no guarantee
that the choice r = S1,D̄ gives the best algorithmic perfor-
mance when there is quasidegeneracy. This is because the
error term that we obtain by approximating the quasidegener-
ate case with the fully degenerate case in Lemma 2, becomes
too large for sufficiently large values of r and T .

V. FINDING A MARKED NODE ON THE ROOK’S GRAPH

In this section we discuss the performance of the CG
algorithm on the Rook’s graph. The edges of this graph cor-
respond to the possible movements of a rook on a rectangular
chessboard with n = n1n2 nodes, where n1 is the number of
rows and n2 the number of columns. We assume, without loss
of generality, that n2 � n1 and take n1 = nσ and n2 = n1−σ

where 0 < σ < 1/2.
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TABLE I. Summary of the performance of the CG algorithm
(Algorithm 1) on the Rook’s graph, corresponding to the movement
of a rook on a rectangular chessboard of n1 = nσ columns and n1−σ

rows for different regimes of σ and for two different choices of the
parameter r. When 0 � σ < 1/4, treating the highest eigenvalues of
the Hamiltonian associated with the graph as quasidegenerate allows
us to analyze the algorithmic performance via Theorem 6 for the
choice of r = S1,D̄ and predict optimality when n1 is constant. On
the other hand, Theorem 2 is valid in the complementary regime
of 1/4 � σ � 1/2, allowing us to predict the best algorithmic per-
formance for these values of σ . We conclude that the algorithm is
optimal when 1/3 � σ � 1/2 as a marked node can be found in√

n time. In contrast, in the regime 1/4 � σ < 1/3 the maximum
amplitude at the marked node is o(1) implying suboptimality (see
also Theorem 1). Finally, the results for 1/2 � σ � 1 can be ob-
tained from the results of the regime 0 � σ � 1/2 by replacing σ

with 1 − σ .

r = S1 r = S1,D̄

Range of n1 = nσ T ν T ν

n1 = �(1) – – �(
√

n) �(1)

0 < σ < 1/4 – – �(
√

n
nσ ) �( 1√

nσ )

1/4 � σ < 1/3 �
(
n1−3σ/2

)
�
(
n−(1−3σ )/2

)
– –

1/3 � σ � 1/2 �(
√

n) �(1) – –

The motivation for studying quantum search on this graph
is that, depending on the choice of σ , the performance of the
algorithm varies drastically. The analysis of Sec. III can be
applied in certain regimes, showing that for 1/3 � σ � 1/2
the algorithm is optimal, whereas for 1/4 � σ < 1/3 the al-
gorithm is suboptimal and also slower than the square root
of the classical hitting time, which for this graph is �(n).
Interestingly, this suboptimality result holds even when the
spectral gap �RG � √

ε showing that the latter condition is
not sufficient for optimal quantum search.

For sufficiently low values of σ , the analysis of Sec. III
breaks down and the quasidegenerate treatment from Sec. IV
can be used to provide lower bounds on the amplitude that
can be obtained at the marked node after a certain time.
This allows us, for example, to demonstrate that if n1 = �(1)
the algorithm is optimal. Our predictions regarding the algo-
rithmic performance are summarized in Table I for different
regimes of σ .

A. The Rook’s graph and its spectrum

We begin by introducing the Rook’s graph and the associ-
ated Hamiltonian H that drives the quantum walk.

Consider the movement of a rook on a rectangular chess-
board of n1 rows and n2 columns. The position of the rook
on the chessboard is defined by the tuple (i↔, j�), where
i↔ ∈ [n2] and j� ∈ [n1]. From any given position, the rook
can move horizontally (left or right) to any of the available
n2 positions or it can move vertically (forward and backward)
to any of the available n1 positions. Furthermore, suppose the
rook accesses one of these available positions uniformly at
random. If every cell of the chessboard is represented by the
node of a graph, then the vertical movement of the rook is

TABLE II. Eigenvalues (along with their respective degen-
eracies) of the Hamiltonian H corresponding to the normalized
adjacency of the Rook’s graph.

Eigenvalue Degeneracy

λA = 1 1

λB = n2− 1
n2

n1+n2− 1
n1

− 1
n2

= 1 − �(n2σ−1) n1 − 1

λC = n1− 1
n1

n1+n2− 1
n1

− 1
n2

= �(n2σ−1) n2 − 1

λD = 0 (n1 − 1)(n2 − 1)

a walk on a complete graph of n1 nodes and the horizontal
movement corresponds to a walk on the complete graph of
n2 nodes. So, overall there are n2 − 1 number of cliques
(complete subgraphs) of n1 nodes such that each node of an
n1-sized clique is connected to the corresponding node in
n2 − 1 other cliques. The resulting graph has n = n1n2 ver-
tices and each node has degree d = n1 + n2 − 2. This regular
graph, known as the Rook’s graph [21,22], corresponds to the
Cartesian product of two complete graphs of n1 nodes and n2

nodes respectively and is also vertex transitive. This has been
depicted in Fig. 3.

The Cartesian product of two graphs G1 and G2 is denoted
as G1�G2. If the adjacency matrix of G1 is AG1 and the
adjacency matrix of G2 is AG2 , then

AG1�G2
= AG1 ⊗ In2 + In1 ⊗ AG2 , (129)

where ⊗ denotes the Kronecker product and I j denotes the
identity matrix of dimension j. Thus, the adjacency matrix of
the Rook’s graph is given by

AG = An1
CG ⊗ In2 + In1 ⊗ An2

CG, (130)

where An1
CG and An2

CG are the adjacency matrices of the com-
plete graph with n1 vertices and n2 vertices, respectively.
As an aside, note that the graph corresponding to the case
where n1 = 2 and n2 = n/2 is the bridged-complete graph
see Fig. 1(a) and the case where n2 = n and n1 = 1 is the
complete graph.

We divide AG by the degree of each node (n1 + n2 − 2)
and rescale its eigenvalues so they lie between 0 and 1. So
the Hamiltonian we consider for the spatial search problem is
the rescaled and shifted version of AG which we denote by H .
Without loss of generality, we take n2 � n1 (the case n1 � n2

can be recovered simply by exchanging the labels 1 and 2,
i.e., what we refer to as horizontal and vertical directions).
Furthermore, we assume that n1 = nσ and n2 = n1−σ where
0 < σ < 1/2.

It can be demonstrated that the Hamiltonian has four dis-
tinct eigenvalues (except in the case n1 = n2, when there are
there only three) which are shown in Table II along with its
degeneracies. Its spectral gap is given by

�RG = 1 − λB = �

(
n1

n2

)
= �

(
1

n1−2σ

)
. (131)

Hence, by changing the value of σ , both the gap as well as the
degeneracy of the different eigenvalues changes.
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In what follows we shall analyze the problem of finding
a marked node on this graph for different regimes of σ . In
particular, we will highlight regimes of σ where treating the
first few eigenstates of H as quasidegenerate shall help in
deducing the algorithmic running time.

B. Algorithmic performance when r = S1

We will first analyze the performance of quantum search
via the approach developed in Sec. III. In order to determine
the regime of validity of this approach we need to estimate
the quantities ε, S1, S2, and S3. First observe that the resultant
graph is symmetric and vertex transitive, i.e., |ai| = 1/

√
n, ∀i,

where ai is as defined in Eq. (12). Consequently we have
ε = 1/n.

Furthermore, using the definition of the parameters Sk from
Eq. (13), it can be shown that these parameters scale with n as

Sk = �

(
nσ−1

(n2σ−1)k
+ 1

)
. (132)

In particular, this implies that

S1 = �(1) (133)

and

S2 =
{
�
(
n1−3σ

)
, for 0 < σ � 1/3,

�(1), for 1/3 � σ � 1/2.
(134)

We can now verify the regime of validity of spectral condition
in Eq. (14), which is required for Theorem 2 to be applied. It
is easy to verify that this holds only when 1/4 � σ � 1/2.
Consequently the amplitude of the final state of the algorithm
with the marked vertex is

ν = �

(
S1√
S2

)
=
{
�(n−(1−3σ )/2), for 1/4 � σ � 1/3,

�(1), for 1/3 � σ � 1/2,

(135)

after a time

T = �

(
1√
ε

√
S2

S1

)
=
{
�(n1−3σ/2), for 1/4 � σ � 1/3,

�(
√

n), for 1/3 � σ � 1/2.

(136)

The performance of the algorithm is thus quite distinct in the
following two regimes.

(i) 1/3 � σ � 1/2: In this regime the algorithm is optimal,
since ν = �(1) after a time �(

√
n). This provides another

example of optimal search for graphs which do not have
constant spectral gap. In fact, from Eq. (131) we see that in
this regime the scaling of the spectral gap changes from n−1/3

for σ = 1/3 to constant for σ = 1/2.
(ii) 1/4 � σ < 1/3: In this regime, the algorithm is sub-

optimal, as the final overlap with the marked node ν =
�(n−(1−3σ )/2) after T = �(n1−3σ/2). In the worst case, for
σ = 1/4, even if we assume that amplitude amplification can
be used, one would need to evolve the walk for a total time of
�(n3/4) to find the marked node.

Interestingly, the Rook’s graph within this region of σ

provides an example of suboptimality even though in this
regime we have that �RG � √

ε = n−1/2 (excluding in the
case σ = 1/4). This proves that the latter condition is not
sufficient for optimal quantum search. In addition, given that

the hitting time for the Rook’s graph is �(n) for any σ , this
shows that there exists a range of values of σ for which the
CG algorithm is slower than the square root of the classical
hitting time.

C. Algorithmic performance when r = S1,D̄

In order to go beyond the limitations imposed by the
spectral condition of Eq. (14), which is only valid in the
regime 1/4 � σ � 1/2, we use the analysis of Sec. IV. It is
expected that this analysis is valid for low values of σ , since
the gap 1 − λB becomes very small [Eq. (131)], whereas the
gap 1 − λC = �(1) is much larger (see Table II).

Hence, we will treat the eigenstate with eigenvalue λA = 1
and the n1 − 1 eigenstates with eigenvalue λB as quasidegen-
erate. To be consistent with the notation in Sec. IV, we denote
this space as D such that D = |D| = n1 = nσ . In addition, the
gaps �D and � defined in Sec. IV are in this case

�D ≡ �RG = 1 − λB = �(n2σ−1), (137)

� = 1 − λC = �(1). (138)

The projection of the marked node |w〉 in the quasidegenerate
subspace D is

εD = D

n
= n1

n
, (139)

where we have used the fact that the underlying graph is vertex
transitive implying that |ai|2 = 1/n, ∀i. The parameters Sk,D̄,
defined in Eq. (90), are given by

Sk,D̄ = 1

n

[
n2 − 1

(1 − λC )k
+ (n1 − 1)(n2 − 1)

(1 − λD)k

]
(140)

= 1 + �(1/n1) = �(1), (141)

∀k � 1.
For Theorem 6 to hold, we require that both conditions

Eqs. (122) and (92) are satisfied. Since � and the parameters
Sk,D̄ are constants, the condition in Eq. (92) is valid for any
0 � σ < 1/2. On the other hand, it can be shown that (122)
is valid as long as σ � 1/4. Hence, Theorem 6 allows us to
predict the performance of the algorithm for the choice of
r = S1,D̄ and in the regime 0 � σ � 1/4.

We obtain that, after a time

T = �

(√
S2,D̄

S1,D̄

1√
εD

)
= �

(√
n

n1

)
= �(

√
n1−σ ), (142)

Algorithm 1 prepares a state that has an overlap of

ν = �

(√
ε

εD

S1,D̄√
S2,D̄

)
= �

(
1√
n1

)
= �

(
1√
nσ

)
(143)

with the marked node. We discuss the following two cases:
(i) Constant n1(σ = 0): In this regime, the algorithm is

optimal, as the marked node is found with a constant prob-
ability after T = �(

√
n). Note that, as mentioned before, the

bridged-complete graph corresponds to the choice of n1 = 2
and n2 = n/2. As such, this demonstrates the optimality of the
algorithm for this instance.

(ii) n1 = nσ , with 0 < σ < 1/4: In this range the amplitude
at the marked node is �(1/

√
n1) after �(

√
n/n1) time. If
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the quantum amplitude amplification procedure is available,
then using

√
n1 rounds of amplitude amplification, the marked

node can be obtained for T = �(
√

n), however, with an over-
head due to the need of reflecting on the initial state that has
a certain set-up cost [in this case the total cost is given by
Eq. (105)].

On the other hand, if we assume access to simply the time
evolution according to Hsearch, we have to repeat the entire
procedure ∼n1 times to find the marked node, leading to an
overall evolution time of T = �(

√
n.n1). However, as we

previously pointed out, the prediction from Theorem 6 does
not guarantee that this is the best possible performance. We
leave open the question of whether a better running time can
be obtained for a different choice of r. Indeed, one would
expect that the best choice of r should converge to the value
S1 at c = 1/4 and recover the prediction of Sec. V B.

VI. DISCUSSION

In this article we provide the necessary and sufficient con-
ditions for the CG algorithm to be optimal, assuming very
general conditions on the spectrum of the Hamiltonian en-
coding the structure of the underlying graph. An immediate
consequence is that our necessary and sufficient conditions
hold for all graphs whose normalized adjacency matrices
exhibit a large enough spectral gap (� � √

ε). Addition-
ally, we also provide strategies to analyze the algorithmic
performance for graphs with a few quasidegenerate highest
eigenvalues, followed by a large gap. Such spectral features
appear, for example, in graphs composed by a few clusters
with sparse connections among them. Our work implies that,
to the best of our knowledge, all prior results demonstrating
the optimality of the algorithm for specific graphs, requiring
instance-specific analysis, can now be recovered from our
general results. We also provided an explicit example, namely,
the application of the CG algorithm to the Rook’s graph which
highlights the predictive power of our results and the limita-
tions of this search algorithm, which is suboptimal for certain
regimes of the “aspect ratio” of the chessboard.

Our results provide a recipe to compute analytically the
performance of the CG algorithm on any graph fulfilling the
spectral conditions required for our main theorems to be valid
(Theorems 2 and 6). They can hence be used to analyze quan-
tum search on graphs that have not been previously studied
or on graphs that were analyzed only numerically such as
the Chimera graph [47]—a graph that encodes the underlying
architecture of the hardware of quantum annealers. In fact, al-
though we focus on quantum walks on graphs, our results can
be used directly to analyze the dynamics of any Hamiltonian
rH + P, where P is a one-dimensional projector.

We remark that our results are not directly applicable, but
could in principle be extended, to some modified versions
of the CG algorithm. For example, it would be interesting
to extend our analysis to encompass strategies with different
choices of the parameter r for different evolution times. Such
strategies have been known to improve the algorithmic perfor-
mance for some graphs [19]. We also note that our results are
only valid for the oracle Hamiltonian introduced in [5], which
singles out the marked node by adding a local energy term
to the Hamiltonian. Different oracles, which remove edges

connected to the marked node, have been considered in works
that show optimal quantum search on certain lattices such as
graphene [48] or crystal lattices [27]. General conditions for
optimal quantum search with such oracles are still unknown
(some progress has been made in [37]).

Our work further highlights the difficulty in comparing the
performance of the CG algorithm to its classical counterpart
(search by a classical random walk), where the performance
is measured by the classical hitting time. In fact, it is not
clear how the expressions that we have obtained for pre-
dicting the performance of this quantum search algorithm
relate to this classical quantity. We can nevertheless guaran-
tee that whenever the CG algorithm is optimal, there exists
at least a quadratic speedup with respect to the classical
hitting time, since the latter is lower bounded by 1/ε [see
Eq. (9)]. However, we also proved that the CG algorithm fails
to achieve quadratic speedups with respect to classical search
in some cases, as evidenced by the algorithmic running time
on the Rook’s graph in the suboptimal regime [see Eqs. (142)
and (143)].

Different quantum walk based algorithms are known to
achieve this general quadratic speedup in the discrete-time
framework [35,36,49] and in continuous time, as recently
demonstrated in Ref. [37]. In the latter work we propose a
continuous-time time quantum walk algorithm based on the
time evolution of a Hamiltonian encoding an interpolating
Markov chain. Compared to the CG algorithm, it has the
additional advantages that it can be applied to any ergodic,
reversible Markov chain and has a guaranteed performance
even when there are multiple marked nodes.

We also propose a modified version of the CG algorithm
that is applicable to search problems on Markov chains [37]
which can be seen as a quantum walk on the edges and
thus requires an extension of the walk’s Hilbert space. This
modified algorithm improves upon the performance of the
original CG algorithm for several instances such as lattices
of dimension less than five. In particular, this modified al-
gorithm can find a marked node on the Rook’s graph in
�(

√
n) time for any dimensions of the chessboard, without

requiring amplitude amplification. However, the modified CG
algorithm does not provide a generic speedup over the CG al-
gorithm and counterexamples have also been demonstrated in
Ref. [37]. Moreover, a simple comparison of the performance
of this modified CG algorithm to the classical hitting time
remains elusive.

An interesting direction of future research would be to ex-
plore the possibility of using continuous-time quantum walks
to solve optimization problems, namely, to find ground states
of classical Ising Hamiltonians which encode the solution to
some NP-hard problems [50]. Recently, the applicability of
CTQW to tackle this problem has been numerically inves-
tigated [51]. In this approach, each node represents a spin
configuration, and the idea is to perform a continuous-time
quantum walk on a graph where the local energies of each
node, instead of being set by an oracle, corresponds to the
energy of this respective configuration according to the Ising
Hamiltonian. The aim is thus to use the quantum walk to find
the node of minimum energy faster than classical methods.
In Ref [51], the authors observe that this approach leads a
faster than quadratic speedup, with respect to unstructured
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search, in the time required to find the ground state of random
Ising Hamiltonians, for quantum walks on certain graphs. We
remark that when the underlying graph of this quantum walk
is the complete graph, our results can be used to make some
analytical predictions, since the Hamiltonian of the walk has
the form H + rP, where P is a one-dimensional projector
(in this case, H is the classical Ising Hamiltonian and the
adjacency matrix of the complete graph is a one-dimensional
projector). It would be interesting if extensions of our results
could help derive analytical expressions for the performance
of this approach on different graphs. This could lead to a better

understanding of the potential of CTQW-based algorithms to
solve optimization problems.
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