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Various quantum thermodynamic bounds are shown to stem from a single tighter and more general inequality,
consequence of the operator concavity of the logarithmic function. Such an inequality, which we call the
“thermodynamic reverse bound,” is compactly expressed as a quantum relative entropy, from which it inherits
mathematical properties and meaning. As concrete examples, we apply our bound to evaluate the thermodynamic
length for open processes, the heat exchange in erasure processes, and the maximal energy outflow in general
quantum evolutions.
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I. INTRODUCTION

Umegaki’s quantum extension [1] of Kullback-Leibler’s
relative entropy [2] is of vital importance for a rigorous for-
malization of quantum thermodynamics. In particular, the fact
that quantum relative entropy, notwithstanding the noncom-
mutativity of the underlying algebra of operators, shares many
properties with its classical counterpart—most notably the
monotonicity under coarse-grainings [3]—is enough by itself
to serve as a powerful tool for investigation.

In this paper we show how a much weaker property
than monotonicity, namely, the operator concavity of the
logarithmic function [4] can be invoked to improve on var-
ious thermodynamic bounds for quantum nonequilibrium
processes, possibly driven and open. Besides the mere quan-
titative improvements over previously known bounds, our
formula possesses the unique advantage of being expressed as
a quantum relative entropy, thus inheriting all the mathemat-
ical properties, the conceptual advantages, and the physical
relevance of one among the most prolific quantities in statisti-
cal sciences [5–7].

The paper proceeds as follows. After presenting the gen-
eral mathematical bound, we show its physical relevance by
deriving the following: (1) a new formula for the thermody-
namic length, recovering that for closed processes as a special
case, but directly applicable to open processes; (2) a tighter
bound for the heat exchange in erasure processes; and (3) a
stronger formulation of the quantum second law as presented
in [8] as a generalization of [9] to general quantum open
processes.

II. THE THERMODYNAMIC REVERSE BOUND

We consider a system S interacting with an ancilla A from
time t = 0 to time t = τ > 0. We assume that the system and
the ancilla are initially in a factorized state ρSA

0 = ρS
0 ⊗ ρA

0 .
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On the other hand, we make no particular assumptions at
this point on the microscopic model (i.e., the Hamiltonian
operator) underlying the interaction. We only need to know
that the joint system-ancilla evolution from t = 0 to t = τ is
described by some unitary operator U SA, so that the reduced
system’s dynamics is described by a completely positive trace-
preserving (CPTP) linear map � as follows [10]:

ρS
τ = TrA

{
U SA

(
ρS

0 ⊗ ρA
0

)
(U SA)†

}
(1)

=: �(ρS
0 ). (2)

In order to discuss the thermodynamics of system S,
we also introduce the system’s Hamiltonian operators at
initial and final times, namely, HS

{0,τ }, and the corresponding
states at equilibrium at some inverse temperature β > 0,
namely, �S

{0,τ } = exp[β(F{0,τ } − HS
{0,τ })], where F{0,τ } :=

−β−1 ln Tr[exp(−βHS
{0,τ })] denote the system’s free energies

at thermal equilibrium. In this paper we focus in particular on
the difference between the system’s average internal energy
at final and initial times, namely,

�E := Tr
[
ρS

τ HS
τ

] − Tr
[
ρS

0 HS
0

]
. (3)

The above quantity, though always well defined, is most
meaningful when any interaction terms can be neglected in the
energy computation. This is the case, for example, if at times
t = 0 and t = τ the interaction terms in the total Hamiltonian
are negligible with respect to the system’s internal energy. As
a concrete example, one can think of a system that “flies”
through a relatively small interaction region, where energy can
be exchanged with the ancilla, but at times t = 0 and t = τ is
sufficiently far from such a region so that interactions can be
neglected.

Denoting by �† the trace-dual map associated with �,
that is, the map satisfying Tr[�(X ) Y ] = Tr[X �†(Y )] for all
operators X,Y , by standard manipulations it is possible to
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show that

β(�E − �F ) + D
(
ρS

0

∥∥�S
0

)
= D

(
ρS

0

∥∥�†
(
�S

τ

)) + Tr
[
ρS

0 L
]

(4)

� D
(
ρS

0

∥∥�†
(
�S

τ

))
, (5)

where

(i) �F denotes the difference of equilibrium free
energies: �F := Fτ − F0;

(ii) D(X‖Y ), for X,Y � 0, X �= 0, denotes an
extension of Umegaki’s quantum relative entropy
to positive semidefinite operators (see, e.g., [11]),
namely, D(X‖Y ) := Tr[X ]−1 Tr[X ln X − X ln Y ], if
supp X ⊆ suppY , or +∞ otherwise;

(iii) L denotes the operator defined by L := ln[�†(�S
τ )]−

�†(ln �S
τ ).

In this paper we refer to inequality (5) as the thermodynamic
reverse bound, because the trace-dual map �†, which for
isolated processes coincides with the reverse evolution, is used
to “pull” the final thermal equilibrium state from t = τ back
to t = 0.

The thermodynamic reverse bound holds because the op-
erator L in (4) is always positive semidefinite. This fact is
a consequence of the operator concavity of the logarithmic
function (a result sometimes referred to as the Löwner-Heinz
Theorem; see, e.g., Theorem 2.6 in [4]) together with the
so-called Schwarz inequality for positive linear maps [12,13].
We notice, however, that, due to the fact that the trace-dual
map of a CPTP map is CP but not necessarily TP, the operator
�†(�S

τ ) appearing in (4) and (5) is positive semidefinite but
its trace may differ from one. As a consequence, the term
D(ρS

0 ‖�†(�S
τ )) may be smaller than zero. A special case of

(5) is discussed from an information-theoretic perspective in
[14].

The above relations, Eqs. (4) and (5), are to be compared
with the following ones, that again can be easily verified by
direct inspection, that is,

β(�E − �F ) + D
(
ρS

0

∥∥�S
0

) = D
(
�

(
ρS

0

)∥∥�S
τ

) + �S (6)

� �S, (7)

where �S := − Tr[ρS
τ ln ρS

τ ] + Tr[ρS
0 ln ρS

0 ] is the entropy in-
crease of the system, which can be positive or negative,
depending on the initial state and the CPTP map �. Inequal-
ity (7) follows because both �(ρS

0 ) = ρS
τ and �S

τ are two
normalized density matrices, so that their relative entropy is
non-negative.

It is interesting to notice that both relations (4) and (6) only
involve terms which depend solely on the system’s reduced
dynamics, and that both relations are expressed as the sum of
two quantities, one of which is always non-negative. However,
only the thermodynamic reverse bound (5) is expressed in the
form of a quantum relative entropy, thus carrying the useful
interpretation of information-theoretic divergence [7]. In what
follows, we will discuss this fact in connection with some
situations of physical interest.

Conditions for equality

Before proceeding with the applications, we first comment
on the conditions that imply equality in (5), for all initial states
ρS

0 . More precisely, we want to know what properties should
the CPTP map � satisfy in order to have

ln
[
�†

(
�S

τ

)] = �†
(

ln �S
τ

)
. (8)

Clearly, for unitary � equality is obtained. However, unitarity
is not necessary: For example, any CPTP map of the form,

�(·S ) =
∑
i=1

| fi〉〈ϕi|S (·S )|ϕi〉〈 fi|S, (9)

where {| fi〉S}i is the energy eigenbasis for HS
τ and {|ϕi〉S}i is an

arbitrary orthonormal basis for S, also attains (8). Maps like
that in (9), even though not unitary, still satisfy the relation
�(1) = 1. For such maps, called unital, also their trace-dual
�† is CPTP. More freedom in constructing counterexamples
is available whenever HS

τ has some degenerate eigenvalues:
To see this, it suffices to consider the case of a completely
degenerate HS

τ for which �S
τ ∝ 1S , so that condition (8) is

automatically satisfied because trace duals of CPTP maps
always preserve the identity operator.

III. THERMODYNAMIC LENGTH

One of the advantages of having a bound expressed in
terms of a relative entropy is that it is possible to provide such
a bound with a geometrical interpretation [7].

Following [15], let us consider a closed system, initially in
thermal equilibrium (ρS

0 = �S
0 ), driven by a thermodynamic

protocol that brings the system’s Hamiltonian from HS
0 to HS

τ

by changing the values of some controllable macroscopic vari-
ables. We follow here the common semiclassical assumption
of “ideal pistons,” according to which any back-reactions of
the driven system on the thermodynamic drive can be ne-
glected. Even in the presence of a time-varying Hamiltonian,
the evolution from t = 0 to t = τ of a closed system remains
unitary, so that both � and �† are unitary maps. This fact in
particular implies that the operator L in Eq. (4) is null. We thus
obtain the following:

β(�E − �F ) = D
(
�S

0

∥∥�†(�S
τ

))
(10)

= D
(
�

(
�S

0

)∥∥�S
τ

)
� 0, (11)

where the second line follows again from the unitarity of �.
[Alternatively, it can be derived from (6) using the fact that for
a unitary transformation �S = 0.]

Relation (11) has been first derived in [15], where it is
interpreted as an expression of Clausius inequality for the
irreversible entropy production in a nonequilibrium quantum
process. Then, one of the main results of [15] is to apply a
bound of [16] to show that

β(�E − �F ) � 8

π2
L2

(
�

(
�S

0

)
, �S

τ

)
, (12)

where L(ρ1, ρ2) := arccos F(ρ1, ρ2), in turn defined in terms
of the fidelity F(ρ1, ρ2) := ||√ρ1

√
ρ2||1, is a Riemannian

metric called the Bures angle or Bures length between the
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normalized density matrices ρ1 and ρ2 [17]. Relation (12) is
interpreted in [15] as a quantum generalization of the thermo-
dynamic length [18].

The thermodynamic reverse bound (5) allows us to obtain a
similar conclusion for open processes as well. We proceed as
follows. First of all, we introduce a normalized density matrix
γ S := 1

Tr[�†(�S
τ )]�

†(�S
τ ), in terms of which we can write

D
(
�S

0

∥∥�†
(
�S

τ

)) = D
(
�S

0

∥∥γ S
) − ln Tr

[
�†

(
�S

τ

)]
. (13)

Then, plugging the above relation into (5) and applying the
same bound as in [15], we obtain

β(�E − �F ) � 8

π2
L2(�S

0 , γ S
) − ln Tr

[
�†(�S

τ

)]
. (14)

The above relation is rigorously valid for any CPTP map �

and reduces to relation (12) for unitary processes. In general,
however, while the above bound always holds, relation (12)
only holds for closed processes.

In order to illustrate this point further, let us consider the
case in which the trace-dual map �† preserves the trace of the
final equilibrium state, that is, Tr[�†(�S

τ )] = 1. In this case,
the extra term in relation (14) disappears. Relation (14) then
assumes the same form of relation (12), which is, however, de-
rived under the assumption that the process is closed. Indeed,
in general, L2(�S

0 , γ S ) �= L2(�(�S
0 ), �S

τ ), and while Eq. (14)
always holds, Eq. (12) may be violated in open processes.
Hence, relation (14) should be preferred over (12). In other
words, the distance between the initial equilibrium state �S

0
and the “retrodicted” state γ S appears to be a better indicator
than the distance between the evolved initial equilibrium state
and the final one.

An important family of open processes for which
Tr[�†(�S

τ )] = 1 is the family of CPTP unital maps, namely,
CPTP maps such that also their trace-dual �† is TP. We thus
see that a direct connection between the energy cost and the
Bures length between �S

0 and γ S exists not only in closed
processes, but also in open unital processes. This fact can
be seen as yet another instance of the general intuition that
unital open processes, with respect to various thermodynamic
aspects, behave “almost as” closed ones [19,20]. Moreover,
for unital �, the trace-dual �† can be interpreted as the back-
ward process [20] and the state γ S := �†(�S

τ ) gains a direct
physical interpretation.

We conclude this section by noticing that an alternative
relation with the fidelity can be derived, which is tighter than
(14), even though it loses the character of being expressed in
terms of a metric. Such relation, which is a direct consequence
of a bound in [11] (see in particular Theorems 5 and 7 therein),
reads as follows:

β(�E − �F ) � −2 ln F
(
�S

0 , γ S
) − ln Tr

[
�†

(
�S

τ

)]
. (15)

IV. ERASURE PROCESSES

A paradigmatic example of open system evolution is pro-
vided by erasure processes. Following [21], we define an
erasure process as any process of the form,

E
(
�A

0

) = TrS
{
U

(
ρS

0 ⊗ �A
0

)
U †

}
, (16)

where U represents an arbitrary, though fixed, interac-
tion mechanism between the system (whose state is being
“erased”) and the ancilla, which plays here the role of the
environment. The resulting CPTP map E is a map that acts
on the ancilla only, its action depending on the system’s
initial state. For the sake of concreteness, in Eq. (16) the
ancilla is assumed to be initialized in the equilibrium state
�A

0 , and the ancilla’s Hamiltonian HA is assumed to remain
constant during the process, so that �A

0 = �A
τ =: �A. In this

situation, the change in the ancilla’s internal energy �E =
Tr[E (�A) HA] − Tr[�A HA] is interpreted as the average heat
〈Q〉 that flows from the system into the environment during
the erasure process.

In [21] the following bound on the average heat flow is
derived:

β〈Q〉 � − ln Tr[E†(�A)]. (17)

The quantity appearing in the right-hand side of the above
inequality coincides exactly with the extra term we obtained
by renormalizing the relative entropy in (13). Therefore, we
know that inequality (17) can be made tighter by adding
the term D(�A‖γ A), which measures the entropic divergence
between the equilibrium state �A and the renormalized retro-
dicted state γ A := 1

Tr[E†(�A )]E†(�A). We thus obtain

β〈Q〉 � D(�A‖γ A) − ln Tr[E†(�A)], (18)

which, in comparison with the analogous bound in [21], has
two advantages: It is stronger, because D(�A‖γ A) � 0, and it
possesses a geometric interpretation in terms of the thermody-
namic length, as discussed above.

Comparison

From the properties of the quantum relative entropy, rela-
tion (18) above becomes strictly stronger than (17), as long
as D(�A‖γ A) > 0, which is the case whenever γ A �= �A, that
is, E†(�A) /∝ �A. On the other hand, the extra term D(�A‖γ A)
cannot become infinite, since E†(�A) is invertible whenever
�A is. This is a consequence of the fact that, for any CPTP
map �, its trace-dual map �† is spectrum-width decreasing
(see, e.g., Lemma 3.1 in [22]).

The gap between (18) and (17), though not infinite, can,
however, be arbitrarily large, as the following example shows.
Let us consider the case in which the erasure map has the
form E (ρA) = σ A, independently of the initial state ρA of
the ancilla. This corresponds to the situation in which era-
sure of the system is achieved by simply “dumping” it into
the environment. In this case, the trace-dual map is easily
computed as

E†(·) = 1A Tr[· σ A].

Then, by direct inspection we find that, in this particular case,

D(�A‖γ A) = ln dA − S(�A),

dA being the dimension of the ancilla. Hence, by decreasing
the temperature of the ancilla, the term D(�A‖γ A) can go up to
ln dA (assuming nondegenerate HA). In Fig. 1 below we report
some plots in which we numerically compare Eqs. (17) and
(18) in the case of a spin-1/2 system coupled to an interacting
spin chain at finite temperature.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. The six plots above show the explicit values of the quantities appearing in Eq. (18), in the case of a spin-1/2 system interacting
with a spin-1/2 ancilla (a)–(c), and in the case of a spin-1/2 system interacting with a four spin-1/2-particle ancilla (d)–(f). In all panels the
continuous curve corresponds to β〈Q〉, the dashed curve corresponds to the right-hand side of (18), the dash-dotted curve corresponds to the
right-hand side of (17), and the dotted curve corresponds to �S (expressed in nats). Interaction model. In order to facilitate the comparison with
Ref. [21], we use exactly the same microscopic model: The Hamiltonian of the ancilla is assumed to be HA = J

∑N−1
j=1 (σ j

x σ j+1
x + σ j

y σ j+1
y ) +

B
∑N

j=1 σ j
z , where N is the number of spin-1/2 particles constituting the ancillary degrees of freedom, the σ ’s denote the Pauli matrices, J

is the interspin coupling strength, and B is the coupling of each ancillary spin with a homogeneous external magnetic field. The spin-1/2
system is coupled to the ancilla only through the first ancillary spin as follows: HSA = J0(σ S

x σ 1
x + σ S

y σ 1
y ). Finally, the system’s Hamiltonian is

HS = Bσ S
z . Following [21], for the numerics we put J0 = 0.1 in (a)–(c), J0 = 1 in (d)–(f), while B = J = β = 1 everywhere. Both axes report

adimensional quantities, and the scale on the x-axis measures Jt , where t is time. Initial conditions. The ancilla is assumed to always start
in its thermal equilibrium state. The system instead is assumed to begin in a pure state α|↑z〉 + √

1 − α2|↓z〉. In particular, in (a) and (d) we
set α = 1; in (b) and (e), α = 1/

√
2; in (c) and (f), α = 0. Hence, (a) and (d), respectively, reproduce (b) and Fig. 2 of [21], respectively.

Comparison. From the plots we notice that our bound (the dashed curve) is always the closest one to the curve corresponding to the actual heat
exchange (continuous curve), even when the other known bounds perform poorly as in (b)–(e).

V. MAXIMAL ENERGY OUTFLOW

Until now we have used relation (5) in order to bound from
below the net amount of energy that flowed into the system
during the process modeled by the CPTP map �. Of course
it can also be used to provide upper bounds on the maximum
amount �drop = E0 − Eτ by which the system’s internal en-
ergy can drop as a consequence of �. Again assuming for
simplicity that HS

0 = HS
τ =: HS and ρS

0 = �S
0 =: �S , the ther-

modynamic reverse bound (5) together with (13) immediately
provide an upper bound to �drop as

�drop � −β−1D(�S‖�†(�S ))

= β−1{ln Tr[�†(�S )] − D(�S‖γ S )}
� β−1 ln Tr[�†(�S )]. (19)

If the CPTP map � is obtained from an interaction model
as in Eq. (1), it is possible to show, as done in Appendix,
that, for any state σ , Tr[�†(σ )] � dA. In this way we recover
Theorem 1 of [8], that is,

�drop � β−1 ln dA. (20)

The above relation was interpreted in [8] as an extension
of Lenard’s result [9] to general CPTP processes. Notice,
however, that, while relation (20) depends on the particular
microscopic model chosen as the realization of the process �,
our bound, Eq. (19), only depends on the system’s reduced
dynamics �.

VI. CONCLUSIONS

In this paper we discussed what we named as thermo-
dynamic reverse bound, a bound for general open quantum
processes in terms of a trace-dual map and quantum rel-
ative entropy. We showed that this bound improves some
known thermodynamic inequalities. This bound invites fur-
ther research, not only because of its usability to improve
thermodynamic inequalities but also for its relevance to the
study of reverse processes.

We conclude this paper noticing that the thermodynamic
reverse bound (5) and its applications—that is, inequalities
(14), (15), (18), and (19)—also hold under the weaker as-
sumption that the map � is trace preserving and positive,
not necessarily completely positive [13]. In such a case, how-
ever, the map � does not admit in general a microscopic
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model such as in Eq. (1) and its interpretation remains unclear
[23–26].

ACKNOWLEDGMENTS

This work was supported by MEXT Quantum Leap
Flagship Program (MEXT Q-LEAP), Grant No. JP-
MXS0120319794, and by the Japan Society for the Promotion
of Science (JSPS) KAKENHI, Grants No. 19H04066 and No.
20K03746.

APPENDIX: DERIVATION OF BOUND (20)
IN THE MAIN TEXT

Lemma 1. Consider a CPTP map � defined by the
equation,

�(·S ) := TrA{U SA(·S ⊗ ρA)(U SA)†}, (A1)

and denote by �† the trace dual of E , that is, the map satisfy-
ing the relation Tr[�(X ) Y ] = Tr[X �†(Y )], for all operators
X,Y . Then, for any normalized density matrix σ ,

Tr[�†(σ )] � dA. (A2)

Proof. Let us fix an arbitrary orthonormal basis in the
apparatus’s Hilbert space, let us say, {|ϕi〉A}, and let us begin
by assuming that the apparatus’s initial state is pure, let us
say, ρA = |ψ〉〈ψ |A. In this case, the CPTP map � can be
written as

�(·) =
N∑

i=1

Ki · K†
i ,

where the N = dA Kraus operators Ki are defined by the
relation,

Ki := (1S ⊗ 〈ϕi|A) U SA (1S ⊗ |ψ〉A).

Then,

Tr[�†(σ )] = Tr

[
N∑

i=1

KiK
†
i σ

]
(A3)

�
∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

KiK
†
i

∣∣∣∣∣
∣∣∣∣∣
∞

(A4)

�
N∑

i=1

∣∣∣∣KiK
†
i

∣∣∣∣
∞ (A5)

�
N∑

i=1

1 (A6)

= N = dA, (A7)
where

(i) In (A4) we used the inequality Tr[Xσ ] � λmax(X ) =:
||X ||∞, valid for all self-adjoint operators X and all
normalized density matrices σ .

(ii) In (A5) we used the triangle inequality for the
Schatten infinity norm.

(iii) In (A6) we used the fact that, for all i, KiK
†
i and

K†
i Ki have the same eigenvalues (a consequence of

their being positive semidefinite and of the polar
decomposition), jointly with the fact that

∑
i K†

i Ki =
1, so that KiK

†
i � 1 for all i.

Let us now consider the general case of a mixed initial
apparatus’s state ρA. In this case, the density matrix can be
expanded on its pure components ρA = ∑

j p( j)|χ j〉〈χ j |A,
where p( j) is a probability distribution. By plugging this into
Eq. (A1) and using the linearity of the partial trace, we see that
�(·) = ∑

j p( j)� j (·), where the � j’s are all CPTP maps as
the original �, but realized by means of a pure apparatus state.
Therefore, by following the same lines of reasoning as before,
each � j can be written using only N = dA Kraus operators.
Thus,

Tr
[
�†(σ )

] = Tr

[(∑
j

p( j)�†
j

)
(σ )

]
(A8)

=
∑

j

p( j) Tr[�†
j (σ )] (A9)

�
∑

j

p( j)
N∑

i=1

1 (A10)

= N = dA. (A11)

�
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