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Adiabatic elimination methods allow the reduction of the space dimension needed to describe systems whose
dynamics exhibit separation of timescale. For open quantum systems, it consists in eliminating the fast part
assuming it has almost instantaneously reached its steady state and obtaining an approximation of the evolution
of the slow part. These methods can be applied to eliminate a linear subspace within the system Hilbert space or,
alternatively, to eliminate a fast subsystem in a bipartite quantum system. In this work, we extend an adiabatic
elimination method used for removing fast degrees of freedom within a system [Phys. Rev. A 101, 042102
(2020)] to eliminate a subsystem from an open bipartite quantum system. As an illustration, we apply our
technique to a dispersively coupled two-qubit system and in the case of the open Rabi model.
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I. INTRODUCTION

Adiabatic elimination is a method whereby the fast de-
grees of freedom of a system are removed while retaining an
effective description of the slow degrees of freedom. This sim-
plification can be very useful to obtain tractable and intuitive
equations when only a coarse-grained or long times descrip-
tion is desired [1–11], depending on if the target system has a
conservative [7,8,12] or a dissipative [13–20] evolution. There
are two classes of manifolds on which adiabatic elimination
has been applied, (i) those that consist of levels within a
subsystem, for example the excited states of an atom, and
(ii) those that consist of a separate subsystem, such as an-
cillary qubits or measuring devices. For slow and fast parts
described by Hilbert spaces H(A) and H(B), the first case
corresponds to the Hilbert space H = H(A) ⊕ H(B) (direct
sum) while the second case corresponds to the Hilbert space
H = H(A) ⊗ H(B) (tensor product). Adiabatic elimination is
useful in developing protocols for dissipative state preparation
in ion traps [21,22], reservoir engineering [23,24], and the de-
scription of measurement devices [25]. The simplicity of the
resulting equations can also be computationally advantageous
in the study of quantum phase transitions where the size of the
system is cumbersomly large [26].

There are several approaches to obtain effective operators,
ranging from perturbative expansions of the Liouville oper-
ator [19,20], the corresponding Kraus maps [13–16,18], the
resolvent [27], or using stochastic methods [25]. Eliminating
a fast subsystem (that forms a tensor product with the slow
subsystem) is typically done with a partial trace over the fast
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subsystem. This can result in a set of hierarchical equations
that allows error estimation and correcting the approximation
as the slow and fast timescales get closer. Importantly, the
expansion can be built to preserve the Lindblad structure and
as a consequence the physicality of the map [14,28,29]. The
procedure for eliminating sublevels within a subsystem (direct
sum with the slow subsystem) is best carried out with Fesh-
bach projections [19,27]. However, as the fast-slow separation
breaks down, or when incoherent pumping channels exist,
the population of the fast subsystem becomes non-negligible
(i.e., there can be a finite fraction of population in the excited
states). When this happens, the exact time evolution of the
slow part becomes non-trace preserving. The loss of trace can
be corrected using contour integral methods [27]. It would be
however advantageous to have a method that can handle both
classes of fast manifolds. This is more important considering
that systems from atomic physics are inspiring a number of
chemical versions that have much more complicated Hamil-
tonians and it would be ideal to transform them into effective
operators for a direct comparison to the atomic physics coun-
terparts [30–32].

In this work, we extend the methodology developed in
Ref. [27] to bipartite open quantum systems whose dynamics
are described by a Lindblad operator [33,34]. We use the
projection operator method suggested by Knezevic and Berry
[35] to derive equations for a slow subsystem A coupled to
a fast subsystem B. The paper is organized as follows. We
first recall the main results of Ref. [27]. We then apply it to
the general bipartite case to obtain a recipe for describing the
slow subsystem. Finally, we illustrate the method in the case
of a spin dispersively coupled to a second highly dissipative
driven spin and to describe the dynamics of the open Rabi
model.
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II. THEORY

A. Adiabatic elimination through projectors techniques

Let ρ(t ) be the density operator on the Hilbert space H de-
scribing the quantum state of the system at time t . We suppose
that the evolution of ρ(t ) is generated by a Lindblad operator
L: ρ̇(t ) = Lρ(t ). We define the Hilbert space H of operator O
on H, equipped with the scalar product tr[O†

1O2]. We first re-
call the main results presented in Ref [27] related to projector
techniques. Let P be the projector such that ρs(t ) = Pρ(t )
describes the long time dynamics of the density matrix and
write Q = 1 − P , where 1 is the identity operator on H. Let
G(z) = (z − L)−1 be the resolvent of the Lindblad operator
L. Operators like P,Q,L, or G are operators on H. They are
sometimes called super-operators. They are here denoted with
calligraphic letter, to distinguish them from operators on H
(belonging to H), like the density matrix ρ.

We define the effective Lindblad operator Leff(z), such that
PG(z)P = [z − Leff(z)]−1. The effective Lindblad operator
Leff(z) can be written as

Leff(z) = PLP + PLQG0(z)QLP, (1)

where

QG0(z)Q = (z − QLQ)−1. (2)

For any ρ(t = 0), such that Qρ(t = 0) = 0, the slow dy-
namics inside PH can be obtained with the inverse Laplace
transform as

ρs(t ) = 1

2π i

∫
D

dzeztPG(z)Pρs(t = 0), (3)

where ρs(t = 0) = Pρ(t = 0) and the integral on the
complex plane is performed on a straight line D =
{z ∈ C; �z = a > 0}. At this point no approximation has been
made. Equation (3) gives the exact dynamics inside PH,
as long as the initial condition is also inside PH, that is
Qρ(t = 0) = 0. Leff(z) captures the effect of the dynamics in
QH through the solution of a nonlinear eigenvalue problem
[z − Leff(z)]O = 0.

The approximation of a slow dynamics of Pρ(t ), with
respect to the fast dynamics of Qρ(t ) is equivalent to consid-
ering the dynamics inside PH in the vicinity of the stationary
state reached in the limit t → ∞. In this long time limit only
the z → 0 limit will contribute to the inverse Laplace trans-
form of Eq. (3). We thus approximate Leff(z) to the lowest
relevant order:

Leff(z) � L0 + zL1 + · · · + znLn, (4)

where L0 = Leff(z = 0) and Ln = 1
n!

dn

dzn Leff(z)|
z=0

. Using the
expression of Leff(z) given by Eq. (1) allows to express L0 and
Ln as

L0 = PLP − PLQ(QLQ)−1QLP,

Ln = −PLQ(QLQ)−(n+1)QLP . (5)

In this work, we consider the approximation given by
Eq. (4) with n � 1 only, which is a standard approximation for
most of the effective operators that are calculated explicitly
[14,15,19]; i.e., when the interaction between the fast and
slow degrees of freedom remains small with respect to the

fast dynamics and hence the adiabatic approximation is valid.
The systematic study of higher order approximations (n > 1)
will be considered in a future work. Within the approximation
given by Eq. (4), with n = 1, the inverse Laplace transform of
Eq. (3) can be computed explicitly. We obtain

ρs(t ) = exp[(1 − L1)−1L0t](1 − L1)−1ρs(t = 0). (6)

The stationary state ρ f of this dynamics, reached at t → +∞,
is in the kernel of L0. We note that although the dynamics
described by Eq. (6) is an approximation, the final reached
stationary state ρ f is the exact one.

To conclude, after the adiabatic elimination of the fast part,
the generator of the slow dynamics is approximatively given
by (1 − L1)−1L0, ρ̇(t ) = (1 − L1)−1L0ρ(t ), where L0 and
L1 can in principle be computed using Eq. (5). The hard part
in these equations is the evaluation of the inverse (QLQ)−1,
which in the most general case, as we will see later, can be
achieved through a perturbative expansion. Exact numerical
diagonalizations are also a possibility although can be very
costly and at the same time preclude an analytical solution and
the consequent intuition it provides. Perturbative expansions
are a delicate matter in open quantum systems [36] but they
can simplify greatly the calculation of the evolution of the
system under the right conditions. In the considered case of
adiabatic elimination of bipartite open quantum systems, one
is able to reduce the problem of inverting (QLQ) in the full
Hilbert space into inverting a simpler matrix in a dramatically
smaller subspace.

Theses results are very general, and require only the def-
inition of a projector P and that the initial state fulfills
the condition Qρ(t = 0) = 0. We note that P doesn’t have
to be hermitian, that is the projection does not need to be
orthogonal.

In Ref. [27], this formalism was applied to the case where
the slow and fast degrees of freedom correspond to a partition
of the underlying Hilbert space in two complementary sub-
spaces, that is H = H(A) ⊕ H(B). In the next section we will
adapt this general formalism to the bipartite case where H =
H(A) ⊗ H(B).

B. Adiabatic elimination in a bipartite system

We suppose that the state of the bipartite system at time t is
described by a density operator ρ (AB)(t ) acting on the Hilbert
space H = H(A) ⊗ H(B). We consider that the dynamics of
subsystem A is very slow compared to the dynamics of sub-
system B. We suppose that the exact stationary state in H is
unique and that it is a product state ρ f = ρa ⊗ ρb, where ρa ∈
H(A) and ρb ∈ H(B) with H(i), i = A, B, the Hilbert space of
operators on H(i). As the dynamics of B subsystem is very fast,
we suppose that it is a good approximation to consider that at
t = 0, ρ (AB)(t = 0) = ρ

(A)
0 ⊗ ρb. In other word, we consider

that B reaches its steady state instantaneously in the timescale
of the subsystem A. We thus define P as

Pρ (AB)(t ) = trB[ρ (AB)(t )] ⊗ ρb, (7)

where trB[] denotes the partial trace over B. The reduced
density operator ρ (A)(t ) in H(A) can then be obtained as
ρ (A)(t ) = trB[Pρ (AB)(t )].
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For the purpose of simplifying some expressions and
calculations, it will be useful to use the operator-vector iso-
morphism [37] which maps each element of H to a vector
in H ⊗ H as follows. An operators such as |a〉〈b| ∈ H is
mapped to the vector |b〉 ⊗ |a〉 in the H ⊗ H Hilbert space,
where |b〉 is the complex conjugate of |b〉. Consequently, any
n × n density matrix ρ ∈ H is mapped to a column vector
||ρ〉〉 ∈ H ⊗ H, with n2 elements, by stacking the columns of
the ρ matrix. Under this isomorphism, super-operators on H
are mapped to operators on H ⊗ H. In particular, the super-
operator O performing the operation ρ → O1ρO†

2, with O1

and O2 operators in H, is mapped to ||ρ〉〉 → O2 ⊗ O1||ρ〉〉,
where O denotes the complex conjugate of O; that is O =
(O†)T , where O† is the adjoint and OT is the transpose of O.
In this way, the scalar product tr[ρ†

1ρ2] between two operators
ρ1 and ρ2 in H is equal to the usual scalar product 〈〈ρ1|ρ2〉〉
in H ⊗ H. Some useful remarks can be made. The identity
operator 1 in H is mapped to the maximally entangled state

||1〉〉 =
∑

k

|k〉 ⊗ |k〉 (8)

in H ⊗ H, where {|k〉} is an orthonormal basis of H. We
also note that the usual density matrix normalization tr[ρ] =
1 does not correspond to the normalization induced by the
scalar product tr[ρ2] = 1 (except in the case of a pure state).
Using the previous remark, we have that tr[ρ] = tr[1ρ] =
1 is mapped to 〈〈1|ρ〉〉 = 1. For our bipartite case, H =
H(A) ⊗ H(B). Therefore, an operator in H as |a1〉〈a2| ⊗
|b1〉〈b2|, where |ai(bi )〉 ∈ H(A)(H(B) )(i = 1, 2), is mapped to
|a2〉 ⊗ |a1〉 ⊗ |b2〉 ⊗ |b1〉. The partial trace over H(B), trB[ρ] ∈
H(A) is mapped to 〈〈1(B)|ρ〉〉 ∈ H(A) ⊗ H(A), where |1(B)〉 =∑

k |k〉 ⊗ |k〉 in H(B) ⊗ H(B), where {|k〉} is now an orthonor-
mal basis of H(B).

Consequently, the operator Pρ (AB) ∈ H is mapped to the
vector 〈〈1(B)|ρ (AB)〉〉 ⊗ ||ρb〉〉 ∈ H ⊗ H. The projector P act-
ing on H ⊗ H can thus be written as

P = 1(2A) ⊗ P (2B) with P (2B) = ||ρb〉〉〈〈1(B)||, (9)

where 1(2A) is the identity operator on H(A) ⊗ H(A). The oper-
ator Q = 1 − P simply reads

Q = 1(2A) ⊗ Q(2B) with Q(2B) = 1(2B) − P (2B), (10)

where 1(2B) is the identity operator on H(B) ⊗ H(B).
In general, the Lindblad operator of the system can be split

into three terms as follows:

L = LA ⊗ 1(2B) + 1(2A) ⊗ LB + LAB, (11)

where LA(B) is a Lindblad operator acting on the A(B) part
only. The decomposition of L with the help of P and Q reads

PLP = LA ⊗ PB + PLABP, (12)

PLQ = PL(AB)Q, (13)

QLP = 1(2A) ⊗ QBLBPB + QL(AB)P, (14)

QLQ = LA ⊗ QB + 1(2A) ⊗ QBLBQB + QLABQ, (15)

where we have used the fact that 〈〈1(B)||LB = 0, as LB is a
trace preserving operator. In the cases where the adiabatic

approximation works, the state of the system B remains close
to the stationary state of LB [14], hence it is also a good
approximation to take as ρB, a stationary state of LB. In that
case LBPB = 0 and QLP in Eq. (14) can be simplified as

QLP = QL(AB)P . (16)

For computing L0 using Eq. (6), the main difficulty resides
in the inversion of QLQ. In general this inversion can not be
done explicitly, but a perturbative expansion can give a good
approximation when the adiabatic approximation is valid. In
many cases QLQ can be divided into two terms, QLQ =
D + V , where the computation of D−1 is easy, and V is small
compared to D. In that case we can write

(−1)n(QLQ)−1 = D−1
∞∑

n=0

(−1)n(VD−1)n. (17)

Retaining the terms up to n = 0 or n = 1 in this case is enough
to give a good approximation.

In the adiabatic regime, the term 1(2A) ⊗ QBLBQB in
Eq. (15) is dominant over the two other terms. In that case,
approximating the inverse of QLQ by

(QLQ)−1 � 1(2A) ⊗ (QBLBQB)−1 (18)

can be sufficient as we will see in the examples in the next
section. So, L0 can be approximated by the following expres-
sion:

L0 = LA ⊗ PB + PLABP
+ PL(AB)Q[1(2A) ⊗ (QBLBQB)−1]

× (1(2A) ⊗ QBLBPB + QL(AB)P ). (19)

This is the main result of this work.

III. EXAMPLES

We apply the formalism of the preceding section to two
examples. We first address the case of a strongly dissipative
driven qubit B dispersively coupled to a target qubit A. Then,
as a second example, we consider the open Rabi model in the
regime where the dynamics of the spin is very fast compared
to the boson frequency.

A. A two-qubit system

This two-qubit system has been considered previously by
Azouit et in Ref. [14] to test another method of bipartite
adiabatic elimination (note that in their work, it is the A
spin which is the strongly dissipative spin). It consists in a
strongly dissipative driven qubit B dispersively coupled to a
target qubit A. This model is used in Ref. [17] to describe the
continuous measurement of a harmonic oscillator excitation
number (corresponding to system A) by a spin (corresponding
system B). The Lindblad equation for the bipartite system can
be written as

dρ

dt
= u[σ B

+ − σ B
−, ρ] + γ ′

(
σ B

−ρσ B
+ − σ B

+σ B
−ρ + ρσ B

+σ B
−

2

)

− iχ ′[σ A
z ⊗ σ B

z , ρ], (20)
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where σ+ = |1〉〈0|, σ− = σ
†
+ and |0〉, |1〉 are the eigenvectors

of the Pauli matrix σz with eigenvalues −1, 1, respectively.

Defining the new parameters τ = ut , χ = χ ′

u
, and γ = γ ′

u
and using the column-vector isomorphism, we write the su-
peroperator form of the Liouvillian as

L = −i
[
χ

(
1A ⊗ σ A

z ⊗ 1B ⊗ σ B
z − σ A

z ⊗ 1A ⊗ σ B
z ⊗ 1B

)
− (

12A ⊗ 1B ⊗ σ B
y + 12A ⊗ σ B

y ⊗ 1B
)]

+ γ 12A ⊗ σ B
− ⊗ σ B

−

− γ

2

[
12A ⊗ σ B

+σ B
− ⊗ 1B + 12A ⊗ 1B ⊗ σ B

+σ B
−
]
,

where we have used the relations

σ̄y = −σy , σ̄+ = σ+ , σ̄− = σ−. (21)

As the qubit A only comes into play through the Hamil-
tonian term −iχ [σ A

z ⊗ σ B
z , ρ] [see Eq. (20)], the kernel of

the Lindblad operator is two dimensional, according to the
two eigenvectors σ A

z . Hence, the kernel can be considered
as the span of {ρ (A)

s0 ⊗ ρ
(B)
s0 , ρ

(A)
s1 ⊗ ρ

(B)
s1 }, where ρ

(A)
s0 = |0〉〈0|,

ρ
(A)
s1 = |1〉〈1| and (see Appendix A for details)

ρ (B)
s1

= 1

2
+ 2γ

16χ2 + γ 2 + 8
σ (B)

x + 8χ

16χ2 + γ 2 + 8
σ (B)

y

− 16χ2 + γ 2

32χ2 + 2γ 2 + 16
σ (B)

z , (22)

ρ (B)
s0

= 1

2
+ 2γ

16χ2 + γ 2 + 8
σ (B)

x − 8χ

16χ2 + γ 2 + 8
σ (B)

y

− 16χ2 + γ 2

32χ2 + 2γ 2 + 16
σ (B)

z . (23)

To avoid any unnecessary complications, we will assume
that the qubit A has an extremely slow dissipation rate that we
will omit from our calculations but will ensure the uniqueness
of the steady state. In other words, the steady state of the
considered system will be ρss = ρ (A)

s0
⊗ ρ (B)

s0
. We thus assume

that the initial state is of the form ρ0 = ρ
(A)
0 ⊗ ρ (B)

s0
, and we

define the projector P [see Eq. (9)]:

P = 12A ⊗ ∣∣∣∣ρ (B)
s0

〉〉〈〈
1(B)

∣∣∣∣, (24)

where according to Eq. (8), ||1(B)〉〉 = |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉.
This ensures that Q = 1 − P verifies Q|ρ0〉 = 0 as it should
be. In Appendix A, we calculate in detail all the quantities
necessary to compute L0 and L1 as given by Eq. (5):

PLP =|0, 1〉〈0, 1| ⊗ A0,1 + |1, 0〉〈1, 0| ⊗ A1,0, (25)

PLQ =|0, 1〉〈0, 1| ⊗ C0,1 + |1, 0〉〈1, 0| ⊗ C1,0, (26)

QLP = |0, 1〉〈0, 1| ⊗ D0,1 + |1, 0〉〈1, 0| ⊗ D1,0

+ |0, 0〉〈0, 0| ⊗ D0,0 + |1, 1〉〈1, 1| ⊗ D1,1, (27)

QLQ = |0, 1〉〈0, 1| ⊗ B0,1 + |1, 0〉〈1, 0| ⊗ B1,0

+ |0, 0〉〈0, 0| ⊗ B0,0 + |1, 1〉〈1, 1| ⊗ B1,1, (28)

where Xi, j , X ∈ {A,B, C,D}, and i, j ∈ 0, 1, are operators
acting on H(B) and we have simplified the notation as

|i, j〉 = |i〉 ⊗ | j〉 ∈ H(A) ⊗ H(A) (i, j = 0, 1), see Appendix
A. From the block diagonal form of Eq. (28), it is relatively
easy to invert QLQ exactly. In addition, we are only interested
in quantities of the form PLQ(QLQ)−nQLP . Hence, from
the form of PLQ in Eqs. (26), we only need to calculate B−1

0,1

and B−1
1,0.

Using Eqs. (25)–(28) in Eq. (5), we can write L0 and L1 as

L0 = PLP − PLQ(QLQ)−1QLP
= |0, 1〉〈0, 1| ⊗ (

A0,1 − C0,1B−1
0,1D0,1

)
+ |1, 0〉〈1, 0| ⊗ (

A1,0 − C1,0B−1
1,0D1,0

)
,

(29)

L1 = −PLQ(QLQ)−2QLP
= −|0, 1〉〈0, 1| ⊗ (

C0,1B−2
0,1D0,1

)
− |1, 0〉〈1, 0| ⊗ (

C1,0B−2
1,0D1,0

)
.

(30)

Since P (B) is a projector of rank 1, we can write

A0,1 − C0,1B−1
0,1D0,1 = α0,1P (B),

A1,0 − C1,0B−1
1,0D1,0 = α1,0P (B),

C0,1B−2
0,1D0,1 = β0,1P (B),

C1,0B−2
1,0D1,0 = β1,0P (B),

(31)

where (see Appendix A)

α0,1 ≡ α = 〈〈1(B)||(A0,1 − C0,1B−1
0,1D0,1

)||1(B)〉〉,
β0,1 ≡ β = 〈〈1(B)||(C0,1B−2

0,1D0,1
)||1(B)〉〉,

α1,0 = α , β1,0 = β,

(32)

and (see Appendix A)

α = −ζ + iξ . (33)

With these variables and truncating Eq. (4) to the zeroth or-
der, the effective Liouville equation can be written in operator
space as

d

dτ
ρA = i

ξ

2

[
σ A

z , ρA
] + ζ

2

(
σ A

z ρAσ A
z − ρA

)
. (34)

Note that approximating the expression of ξ and ζ (given in
Appendix A) by their lowest order in χ gives for Eq. (34) the
same result as the one obtained by Azouit et al. [14] using a
completely different method. Finally, it is straightforward to
calculate (1 − L1)−1 exactly, given that L1 [Eq. (30)] is block
diagonal:

(1 − L1)−1 = |0, 1〉〈0, 1| ⊗
(

1

1 + β
PB + QB

)

+ |1, 0〉〈1, 0| ⊗
(

1

1 + β
PB + QB

)

+ (|0, 0〉〈0, 0| + |1, 1〉〈1, 1|) ⊗ 1(2B).

(35)

Let us define the modified initial state of the qubit A as
|ρ̃ (A)

0 〉 = (1 − L1)−1ρ
(A)
0 :

∣∣ρ̃ (A)
0

〉 = ρ0,0|0, 0〉 + ρ1,1|1, 1〉 + ρ0,1

1 + β
|0, 1〉 + ρ1,0

1 + β
|1, 0〉,

(36)
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where ρ0,0, ρ1,1 represent population in the state ρ
(A)
0 while

ρ0,1, ρ1,0 represent initial coherences. The physical meaning
of this redefined initial density matrix is the state of qubit A
immediately after qubit B has reached its steady state. In this
case this corresponds to a rescaling of the coherences. Using
QBρ (B)

s0
= 0, we can rewrite Eq. (6) to describe the dynamics

of the slow qubit as

|ρA(t )〉 = eL̃0t
∣∣ρ̃A

0

〉
, (37)

where L̃0 = (1−L1)−1L0 = α
1+β

|0, 1〉〈0, 1| + α

1+β
|1, 0〉〈1, 0|.

The evolution operator U (t ) = eL̃0t is simple to calculate:

U (t ) = e−ζ ′t+iξ ′t |0, 1〉〈0, 1| + e−ζ ′t−iξ ′t |1, 0〉〈1, 0|
+ |0, 0〉〈0, 0| + |1, 1〉〈1, 1|, (38)

where we have defined

ζ ′ = −� α

1 + β
, ξ ′ = 
 α

1 + β
. (39)

The evolution of the approximated expectation value of the
Pauli matrices for qubit A and B for γ = 1 and χ = 0.1 and
with the initial state taken as

|φ+〉 = 1√
2

(|0〉 + |1〉)

are compared in Fig. 1 to the ones obtained through an exact
full numerical propagation. We see that the adiabatic elimi-
nation captures the exact dynamics faithfully and that indeed
qubit B reaches its steady state before any appreciable dynam-
ics in A has taken place.

It is worth mentioning that when adiabatic elimination is
valid, i.e., χ � γ , the exact final state of the fast qubit B is
very close to the steady state of LB:

ρ (B)
ss = lim

χ→0
ρ (B)

s0
. (40)

Defining the projector PB = ||ρ (B)
ss 〉〉〈〈1(2B)|| leads to consid-

erable simplifications in Eq. (14) where the first term becomes
zero. Thus, taking the interaction QLABQ to be small, we only
need the term n = 0 in Eq. (17) and taking the zero order only
in Eq. (4), one can check that it leads to the same Lindblad
operator derived in Ref. [14] which is enough to obtain a very
good approximation in the adiabatic limit.

B. Open Rabi model

The open Rabi model has been considered recently by
Garbe et al. [38] in a quantum metrology context. It consists
in a spin- 1

2 (with frequency 
) interacting with one bosonic
mode (frequency ω0) of a cavity described by the following
Hamiltonian:

HR = 
σz + ω0a†a + λ(a + a†) ⊗ σx, (41)

where a (a†) is the annihilation (creation) operator of the
bosonic mode. The dynamics of the open Rabi model where
the relaxation of the spin (at a rate �′) and the photon losses
from the cavity (at a rate κ ′) are taken into account is gener-
ated by the following Lindblad operator:

L(ρ) = −i[HR, ρ] + �′Dσ− (ρ) + κ ′Da(ρ), (42)

FIG. 1. Top: Evolution of the expectations values of the Pauli
matrices 〈σ A

x 〉 (initial value = 1), 〈σ A
y 〉 (initial value = 0) and 〈σ A

z 〉
(always zero) for the slow spin A. Dashed line: Adiabatic elimination,
continuous line: exact. Bottom: Evolution of the fast spin B. The
initial state has been taken as |φ+〉 = 1√

2
(|0〉 + |1〉).

where we have used the notation

DX (ρ) = XρX † − 1
2 X †Xρ − 1

2ρX †X.

We also assume that �′ ∼ 
 and κ ′ ∼ ω0. If we rescale the
time by dividing the above equation by

√

ω0, and define

g = λ√

ω0

, η =
√

ω0



, κ = κ ′

√

ω0

, � = �′
√


ω0
, (43)

then we rewrite the Lindbladian as follows:

L(ρ) = LA(ρ) + LAB(ρ) + LB(ρ), (44)
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with

LA(ρ) = −iη[a†a, ρ] + κDa(ρ),

LB(ρ) = −i
1

η
[σz, ρ] + �Dσ− (ρ),

LAB(ρ) = −ig[
(
a + a†

) ⊗ σx, ρ].

(45)

It has been shown that, in the limit where ω0 � 
, this model
exhibits a quantum phase transition when g increases [38–41].
The critical point corresponding to g = 1 separates a normal
phase (g < 1) from a superradiant phase (g > 1). Here we
show that our method can be used to obtain an effective
Lindblad operator for the boson in the normal phase after the
elimination of the fast spin. After rescaling, the adiabatic limit
ω0 � 
 corresponds to η → 0.

In the normal phase (g < 1), the steady state of the system,
which is the kernel of the Lindblad operator given by Eq. (42),
is separable and unique [38]. It is straight forward to verify
that the steady state of LB is

||ρ (B)
ss 〉〉 = |0, 0〉. (46)

Following the same steps of the last example, see Appendix
B, we define the projector PB = ||ρ (B)

ss 〉〉〈〈1(2B)|| and we only
calculate the term QLBQ, the inverse of which corresponds to
QLQ−1 up to zeroth order in Eq. (17). Simple and straightfor-
ward calculations lead to the following Lindbladian evolution

of the boson:

L0(ρ (A) ) = −i

[
ηa†a − 4g2η

�2η2 + 16
(a + a†)2, ρ (A)

]

+ κDa(ρ (A) ) + 4g2η2�

�2η2 + 16
D(a+a† )(ρ

(A) ), (47)

which is exactly the formula derived in Ref. [38] using a
completely different method, where one should take into con-
sideration that the parameters in Eq. (42) are double those
considered in Ref. [38].

IV. CONCLUSION

We have derived a projection-based adiabatic elimination
method that works for bipartite systems. This work provides
a direct connection to earlier work on adiabatic elimination of
a subspace of the system Hilbert space [27] so that in princi-
ple now subsystems as well as sublevels can be eliminated
at the same time. We have illustrated this with two simple
examples of two dispersively coupled spins and the open Rabi
model. In both cases, using the lowest-order approximations,
we have obtain the same expressions that have been previously
obtained by completely different methods. We expect that this
work will find applications in the case of molecules in cavities
where the cavity and part of the molecular levels could be
adiabatically eliminated.

APPENDIX A: DETAILED CALCULATION FOR THE TWO-QUBIT SYSTEM

Here we present in detail all the calculations involved in the example presented in Sec. III A: first we write ||ρ (B)
s 〉〉 in the

standard basis:

∣∣∣∣ρ (B)
s

〉〉 = 16χ2 + γ 2 + 4

16χ2 + γ 2 + 8
|0, 0〉 + 4

16χ2 + γ 2 + 8
|1, 1〉 + 2γ + 8iχ

16χ2 + γ 2 + 8
|0, 1〉 + 2γ − 8iχ

16χ2 + γ 2 + 8
|1, 0〉,

(A1)

where in this Appendix we use the notation |i, j〉 = |i〉 ⊗ | j〉 to alleviate the complexity of mathematical expressions. Then, we
define the necessary projectors of the partial trace, namely:

P (B) = ∣∣∣∣ρ (B)
s

〉〉〈〈
1(B)

∣∣∣∣ (A2)

and

Q(B) =1(2B) − P (B) 4

16χ2 + γ 2 + 8
|�−〉〈�+| − |�−〉〈1, 1|

− 8iχ + 2γ

16χ2 + γ 2 + 8
|0, 1〉〈�+| + |0, 1〉〈0, 1| + 8iχ − 2γ

16χ2 + γ 2 + 8
|1, 0〉〈�+| + |1, 0〉〈1, 0|, (A3)

where we have defined the following vectors:

|�+〉 = |0, 0〉 + |1, 1〉,
|�−〉 = |0, 0〉 − |1, 1〉. (A4)

Later on, it will be useful to define

|�+〉 = |0, 1〉 + |1, 0〉,
|�−〉 = |0, 1〉 − |1, 0〉,

|�+〉 = 2γ + 8iχ

16χ2 + γ 2 + 8
|0, 1〉 + 2γ − 8iχ

16χ2 + γ 2 + 8
|1, 0〉,

|�−〉 = 2γ + 8iχ

16χ2 + γ 2 + 8
|0, 1〉 − 2γ − 8iχ

16χ2 + γ 2 + 8
|1, 0〉,
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|
+〉 = 16χ2 + γ 2 + 4

16χ2 + γ 2 + 8
|0, 0〉 + 4

16χ2 + γ 2 + 8
|1, 1〉,

|
−〉 = 16χ2 + γ 2 + 4

16χ2 + γ 2 + 8
|0, 0〉 − 4

16χ2 + γ 2 + 8
|1, 1〉,

|
⊥
+〉 = 16χ2 + γ 2 + 4

16χ2 + γ 2 + 8
|1, 1〉 − 4

16χ2 + γ 2 + 8
|0, 0〉,

|
⊥
−〉 = 16χ2 + γ 2 + 4

16χ2 + γ 2 + 8
|1, 1〉 + 4

16χ2 + γ 2 + 8
|0, 0〉, (A5)

and the unitary matrix,

USWAP =|0, 0〉〈0, 0| + |1, 1〉〈1, 1| + |1, 0〉〈0, 1|+|0, 1〉〈1, 0|, (A6)

as well. From Eqs. (48), (21), and (50), we find that

PLP = |0, 1〉〈0, 1| ⊗ A0,1 + |1, 0〉〈1, 0| ⊗ A1,0,

PLQ = |0, 1〉〈0, 1| ⊗ C0,1 + |1, 0〉〈1, 0| ⊗ C1,0,

QLP = |0, 1〉〈0, 1| ⊗ D0,1 + |1, 0〉〈1, 0| ⊗ D1,0 + |0, 0〉〈0, 0| ⊗ D0,0 + |1, 1〉〈1, 1| ⊗ D1,1,

QLQ = |0, 1〉〈0, 1| ⊗ B0,1 + |1, 0〉〈1, 0| ⊗ B1,0 + |0, 0〉〈0, 0| ⊗ B0,0 + |1, 1〉〈1, 1| ⊗ B1,1, (A7)

where we have defined the following matrices on H(2B):

A0,1 = 2iχ (16χ2 + γ 2)

(16χ2 + γ 2 + 8)
P (B) , A1,0 = USWAPA0,1, (A8)

C0,1 = − 4iχ |ρ (B)
s 〉〈
⊥

+| , C1,0 = USWAPC0,1, (A9)

D0,1 =16iχ (16χ2 + γ 2 + 4)

(16χ2 + γ 2 + 8)2
|�−〉〈�+| − 4iχ (16χ2 + γ 2)

(16χ2 + γ 2 + 8)
|�+〉〈�+| − 2iχ |�−〉〈�+|,

D1,1 = − 4iχ |�−〉〈�+| , D1,0 = USWAPD0,1 , D0,0 = 0, (A10)

B0,1 = 2iχ (16χ2 + γ 2)

(16χ2 + γ 2 + 8)
|�−〉〈
⊥

+| + γ |�−〉〈1, 1| − γ

2
|0, 1〉〈0, 1| − γ

2
|1, 0〉〈1, 0| − |�−〉〈�+| + |�+〉〈�−|

+ 2iχ (16χ2 + γ 2)

(16χ2 + γ 2 + 8)
|�−〉〈�−| + 64iχ (4iχ − γ )

(16χ2 + γ 2 + 8)2
|1, 0〉〈0, 0| + 16iχ (4iχ + γ )(16χ2 + γ 2 + 4)

(16χ2 + γ 2 + 8)2
|0, 1〉〈1, 1|,

B0,0 = − |�−〉〈�+| + |�+〉〈�−| + γ |�−〉〈1, 1| + 4iχ − γ

2
|0, 1〉〈0, 1| − 4iχ + γ

2
|1, 0〉〈1, 0|,

B1,1 =B0,0 + 4iχ (|�−〉〈�+| + |1, 0〉〈1, 0| − |0, 1〉〈0, 1|) , B1,0 = USWAPB0,1USWAP. (A11)

With this diagonal form of QLQ, it is straightforward to compute (QLQ)−1. It consists in computing B−1
i, j , i, j = 0, 1, which

are 4 × 4 matrices. Moreover, since we are solely interested in quantities of the form PLQ(QLQ)−nQLP and PLQ is of the
form of Eq. (26), we only need to compute B0,1.

To simplify this task, we define the unitary matrix

U = 1√
2
|0, 0〉〈�+| − 1√

2
|1, 1〉〈�−| + |0, 1〉〈0, 1| + |1, 0〉〈1, 0|, (A12)

and we compute the pseudoinverse of B̃0,1 = UB0,1. Multiplying by U boils down to replacing the ket |�−〉 by |1, 1〉 in Eq. (58),
which implies that B̃0,1 can be represented as a 3 × 4 matrix in the standard basis “simplifying” the task of finding B̃−1

0,1. To find
the pseudoinverse of B̃0,1, we simply solve the set of equations corresponding to

B̃0,1B̃−1
0,1 = �ran[B̃0,1] = 1(2B) − |0, 0〉〈0, 0|, (A13)

where �ran[B̃0,1] is the Hermitian projector to the range of B̃0,1. If we define the following quantities:

b11 = − γ (16χ2 + γ 2 + 8)2

√
2[2iχγ (16χ2 + γ 2 − 16) + (γ 2 + 8)(16χ2 + γ 2 + 8)](16χ2 + γ 2 + 4)

, (A14)

b21 =
√

2(16χ2γ 2 + 256χ2 − 4iχγ (16χ2 + γ 2) + γ 4 + 16γ 2 + 64)

[2iχγ (16χ2 + γ 2 − 16) + (γ 2 + 8)(16χ2 + γ 2 + 8)](16χ2 + γ 2 + 4)
, (A15)
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b31 =
√

2[16χ2γ 2 − 4iχγ (48χ2 + 3γ 2 + 16) + (32χ2 + γ 2 + 8)2]

[2iχγ (16χ2 + γ 2 − 16) + (γ 2 + 8)(16χ2 + γ 2 + 8)](16χ2 + γ 2 + 4)
, (A16)

b33 = −512χ4γ 2 + 64χ2γ 4 + 576χ2γ 2 + 1024χ2 + 4iχγ (16χ2 + γ 2)2 + 2γ 6 + 36γ 4 + 192γ 2 + 256

γ [2iχγ (16χ2 + γ 2 − 16) + (γ 2 + 8)(16χ2 + γ 2 + 8)](16χ2 + γ 2 + 4)
, (A17)

b22 = b33 − 32χ [8χ (16χ2 + γ 2 + 4) − iγ (16χ2 + γ 2 + 8)]

γ [2iχγ (16χ2 + γ 2 − 16) + (γ 2 + 8)(16χ2 + γ 2 + 8)](16χ2 + γ 2 + 4)
, (A18)

b12 = b13 = 2
√

2

γ
b11 , b23 = 2

√
2

γ
b21 , b32 = 2

√
2

γ
b31, (A19)

and make the identification |1, 1〉 → |1〉, |1, 0〉 → |2〉, and |0, 1〉 → |3〉, then

B̃−1
0,1 =

3∑
i, j=1

bi j |i〉〈 j|. (A20)

We can check that B̃−1
0,1 verify all the Moore-Penrose conditions [42]:

B̃0,1B̃−1
0,1B̃0,1 = B̃0,1, B̃−1

0,1B̃0,1B̃−1
0,1 = B̃−1

0,1,
(
B̃0,1B̃−1

0,1

)† = B̃0,1B̃−1
0,1,

(
B̃−1

0,1B̃0,1
)† = B̃−1

0,1B̃0,1. (A21)

Finally, we can easily see that the pseudoinverse of B0,1 is

B−1
0,1 = (U†B̃0,1)−1 = B̃−1

0,1U , (A22)

with that, we have all the necessary ingredients to compute L0 and L1. Using Eqs. (54), we find that:

L0 = PLP − PLQ(QLQ)−1QLP
= |0, 1〉〈0, 1| ⊗ (A0,1 − C0,1B−1

0,1D0,1) + |1, 0〉〈1, 0| ⊗ (A1,0 − C1,0B−1
1,0D1,0), (A23)

L1 = −PLQ(QLQ)−2QLP
= −|0, 1〉〈0, 1| ⊗ (C0,1B−2

0,1D0,1) − |1, 0〉〈1, 0| ⊗ (C1,0B−2
1,0D1,0). (A24)

Since P (B) is a projector of rank 1, we can write

A0,1 − C0,1B−1
0,1D0,1 = α0,1P (B), A1,0 − C1,0B−1

1,0D1,0 = α1,0P (B), C0,1B−2
0,1D0,1 = β0,1P (B), C1,0B−2

1,0D1,0 = β1,0P (B).

(A25)

Because PB is of the form |ρ (B)
s0

〉〈�+|, we find that

α0,1 ≡ α = 1

2
〈�+|(A0,1 − C0,1B−1

0,1D0,1)|�+〉, β0,1 ≡ β = 1

2
〈�+|(C0,1B−2

0,1D0,1)|�+〉, (A26)

where we have used the fact that 〈�+|ρ (B)
s0

〉 = 1 and 〈�+|�+〉 = 2. We also have

α1,0 = 1

2
〈�+|(A1,0 − C1,0B−1

1,0D1,0)|�+〉 = 1

2
〈�+|(USWAPA0,1 − USWAPC0,1USWAPB−1

0,1D0,1)|�+〉

= 1

2
〈�+|(A0,1 − C0,1B−1

0,1D0,1)|�+〉 = α,

(A27)

where we have used the fact that U2
SWAP = 1(2B), C0,1USWAP = C0,1, and 〈�+|USWAP = 〈�+|. In a similar way, we can also show

that

β1,0 = β. (A28)

Let us define α = −ζ + iξ where ζ � 0. A tedious calculation leads to

ζ = 128χ2γ (γ 2 + 8)(16χ2 + γ 2 + 2)

4χ2γ 2(16χ2 + γ 2 − 16)2 + (γ 2 + 8)2(16χ2 + γ 2 + 8)2
,

ξ = 2χ (16χ2 + γ 2)

16χ2 + γ 2 + 8
+ 256χ3γ 2(16χ2 + γ 2 − 16)(16χ2 + γ 2 + 2)

[4χ2γ 2(16χ2 + γ 2 − 16)2 + (γ 2 + 8)2(16χ2 + γ 2 + 8)2](16χ2 + γ 2 + 8)
,

(A29)

and

β = x1 + iy1

x2 + iy2
,
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where

x1 = χ2(49152χ4γ 2 − 262144χ4 + 6144χ2γ 4 + 2048χ2γ 2 − 131072χ2 + 192γ 6 + 1152γ 4 − 5120γ 2 − 16384),

y1 = 256χ3γ (16χ2 + γ 2 + 4)(16χ2 + γ 2 + 8),

x2 = (16χ2 + γ 2 + 4)(−32χ3γ + 16χ2γ 2 + 128χ2 − 2χγ 3 + 32χγ + γ 4 + 16γ 2 + 64)

× (32χ3γ + 16χ2γ 2 + 128χ2 + 2χγ 3 − 32χγ + γ 4 + 16γ 2 + 64),

y2 = 4χγ (γ 2 + 8)(16χ2 + γ 2 − 16)(16χ2 + γ 2 + 4)(16χ2 + γ 2 + 8). (A30)

Finally, it is straightforward to calculate (1 − L1)−1 exactly, given that L1 Eq. (71) is block diagonal:

(1 − L1)−1 = |0, 1〉〈0, 1| ⊗
(

1

1 + β
PB + QB

)
+ |1, 0〉〈1, 0| ⊗

(
1

1 + β
PB + QB

)
+ [|0, 0〉〈0, 0| + |1, 1〉〈1, 1|] ⊗ 1(2B).

(A31)

Taking the fact QBρ (B)
s0

= 0 into account and defining the modified initial state of the qubit A as
∣∣ρ̃ (A)

0

〉 = ρ0,0|0, 0〉 + ρ1,1|1, 1〉 + ρ0,1

1 + β
|0, 1〉 + ρ1,0

1 + β
|1, 0〉, (A32)

where ρ0,0, ρ1,1 represent population in the state ρ
(A)
0 while ρ0,1, ρ1,0 represent initial coherences, we can simplify Eq. (6) to

describe the dynamics of the slow qubit as

|ρA(t )〉 = eL̃0t |ρ̃A
0 〉, (A33)

where L̃0 = α
1+β

|0, 1〉〈0, 1| + α

1+β
|1, 0〉〈1, 0|. The evolution operator U (t ) = eL̃0t is simple to calculate:

U (t ) = e−ζ ′t+iξ ′t |0, 1〉〈0, 1| + e−ζ ′t−iξ ′t |1, 0〉〈1, 0| + |0, 0〉〈0, 0| + |1, 1〉〈1, 1|, (A34)

where we have defined

ζ ′ = −� α

1 + β
, ξ ′ = 
 α

1 + β
. (A35)

APPENDIX B: OPEN RABI MODEL

In this Appendix, we carry out all the calculations needed to adiabatically eliminate a fast qubit interacting with a slow cavity
mode according to the open Rabi model:

L(ρ) = −i
1

η
[σz, ρ] + �Dσ− (ρ) − iη[a†a, ρ]

+ κDa(ρ) − ig[(a + a†) ⊗ σx, ρ]. (B1)

The first step is to write L in the super-operator representation:

L = − iη(1(A) ⊗ a†a ⊗ 1(2B) − a†a ⊗ 1(A) ⊗ 1(2B) ) − i

η
(1(2A) ⊗ 1(B) ⊗ σz − 1(2A) ⊗ σz ⊗ 1(B) )

− ig(1(A) ⊗ (a + a†) ⊗ 1(B) ⊗ σx − (a + a†) ⊗ 1(A) ⊗ σx ⊗ 1(B) )

+ �1(2A) ⊗ σ− ⊗ σ− − �

2
[1(2A) ⊗ σ+σ− ⊗ 1(B) + 1(2A) ⊗ 1(B) ⊗ σ+σ−]

+ κa ⊗ a ⊗ 1(2B) − κ

2
[a†a ⊗ 1(A) ⊗ 1(2B) + 1(A) ⊗ a†a ⊗ 1(2B)].

If we define

PB = ||ρB
f 〉〉〈〈1(B)|| , QB = 1(2B) − PB = |1, 1〉〈1, 1| − |0, 0〉〈1, 1| + |0, 1〉〈0, 1| + |1, 0〉〈1, 0| (B2)

and

P = 1(2A) ⊗ PB , Q = 1(2A) ⊗ QB, (B3)

then we can compute the needed quantities for L0

PLP = [−iη(1(A) ⊗ a†a − a†a ⊗ 1(A) ) + κa ⊗ a − κ

2
[a†a ⊗ 1(A) + 1(A) ⊗ a†a]] ⊗ PB,

PLQ = −ig[1(A) ⊗ (a + a†) − (a + a†) ⊗ 1(A)] ⊗ |0, 0〉〈�+|,
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QLP = −ig(1(A) ⊗ (a + a†) ⊗ |0, 1〉〈�+| − (a + a†) ⊗ 1(A) ⊗ |1, 0〉〈�+|),

QLBQ = 1(2A) ⊗
[
−�|1, 1〉〈1, 1| + �|0, 0〉〈1, 1| −

(
�

2
+ 2i

η

)
|0, 1〉〈0, 1| −

(
�

2
− 2i

η

)
|1, 0〉〈1, 0|

]
. (B4)

QLBQ represents the dominant term of QLQ, which can be inverted quite easily:

QLBQ−1 = 1(2A) ⊗

⎡
⎢⎢⎣− 1

2�
|1, 1〉〈1, 1| + 1

2�
|1, 1〉〈0, 0| − 1(

�

2
+ 2i

η

) |0, 1〉〈0, 1| − 1(
�

2
− 2i

η

) |1, 0〉〈1, 0|

⎤
⎥⎥⎦. (B5)

Hence, we can easily calculate L0 to be

L0 =
[
−iη(1(A) ⊗ a†a − a†a ⊗ 1(A) ) + κa ⊗ a − κ

2
[a†a ⊗ 1(A) + 1(A) ⊗ a†a]

−g2

�

2
− 2i

η

�2

4
+ 4

η2

[1(A) ⊗ (
a + a†

)2 − (a + a†) ⊗ (a + a†)] − g2

�

2
+ 2i

η

�2

4
+ 4

η2

[(a + a†)2 ⊗ 1(A) − (a + a†) ⊗ (a + a†)]

⎤
⎥⎥⎦ ⊗ PB.

(B6)

From which we can deduce the reduced dynamics governing the evolution of the slow system to be

L0(ρ (A) ) = −i[H (A), ρ (A)] + κDa(ρ (A) ) + 4g2η2�

�2η2 + 16
D(a+a† )(ρ

(A) ), (B7)

where we have defined

H (A) = ηa†a − 4g2η

�2η2 + 16
(a + a†)2. (B8)
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