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Edge state, bound state, and anomalous dynamics in the Aubry-André-Harper
system coupled to non-Markovian baths
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In this paper, we study bound states and their influence upon the dynamics of a one-dimensional tight-binding
system coupled to an environment. We identify three specific kinds of bound states; the first is a discrete bound
state (DBS), for which the energy level exhibits a gap from the continuum. The DBS exhibits similar localization
features to the edge states of the system and can therefore suppress its decay. The second is a bound state in the
continuum (BIC), which can also suppress system decay. The BIC states are found to be strongly connected to
the edge mode of the system, since they both show almost the same localization and energy features. The third
bound state displays a large gap from the continuum and exhibits extendible (i.e., not localized) behavior. The
population of the system in this state decays partially but not entirely, unlike the other bound states. The time
evolution of a single excitation in the system is studied to illustrate the influence of the bound states. We find that
both the DBS and the BIC play important roles in time evolution; for example, the excitation becomes localized
and does not decay depending on the overlap between the initial state and the DBS or the BIC. Furthermore,
we observe that the single excitation can show a long-range hopping in a system when the system falls into
the strong localizations regime. This feature can be understood by the interplay of system localizations and the
bath-induced long-range correlation.

DOI: 10.1103/PhysRevA.102.032209

I. INTRODUCTION

In experiments, a quantum system will inevitably interact
with its surrounding environment. One typical example is
that of solid-state quantum devices, which are frequently
disturbed by thermal as well as nonthermal environmental
effects. Thus open quantum systems are an important field
of study. In addition to exploring environmental effects in
quantum devices and shedding light on the boundary between
the quantum and classical worlds, the study of open quantum
systems may provide a paradigm to interpret how an open
system equilibrates with its surroundings. In particular, the
localization-delocalization phase transition has been studied
intensively in many-body systems with disorder [1,2], and
the quantum many-body scarred state has been found to be
responsible for the breakdown of thermalization [3,4] when
there is no disorder in systems.

Recently bound states with small rates of exponential
decay have been reported in open systems [5–7]. These
bound states stem from the shift of system-energy levels
induced by an emitted photon that pushes the level beyond
the cutoff frequency of the environment [6]. As a result of
the appearance of an energy gap, the bound states become
robust against environmentally induced decays, and prevent
quantum systems from thermalizing since the excitations in
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these states do not equilibrate. The appearance of bound states
is a general feature of open quantum systems, independent of
their detailed structure. Thus, this provides a general way for
systems to prevent decoherence.

Recent experimental explorations of the localization-
delocalization transition in cold atomic gases suffer from
atom-atom collisions and imperfect trapping [8,9]. The col-
lisions and imperfections can be modeled as environmental
factors and the localized phase becomes unstable [9] due to
their influence. On the theoretical side, it was shown that the
system exhibits a stretched exponential decay when coupled
to a Markovian bath [10]; then, the localization is destroyed,
and the system is equilibrated. However, the effect of bound
states upon the dynamics of open systems as well as on the
localization remains unexplored.

In this paper, we will examine the bound states and dy-
namics of an open system. For concreteness, let us consider
a one-dimensional tight-binding atomic chain with onsite
modulation, coupled to a bosonic bath. The Hamiltonian of
such a chain is

HS =
N∑

n=1

λ(c†
ncn+1 + c†

n+1cn) + � cos(2πβn + φ)c†
ncn,

(1)

where N is the length of the atomic chain, cn(c†
n ) is the

annihilation (creation) operator of excitation at the nth atomic
site, and β can be either rational or irrational, characterizing
two distinct cases. For brevity, the hopping strength λ is set
to be a unit in the following discussion. Thus the physical
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quantities are automatically scaled in units of λ. For β = p/q
with p and q being coprime (commensurate case), the edge
mode can occur because of the nontrivial topological phase in
HS [11], which leads to the localization of the excitation at the
boundary. When β is a Diophantine number [12] (the incom-
mensurate case), HS corresponds to the Aubry-André-Harper
(AAH) model [13], in which a delocalization-localization
phase transition occurs when � = 2. It has recently been
demonstrated that the AAH model is equivalent to a two-
dimensional quantum Hall system [14]. Thus a topological
edge mode, in which the excitation becomes localized at
the boundary, can also be found [14]. Moreover, the AAH
model can be realized in cold atomic gases, and experimental
exploration of the delocalization-localization phase transition
in the AAH model has been intensively pursued [8].

The bath and its coupling to the atomic chain are, respec-
tively, depicted by the following Hamiltonians:

HB =
∑

k

ωkb†
kbk, Hint =

∑
k,n

(gkbkc+
n + g∗

kb†
kcn),

where bk (b†
k ) is the bosonic annihilation (creation) operator

of the kth bath mode, and the frequency ωk � 0(∀k). gk

characterizes the coupling strength between the lattice site
and the kth bath mode; we assume that the coupling is so weak
that the rotating-wave approximation can be applied to Hint.
Then, the total Hamiltonian is

H = HS + HB + Hint. (2)

Since there is no particle interaction in HS , the following
discussion is restricted to the case of a single excitation, i.e.,∑

n c†
ncn + ∑

k b†
kbk = 1. In this case, the bound state can be

determined exactly, and the population dynamics can also
be precisely evaluated. Although the particle interaction is
important, we do not touch upon it in the current paper, since
doing so would make the discussion complicated.

The remainder of this paper is organized as follows. In
Sec. II, the definition of a bound state is presented; inter-
estingly a special discrete bound state (DBS) can be found
outside of the continuum ωk , which does not decay and
displays similar localization to the edge mode in HS . However,
there also exists a single bound state with very small energy,
which is extended and has a certain probability of spontaneous
emission. In Sec. III, the population-evolution dynamics are
calculated, focusing especially on the interplay between the
bound state and localization in the system. It is found that the
DBS is dominant in the population-evolution dynamics. De-
pending on the overlap of the initial state and the DBS, the ex-
citation may become localized against spontaneous emission.
Moreover, the bound state in the continuum (BIC) can also be
shown to have the same influence on the population-evolution
dynamics as did the DBS. The occurrence of a BIC can be
attributed to the nontrivial topology of HS [15,16]. In Sec. IV,
the interplay between disorder-induced localization and bath-
induced long-range hopping is studied. We note that excitation
hopping can occur between distant atomic sites, even if the
system is localized strongly; however, such hopping is greatly
suppressed when the DBS or the BIC appears. In Sec. V, the
long-term behavior of evolution is studied. We observe a very
slow decay of excitation in the incommensurate case, even if

the initial state overlaps with the DBS or the BIC. However,
this feature is not found in the commensurate case. Finally, the
conclusion is presented in Sec. VI.

II. BOUND STATE IN OPEN SYSTEMS

A bound state in open systems is defined as the discrete en-
ergy level of the total Hamiltonian [17]. As for ωk > 0, it cor-
responds to the negative-energy solutions to the Schrödinger
equation:

H |ψE 〉 = E |ψE 〉. (3)

When E > 0 the energy solutions can be obtained only for
specific ωk , which therefore constitute a continuum. It is the
conventional wisdom that the excitation in the system with
eigenvalues that fall within the continuum of the bath would
leak and radiate out to infinity. However, a BIC can be found
inside the continuum that coexists with extended states, but
remains perfectly confined without any radiation [7]. Phys-
ically, the occurrence of a BIC can be attributed to level
resonance [7]; however, it has recently been shown that the
BIC can also be related to the nontrivial topology of the
system [15]. To avoid confusion, we refer to the DBS as a
discrete energy solution to Eq. (3). With respect to the fact
that the BIC can be identified only by the population-evolution
dynamics, as shown in Appendix C, the following discussion
in this section is only suitable for the DBS.

For a single excitation, |ψE 〉 can be expressed generally as

|ψE 〉 =
(

N∑
n=1

αn|1〉n|0〉⊗(N−1)

)
⊗ |0〉⊗M

+ |0〉⊗N ⊗
(

M∑
k=1

βk|1〉k|0〉⊗(M−1)

)
, (4)

where |1〉n = c†
n|0〉n denotes the occupation of the nth lattice

site, |0〉k is the vacuum state of bk and |1〉k = b†
k|0〉k , and M

denotes the number of the bath mode. Substituting Eq. (4) into
Eq. (3), one obtains

(αn+1 + αn−1) + � cos(2πβn + φ)αn +
M∑

k=1

gkβk = Eαn,

(5a)

ωkβk + g∗
k

N∑
n=1

αn = Eβk . (5b)

According to Eq. (5b),

βk = g∗
k

E − ωk

N∑
n=1

αn. (6)

Substituting the expression for βk into Eq. (5a), we obtain

(αn+1 + αn−1) + � cos(2πβn + φ)αn

+
(

M∑
k=1

|gk|2
E − ωk

)
N∑

n=1

αn = Eαn.
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As for the continuous spectrum ωk ,

M∑
k=1

|gk|2
E − ωk

→
∫ ∞

0

J (ω)

E − ω
dω, (7)

where the spectral density is J (ω) = ∑M
k=1 |gk|2δ(ω − ωk ).

Then one has

(αn+1 + αn−1) + � cos(2πβn + φ)αn

+
∫ ∞

0
dω

J (ω)

E − ω

N∑
n=1

αn = Eαn. (8)

The integral Eq. (7) is divergent for E > 0; thus the energy so-
lutions to Eq. (8) can be acquired only for E < 0. Physically,
the last term on the left-hand side of Eq. (8) characterizes a
homogenous hopping of excitation in atomic sites. As will be
displayed in Sec. IV, the interplay of this effective long-range
correlation and the localization in the system will have a
significant effect upon the population-evolution dynamics.

For concreteness, the spectral function is chosen as

J (ω) = ηω

(
ω

ωc

)s−1

e−ω/ωc , (9)

where η characterizes the coupling strength between the sys-
tem and the bath. The bath can be classified as sub-Ohmic
(s < 1), Ohmic (s = 1) or super-Ohmic (s > 1) [18]. Equa-
tion (9) characterizes the damping movement of electrons in
a potential, thus providing a general picture of the dissipation
of excitation in the system. When disorder exists, competition
between localization and bath-induced dissipation is expected
to exert a major influence upon the excitation dynamics. Thus,
the choice for J (ω) is suitable in the current case. As for
s, it is shown in Appendix A that the discrete solutions to
Eq. (8) negligibly depend on the value of s, except in the
ground state. Thus, the following discussion is restricted to the
case of s = 1. ωc is the cutoff frequency of the bath spectrum,
beyond which the spectral density starts to fall off; hence, it
determines the regime of bath frequency, which is dominant
for dissipation. In general, the value of ωc depends on the
specific environment. However, as shown in Appendix A, ωc

shows a negligible effect upon the energy solutions to Eq. (8),
except in the ground state. Hence ωc = 10 is chosen to ensure
�/ωc < 1 [18]. In addition, an exceptional case can be found
for the minimal solution E0, which exhibits heavy dependence
upon the size of the system and the properties of the bath.

Equation (8) constitutes a linear system of equations for
variable αn. The values of E can be determined by identifying
the zero points of the determinant of the coefficient matrix.
However, noting that E is also involved in the integrals,
one must therefore appeal to numerical considerations. Our
evaluation shows that there are at most N negative solutions
to E . Consequently, for large N , these solutions constitute
a band. In fact we find that the band overlaps significantly
with that in HS for E � 0. This feature can be attributed to
weak system-bath couplings: The bath cannot provide suffi-
cient energy for the transition of excitations between different
bands. It is difficult to determine the continuous spectrum E
numerically. Instead, we try to find a discrete E in the band
gap, that is more tractable numerically and interesting in terms

FIG. 1. (a) The plots for the eigenenergy E (in units of λ) of HS

with β = 1/3 and � = 2 (blue point) and the discrete bound states
(red empty circle) when E < 0. The labels n = 1(99) denote the site
at which excitation is localized. (b) Plots of the inverse-participation
ratio (empty blue markers) and d (solid red markers) for the DBS
in panel (a). The labels E1, E2, and E3 denote the levels of the DBS
in increasing order. N = 99, s = 1, η = 0.1, and ωc = 10 are chosen
for all plots.

of physics. Moreover the discrete solution is expected to be
related strongly to the edge model in HS , and may be stable
against decoherence. Thus, the remaining discussion in this
section will focus upon discrete solutions occurring in the gap.
The DBS terminology is designated as a special solution here.
Two situations are considered separately, namely, the com-
mensurate (β = 1/3) and incommensurate (β = (1 + √

5)/2)
cases. As shown in the following discussion, the DBS can
behave very differently for these two cases.

A. Commensurate case: β = 1/3

When β = p/q (with p and q being coprime), the spectrum
of HS consists of q bands. As an example, the spectrum of HS

is presented for β = 1/3 � = 2 under the open boundary in
Fig. 1(a) (solid points). The edge mode, plotted by discrete
solid points in the gap, depicts the localization of the excita-
tion at the ends. By contrast, the state in the band is extended.
By solving Eq. (8), three discrete energy solutions at most
can be found in the gap for E < 0, which are highlighted by
red empty circles in Fig. 1(a). It is evident that two different
features can be observed for these solutions. One is the DBS
that has nearly the same energy as the edge mode in HS . We
find that it exhibits similar localization to the edge state, and
can thus be considered to be the renormalization of the edge
state. The other is the DBS that has a distinct energy from the
edge mode. We find that it is extended instead, as shown by the

032209-3



CUI, SHEN, QIN, AND YI PHYSICAL REVIEW A 102, 032209 (2020)

FIG. 2. Plots of the eigenenergy E (solid blue points and in units of λ) of HS with β = (1 + √
5)/2 for (a) � = 1, (b) � = 2, and (c) � = 4,

and the DBS for E < 0 (empty red circles). The other parameters are the same as those in Fig. 1. The label n = 1(99) denotes the site occupied
by the excitation in the edge mode and in the DBS.

inverse-participation ratio (IPR) IPR = ∑
n |αn|4 in Fig. 1(b),

and thus comes from the transition of the state in the band.
The un-normalized probability of spontaneous emission is

defined as

d =
∑

k

|βk|2 =
∣∣∣∣∣

N∑
n=1

αn

∣∣∣∣∣
2 ∫ ∞

0

J (ω)

(E − ω)2
dω (10)

and calculated for all the DBSs, as shown in Fig. 1(b), as
log10 d . Clearly the d has an amplitude not larger than ≈10−2.
This picture means that the DBS is robust against spontaneous
emission.

However, a single special solution E0 ∼ 23.13 can be
found for which the corresponding IPR is ≈1/99 ≈ 0.01
and the probability of spontaneous emission is ≈0.405. Fur-
thermore we also find that E0 is independent of φ and �.
For example, E0 ∼ −23.13 for � = 1 and −23.356 < E0 <

−23.31 for � = 4. Moreover the level E0 shows significant
dependence on the system size N and the bath properties,
as shown in Appendix A. Thus this special bound state is
extended, and characterizes strong entanglement between the
system and the bath.

B. Incommensurate case: β = (1 + √
5)/2

The localization-delocalization phase transition can occur
when β is a Diophantine number [12]. Given that the Dio-
phantine numbers can be approximated to infinitesimal pre-
cision by rational numbers, the system is actually quasiperi-
odic, which induces a fractal structure in the spectrum of
HS as shown in Fig. 2. Furthermore, there is a critical point
� = 2 in HS that separates the delocalized phase (� < 2)
from the localized phase (� > 2). In the delocalized phase
all eigenstates tend to be extended, whereas they show

strong localization in the localized phase. The in-gap edge
state can also be found under the open boundary condi-
tion, since HS is equivalent to a two-dimensional Hofstadter
model [14].

As for concreteness, β = (1 + √
5)/2 is chosen. By solv-

ing Eq. (8), the DBS can be determined exactly, and is
highlighted by red empty circles in Fig. 2 for � = 1, 2, and
4, respectively. The spectrum of HS shows two main gaps as
well as several miniature gaps. These fractal gaps stem from
the quasiperiodicity in the system, and thus their appearances
are sensitive to the size of the system. In this point, the energy
solutions in these regions are less meaningful in physics.
Consequently the following discussion will focus only upon
the solutions in the two main ones. It should be pointed out
that we do not try to discuss the variance of critical points
because of the coupling to the bath. Thus, the following
discussion for � = 2 is only to show the influence of the
different quasidisorder strengths.

An interesting feature in this case is that the discrete
solution in the main gap shows an apparent correspondence
to the edge mode. This phenomenon can be attributed to
the robustness of quasidisorder against dissipation. Thus no
transition occurs for the state in the band, and the edge
mode is renormalized as the DBS. Moreover, the local-
ization in the DBS is enhanced with the increment of �,
as shown by the IPR in Fig. 11 in Appendix B. Further-
more, the corresponding d also tends to disappear, imply-
ing that the spontaneous emission of excitation is greatly
suppressed.

As in the commensurate case, a single special energy
solution E0 can also be found. For instance, we find
that E0 ∼ −23.13,−23.17 for � = 1, 2 and ∼ − 23.351 <

E0 <∼ −25.32 for � = 4. The corresponding IPR ≈ 0.01
and d ≈ 0.4, independent of � and φ.
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C. Further discussion

In a word, the DBS can be found because of the existence
of the energy gap and the edge mode in the system. With
respect to the strong connection between the DBS and the
edge mode, we believe that the occurrence of DBS is a
general feature in the AAH model coupled to an environment.
A common property for the DBS is the disappearance of
spontaneous emission, allowing the excitation to be preserved
against decoherence. While the DBS shows one-to-one cor-
respondence to the edge mode in the incommensurate case,
an additional DBS can be found in the commensurate one,
having distinct energy from the edge mode and behaving in
an extended manner, as shown in Fig. 1(a). This phenomenon
can be attributed to the quasidisorder in HS , which makes the
system stable against the transition induced by the coupling
to a bath. In addition, we also find that the corresponding
IPR is smaller than 1, owing to the competition between
the disorder-induced localization and the coupling-induced
long-range correlation that makes the excitation hop between
different sites. A detailed discussion of the IPR can be found
in Appendix B.

Another interesting feature is the existence of a special
bound state E0, which is extended and shows a probability
of spontaneous emission ≈0.4. Moreover this special state
exhibits strong dependence on the bath properties and sys-
tem size N . Consequently E0 characterizes the equilibrium
between localization and dissipation, and is therefore useless
for the storage of quantum information.

III. TIME EVOLUTION

The population evolution under a single excitation in
the system is discussed in this section to demonstrate the
strong influence of the bound state. The evolution equation is
written as

i
∂

∂t
αn(t ) = [αn+1(t ) + αn−1(t )] + � cos(2πβn + φ)αn(t )

− i
N∑

n=1

∫ t

0
dταn(τ ) f (t − τ ), (11)

where i is the square root of −1, and the memory kernel f (t −
τ ) = η

ωs−1
c

�(s+1)
[i(t−τ )+1/ωc]s+1 characterizes the relevant correlation

function of the bath. Because of the integral, numerical eval-
uation must be implemented to determine αn(t ). We approach
this by rewriting the integrals as a summation with suitable
step length. Then, by solving Eq. (11) iteratively, αn(t ) can be
determined.

When the bound state occurs, |ψ (t )〉 can be decomposed
into two parts, i.e.,

|ψ (t )〉 =
∑

αb|ψb〉e−iEbt +
∫

dEcα(Ec)e−iEct |ψc〉. (12)

The summation runs over all bound states |ψb〉 with en-
ergy Eb, indicating unitary evolution. The integral over the
continuum Ec is responsible for the excitation decay, which
tends to vanish after a long time. Hence the bound states
will completely determine the final state of the system at
long times. To highlight the effect of the DBS or the BIC,
we choose the initial state |ψ (t = 0)〉 = ∑

n αn(0)|n〉 with

FIG. 3. The evolution of survival probability |αn|2(n = 1, 99)
(solid line) and the corresponding IPRn (dashed line) for a single
excitation initially at n0 = 1 (left column) or n0 = 99 (right column).
β = 1/3 and � = 2 are chosen, and the other parameters are the
same as those in Fig. 1. The evolution time t is scaled in units of
the hopping strength λ.

a single excitation located at atomic sites n0 = 1 and 99,
respectively. The corresponding survival probabilities of ex-
citation |α1(t )|2 and |α99(t )|2 are calculated, together with
the corresponding IPR1(99). Three distinct behaviors can be
found for the population evolution under a single excitation.
First, the excitation becomes localized at its initial site. Then,
the excitation can hop to a different site from the initial one.
Finally the evolution is dissipative and the excitation can be
absorbed by the bath.

A. Commensurate case: β = 1/3

Five different cases are plotted in Fig. 3. For φ = −π , two
DBSs can be found when E < 0, as shown in Fig. 1(a); one
overlaps with the edge state and shows the localization of the
excitation at site n = 99, whereas the other is extended. It
is clear that the survival probability |α99|2 of an excitation
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located initially at site n0 = 99 shows a stable oscillation
around 0.5, as shown in Fig. 3(b1). This oscillation stems
from the interference of two DBSs, and the frequency of
oscillation is decided by their energy difference. As shown
in Fig. 3(b1), the period of oscillation is T = 16.77. Then,
ω = 2π/T = 0.3747, which is close to the energy difference
δE = 0.3768 of the two DBSs. The slight difference comes
from computational error. However, |α1|2 for n0 = 1 exhibits
a rapid decay, as shown in Fig. 3(a1). The same features can
also be found for the IPR (dashed line in Fig. 3). This obser-
vation implies that the DBS would completely determine the
population evolution: When the initial state overlaps with the
DBS, the excitation can be preserved with a high probability.
If not, the information about the initial state would be erased
completely. It should be noted that the weak fluctuation of sur-
vival probability for t >∼ 180 comes from the accumulation
of computational error in solving Eq. (11) iteratively.

Similar phenomena can also be observed for φ = 0.5π , in
which there are three DBSs, as shown in Fig. 1(a). Two of
them show similar localization to the edge states; the third in-
stead exhibits extended behavior. Notably |α1|2 shows a stable
oscillation with period T = 32.11 because of the interference
of the two lowest DBSs, for which the energy difference is
0.1953. At the same time, |α99|2 also becomes stable because
of the DBS with localization at n = 99. Another interesting
situation is φ = 0.66π . There are two DBSs with localizations
at sites n = 1 and 99, respectively. These are close to each
other in energy, as shown in Fig. 1(a). Consequently, a stable
oscillation can be found for both |α1|2 and |α99|2 because
of the interference, as shown in Figs. 3(a5) and 3(b5). As
will be discussed in next section, this interference induces an
end-to-end hopping of excitation.

A special case occurs for φ = 0, in which there is no DBS
when E < 0. In contrast to the rapid decay of |α1|2, stable
evolution can be observed for the excitation initially located at
n0 = 99, as shown in Figs. 3(a3) and 3(b3). This phenomenon
can be attributed to the occurrence of the BIC [7], as shown
in Appendix C. Generally, the BIC is induced by the level
resonance [7]. However, in the present discussion, the BIC can
be attributed to the nontrivial topology in HS [15,16]. Clearly,
both the DBS and the BIC influence the population-evolution
dynamics in similar ways. Another example of the BIC can be
found when φ = −0.3π . Under this circumstance, there are
two edge states in HS when E > 0, with localization occurring
at atomic sites n = 1 and 99, respectively. Consequently, both
|α1|2 and |α99|2 show stable evolution, as shown in Figs. 3(a4)
and 3(b4).

The localization is enhanced with the increment of �, as
shown by |α99|2 in Fig. 4 for φ = −π . At the same time the
evolution of |α1|2 also becomes stretched slightly. This feature
can be attributed to the trapping effect of the onsite potential.

B. Incommensurate case: β = (1 + √
5)/2

Two distinct phases can be identified in this case: the
delocalized phase (� < 2), in which the system is extendible,
and the localized phase (� > 2), in which the system displays
strong localization. As examples, the cases of φ = −π and
0.4π are studied in detail, for which there is a DBS and a BIC
with localization at sites n = 99 and 1, respectively, as shown

FIG. 4. The plots for the evolution of the survival probability
|α1(99)|2 when � = 1, 2, 4. β = 1/3 and φ = −π are chosen. The
other parameters are the same as those in Fig. 3.

in Fig. 2. It is expected that a stable evolution can be observed
for excitations located initially at n0 = 99 or 1, as shown in
Figs. 5(a2) and 5(b1). Furthermore we also note that although
the survival probability is enhanced with an increment of �

a strange feature can be found in Fig. 5(b1), by which |α1|2
declines smoothly when � = 4. This abnormal feature is left
for study in Sec. V.

However, the situation becomes different when the initial
state does not overlap with any DBS or BIC. For example,
the survival probability |α1|2 for φ = −π exhibits a rapid
decay when � = 1. However, when � = 2, 4, a significant
recurrence can be found for |α1|2, as shown in Fig. 5(a1). This
feature can be attributed to the influence of bound states other
than the DBS and the BIC. As stated in Sec. II, the solutions
to Eq. (8) (other than the discrete ones in the gap) constitute
the band, which becomes more localized with increase of

FIG. 5. The plots for the evolution of the survival probability
|α1(99)|2 when β = (1 + √

5)/2, as well as when � = 1, 2, 4. The
evolution time t is scaled in units of λ. The other parameters are the
same as those in Fig. 3.
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�. Consequently, when the initial state overlaps substantially
with the states in the band, the interference of states would
thus induce a temporal revival of |α1|2. This explanation can
be further verified by noting that the recurrence is absent in the
commensurate case and when � = 1 in the incommensurate
case, in which the states in the band are extended or delo-
calized. A similar picture can also be found for |α99|2 when
φ = 0.4π , as shown in Fig. 5(b2).

C. Further discussion

It is evident that the occurrence of the DBS or the BIC
has a crucial influence on the population evolution of single
excitation in systems: Depending on the overlap of the initial
state and the DBS or the BIC, the survival probability of
the excitation can become stable against dissipation. For both
commensurate and incommensurate cases, the excitation can
be preserved in the system with a high probability if the initial
state overlaps with the DBS or the BIC. If it does not, two
different features can be obtained in our discussion. When
HS is commensurate or in the delocalized phase (� < 2), the
population evolution is dissipative. However, in the localized
phase of HS (� > 2), it can show a recurrence due to the
strong localization in HS .

An interesting question is the excitation dynamics when
there is no DBS or BIC. As shown by the integral in Eq. (8),
an effective long-range correlation in atomic sites is induced
by the coupling to the bath, which is responsible for the
dissipation of excitation. However, the quasidisorder in HS

tends to localize the excitation within the system. Hence, the
interplay of the long-range correlation and the localization
by quasidisorder is expected to lead to the exotic excitation
dynamics. In the next section, we shed light on the influence
of this interplay.

IV. LONG-RANGE HOPPING OF THE EXCITATION

To demonstrate the effects of effective long-range corre-
lation and quasidisorder, the cases φ = −0.3π and 0.7π are
considered for � = 4. There is no DBS or BIC under these
circumstances, as shown in Fig. 2. The survival probability
and corresponding distribution of excitation in the system
are plotted in Fig. 6. The excitation-occupation probabilities
at some sites other than the initial one become pronounced.
Meanwhile the evolution of the IPR also becomes complex.
This phenomenon results from the interplay of the quasidisor-
der and the effective long-range correlation: This correlation
is responsible for the hopping and dissipation of excitation.
On the other hand, the quasidisorder tends to trap and pre-
serve the excitation against dissipation. Consequently, at some
moment, the excitation can be maintained with a significant
probability at some site, at which the onsite potential is
stronger.

However, we find that the hopping can be reduced greatly
when a DBS or a BIC appears. For example, we examine the
case of φ = 0 when β = (1 + √

5)/2, in which there is a BIC
with localization at site n = 99: For n0 = 1, it is found that the
distribution |αn|2(n �= 1) becomes pronounced at some sites
with the increment of �, as shown in Fig. 7(b). However, for
n0 = 99, it is clear from Fig. 7(b) that |αn|2(n �= 99) tends

(a)

(b)

FIG. 6. The plots for the time evolution of survival probability
|α1(99)|2, as well as the corresponding IPR1(99), when (a) φ = −0.3π

and (b) φ = 0.7π . � = 4 is chosen, and the other settings are the
same as those in Fig. 5.

to disappear even for � = 4. This phenomenon originates
from the strong localization of the DBS or the BIC, which
is protected by the nontrivial topology in HS .

A similar picture can also be noted in the commensurate
case. As shown in Fig. 7(a) for φ = 0.66π when β = 1/3,
excitation hopping can be found only between sites n = 1 and
99. By contrast, it is absent when there is only one DBS, as
shown for φ = 0 in Fig. 7(a).

V. LONG-TERM BEHAVIOR

Although we claim that the DBS or the BIC may determine
the steady behavior of the system, it is possible to identify
an exception. For φ = 0.4π and −π with β = (1 + √

5)/2,
the survival probability of the excitation declines very slowly
when � = 4, even if the initial state overlaps with a DBS
or a BIC, as shown in Figs. 8(b) and 8(c). We find that this
declination cannot be attributed to computational error. By
contrast, it does not occur for β = 1/3, as shown in Fig. 8(a),
or for � = 1 when β = (1 + √

5)/2 shown in Figs. 8(b)
and 8(c). For these two cases, the system is extendible or in
a delocalized phase. For longer time evolutions, the numerical
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FIG. 7. The plots for the time evolution of |αn|2 when (a) β =
1/3 and (b) β = (1 + √

5)/2. The chosen values of φ and � are
presented in the plot labels. The other settings are the same as those
in Fig. 3 for all plots.

evaluation becomes exhaustive and thus unreliable, owing to
the accumulation of computational error.

Unfortunately, we cannot determine the exact reason for
this declination. Given that this phenomenon is absent when
the system is extendible or delocalized, one possible ex-
planation may be the influence of the bound states in the
band. These states also become much more localized with
increasing disorder in HS . Consequently, they would show a
non-negligible contribution to the evolution after a long time.

VI. CONCLUSION

In conclusion, the bound states and their influence upon
the population evolution are investigated in a one-dimensional
tight-binding atomic chain. Each site of the chain is coupled

FIG. 8. The plots for the long-term behavior of the survival
probability |α1(99)|2 with (a) β = 1/3 and (b, c) β = (1 + √

5)/2.
The chosen initial states, as well as φ and �, are presented by the
plot labels. The other parameters are the same as those in Fig. 3.

to the same environment. By solving the Schrödinger equation
in the limit of a single excitation, three special kinds of bound
states are identified. The first is the DBS, which corresponds
to a single negative eigenenergy with a finite gap from the
continuum. From the calculations, we conclude that the sys-
tem with the DBS does not decay, but has similar localization
features to the edge mode of the system. An additional DBS
is found in the gap when the system is commensurate, which
is extendible and can be understood as the bath-induced
transition of the state in the band. The situation changes when
the system is incommensurate due to the intrinsic localization
in the system, preventing it from being excited due to its
coupling to the environment.

The second is a bound state in the continuum, which is
connected strongly to the edge mode with positive energy and
also exhibits a decay rate of zero. The robustness of the BIC
could be attributed to the nontrivial topology of the system.
The third is a single special bound state of lowest energy.
Unlike the first two bound states, it is extendible and displays
a certain probability to decay. Moreover it depends sharply
upon the size of the system and the properties of the bath.

The time evolution of a single excitation is simulated to
explore the influence of the bound states. We conclude that
the bound states are dominant for the population evolution.
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When the system is extendible or delocalized, the excitation
becomes stable against dissipation provided that the initial
state overlaps with the DBS or the BIC. However, if the
overlapping is zero, the evolution is dissipative, and the in-
formation about the initial states will be finally erased. The
situation changes for incommensurate systems with strong
quasidisorders (for example, � = 4), where the occupation
probabilities of the excitation decrease slowly, even if the
initial state overlaps with the DBS or the BIC. Furthermore, a
significant recurrence of survival probabilities for the excita-
tion can be found when the initial state overlaps with neither
the DBS nor the BIC. These two features may be understood
as arising from the interplay between localizations in the
system and the effective long-range correlation induced by
the bath. Another important consequence of this interplay is
the long-range hopping of the single excitation in the system,
which causes the excitation hop to a different site from the
initial one. We note that the hopping can also happen between
two localized DBSs in commensurate cases, as shown for
φ = 0.66π in Fig. 7(a).

An open question is the effect of interactions between
atoms upon the prediction. Competition between interac-
tions and disorder is known to be responsible for the many-
body-localization transition in the AAH model [19]. Recall
that the interatomic interaction may destroy the localization,

and the edge mode of the system can be changed. Moreover,
the bound states in the open systems amount to an effective
trap potential [20,21], which prevents the excitation from
decaying. Hence, when interatomic interactions are involved,
the competition between the effective trapping and the inter-
atomic interactions is an interesting feature. When trapping
is dominant, the excitation can be preserved in the system.
Otherwise, the excitation dissipates. Due to the complicated
and involved calculation for multiexcitation bound states [20],
we leave the related discussion for future work.
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APPENDIX A

In this Appendix, the exact energy solutions to Eq. (3) are
presented for β = p/q under the periodic boundary condition.
Assume N = Lq, and then HS can be written as

HS =
L∑

x=1

(c†
1, c†

2, · · · , c†
q )x

⎛
⎜⎜⎜⎝

� cos
( 2π p

q + φ
)

J 0 · · ·
J � cos

( 4π p
q + φ

)
J 0

...
...

. . .
...

0 · · · J � cos (φ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

c1

c2
...

cq

⎞
⎟⎟⎠

x

+
L∑

x=1

(c†
1, c†

2, · · · , c†
q )x

⎛
⎜⎝

0 0 · · · 0
...

. . .
...

...
1 0 · · · 0

⎞
⎟⎠

⎛
⎜⎜⎝

c1

c2
...

cq

⎞
⎟⎟⎠

x+1

+ H.c. (A1)

By Fourier transformation cx = 1√
L

∑L
λ=1 aλei2πλx/L, we obtain

HS =
L∑

λ=1

(a†
1, a†

2, · · · , a†
q )λ

⎛
⎜⎜⎜⎝

� cos
( 2π p

q + φ
)

J 0 · · · ei2πqλ/L

J � cos
( 4π p

q + φ
)

J 0 · · ·
...

...
. . .

...
...

e−i2πqλ/L 0 · · · J � cos (φ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

a1

a2
...

aq

⎞
⎟⎟⎠

λ

.

As for Hint,

Hint =
∑
k,x

gkbk (c†
1, c†

2, · · · , c†
q )x + g∗

kb†
k

⎛
⎜⎜⎝

c1

c2
...

cq

⎞
⎟⎟⎠

x

⇒ 1√
L

∑
k

gkbk (a†
1, a†

2, · · · , a†
q )λ=0 + g∗

kb†
k

⎛
⎜⎜⎝

a1

a2
...

aq

⎞
⎟⎟⎠

λ=0

.(A2)

For a single excitation, the eigenfunction |ψ〉E can be
written for λ = 0 as

|ψ〉E =
(

q∑
n=1

αna†
n|0〉n

)
⊗ |0〉⊗M

+ |0〉⊗q

(
M∑

k=1

βkbk|0〉k|0〉⊗(M−1)

)
. (A3)

When p = 1 and q = 3, we substitute Eq. (4) into Eq. (3), and
eliminate the degree of freedom of the bath. One can obtain
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L/300

FIG. 9. The plots for Eqs. (A4) when β = p/q. The parameters are shown in the plot labels. η = 0.1 is chosen for all the plots.
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FIG. 10. The plots of survival probability |α1(99)|2 vs s when � = 1/3 and (1 + √
5)/2. The chosen parameters are shown in the plot label.

N = 99, η = 0.1, ωc = 10 for all plots.

the equation

E3 − 3d (E )E2 −
(

3 + 6d (E ) + 3

4
�2

)
E

−
(

2 + 3d (E ) − 3a

4
�2 + �3

4
cos 3φ

)
= 0,

where d (E ) = 1
L

∫ ∞
0

J (ω)
E−ω

dω. By solving the above equation,
three relations can be found:

E0 =
√

4[1 + d (E0)]2 + �2 cos

(
θφ + 2π

3

)
+ d (E0),

E1 =
√

4[1 + d (E1)]2 + �2 cos

(
θφ + 4π

3

)
+ d (E1),

E2 =
√

4[1 + d (E2)]2 + �2 cos θφ + d (E2), (A4)

where

θφ = 1

3
arccos

{
[1 + d (E )]3 + 1

8�3 cos 3φ

3
√

[1 + d (E )]2 + �2/4

}
. (A5)

E0, E1, and E2 are three real solutions, which are plotted
for different parameters by dashed blue lines in Fig. 9. We

note that E0 shows the significant dependence on the bath
properties and the system size L, and thus is extensive. By
contrast, both E1 and E2 are entirely determined by the system
properties, and thus are intensive.

These solutions correspond to the three kinds of bound
state in the main text: E0 corresponds to the minimal solution
to Eq. (8), which is extended and has a finite probability
of spontaneous emission. By contrast, E1 and E2 correspond
to the DBS. In Fig. 10, the excitation evolution for initial
excitation at n0 = 1 and 99 is plotted for different s. It is
apparent that the survival probability is insensitive to the value
of s.

APPENDIX B

The IPR is a measure for the localization of the state. Given
|ψ〉 = ∑N

n=1 αn|n〉, in which |n〉 denotes the occupation of the
nth site, and N is the number of the site, the IPR is defined as

IPRψ =
N∑

n=1

|αn|4. (B1)

FIG. 11. Plots of the IPR (blue empty symbols) and d (red solid symbols) for the DBS when β = (1 + √
5)/2 and � = 1, 2, 4, respectively.

The parameters are the same as those in Fig. 2. The labels of E1, E2, and E3 denote the levels of the DBS, plotted in Fig. 2, in increasing order.
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FIG. 12. The plots for the distribution |αn|2 of the DBS when φ = −π . Except for the values of β and �, the other parameters are the same
as those in Fig. 3.

The IPR has the minimum 1/N only if |αn|2 = 1/N for
arbitrary n, which means that the distribution of excitation is
uniform, and thus the state is extended. However, the IPR has
the maximum 1 only if |αn|2 = 1 for a special n, which means
that excitation can appear only at site n, and thus the state
behaves localized strongly.

In Fig. 11, the IPR and corresponding d are plotted for
different �s when β = (1 + √

5)/2. Apparently the DBS is
localized, and the corresponding IPR is enhanced with the
increment of �.

We note that the IPR for the DBS is smaller than 1. The
reason is the interplay between the localization, which tends
to localize the excitation in the system, and the bath-induced

long-range correlation in atomic sites, which tends to delocal-
ize the excitation instead. In Fig. 12, the excitation distribution
|αn|2 for the DBS is shown for different � when φ = −π .
When β = 1/3, there are two DBSs: One corresponds to the
renormalized edge state, and thus show strong localization.
The other comes from the transition of the state in the band,
and thus is extended. As for the first DBS, |αn|2 becomes
much pronounced at end site n = 99 with the increment of
�, as shown in the upper row in Fig. 12. However, for the
second one, |αn|2 tends to be multipeaked with the increment
of �, as shown in the middle row in Fig. 12. As a result, the
localization of the DBS becomes enhanced with the increasing
of �, as shown by the bottom row in Fig. 12.

FIG. 13. The plots of Det(A) for β = (1 + √
5)/2, φ = 0.4π when � = 1, 2, 4, respectively. N = 99, s = 1, η = 0.1, ωc = 10 are chosen

for all plots. The region highlighted by dark-pink color denotes the main energy gap in Fig. 2.
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FIG. 14. The fidelity plotting for the time evolution of a special
edge mode in HS , which occurs at φ = 0 and β = 1/3, � = 2. The
other parameters are the same as those in Fig. 3.

APPENDIX C

In this Appendix, we demonstrate the existence of the BIC
in an analytical way. For this purpose, we first rewrite the sys-
tem Hamiltonian as the diagonal form, HS = ∑N

i=1 εiη
†
i ηi, in

which ηi = ∑
n γ ∗

incn. The array (γi1, γi2, · · · , γiN )T denotes
the ith eigenstate of Eq. (1). Then the total Hamiltonian can
be rewritten as

H =
N∑

i=1

εiη
†
i ηi +

∑
k

ωkb†
kbk +

∑
i,k

g∗
ikηib

†
k + gikη

†
i bk,

(C1)

where gik = gk
∑

n γin. For |ψ (t )〉 = [
∑

i αi(t )η†
i |0〉i]|0〉⊗M +

|0〉⊗N [
∑

k βk (t )b†
k|0〉k], the evolution equation can be

written as

i
∂αi(t )

∂t
= αi(t )εi − i

(∑
n

γ ∗
in

)∑
j

(∑
n

γ jn

)

×
∫ τ

0
dτα j (t )

∑
k

|gk|2e−iωkt

= αi(t )εi − i

(∑
n

γ ∗
in

)∑
j

(∑
n

γ jn

)

×
∫ τ

0
dτα j (t )

∫ ∞

0
J (ω)e−iωt ,

where we have assumed that the excitation is located initially
in the system, and thus βk (0) = 0. By Laplace transformation

Gi(z) = ∫ ∞
0 dtαi(t )e−zt , the equation above is transformed

into

(iz − εi )Gi(z)

− �(z)

(∑
n

γ ∗
in

)∑
j

(∑
n

γ jn

)
Gj (z) = iαi(0), (C2)

where �(z) = ∫ ∞
0

J (ω)
iz−ω

is the self-energy. Then we obtain the
linear system of equations for Gi(z), for which the solution
can be expressed as

Gi(z) = Det(Bi )

Det(A)
. (C3)

The element of coefficients matrix A is Ai j = (iz − ε)δi j −
�(z)(

∑
n γ ∗

in)(
∑

n γ jn), and Bi denotes the modified A with the
ith column replaced by (α1(0), α2(0), · · · , αN (0))T .

Then the BIC corresponds to the pole of Gi(z) with
iz > 0, which can be determined by finding the solutions to
Det(A) = 0. However, because of the appearance of the term
(
∑

n γ ∗
in)(

∑
n γ jn), the determined real solution iz would be

different from εi, as shown in Fig. 13. This picture is different
from the single qubit case [7,22], in which the occurrence
of the BIC is due to the level resonance. As an example,
Det(A) is plotted for positive iz with different � in Fig. 13,
for which the integral �(z) is decided by its principle value.
It is clear that a single zero point can be found in the gap, as
shown in Fig. 13. Furthermore, the corresponding values of
iz are slightly different from the energies of the edge mode,
which are 0.804 62, 1.101 76, and 1.826 22 for � = 1, 2, 4,
respectively. In addition, there are many continuous zero
points, which construct a band.

Now we will show the correspondence between the BIC
and the discrete zero point. By inverse Laplace transforma-
tion, αi(t ) can be determined. We choose the initial state as
the edge state at φ = 0 when β = 1/3,� = 2 as an example,
which corresponds to the 47th eigenstate of HS . Then, by
inverse Laplace transformation of G47(z), the contribution of
the zero point at iz = 2.307 52 to the excitation evolution
can be expressed as ≈0.9876e−i2.307 52tη

†
47|0〉. By comparison,

the evolution for the edge mode as the initial state is shown
in Fig. 14. Apparently the fidelity |〈ψedge|ψ (t )〉|2 shows a
stable oscillation around 0.98762 ∼ 0.975. Thus, we have
demonstrated the correspondence of the discrete pole of Gi(z)
and the BIC.
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