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Two-photon atomic level widths at finite temperatures
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The thermal two-photon level broadening of the excited energy levels in the hydrogen and H-like helium
is evaluated via the imaginary part of thermal two-loop self-energy correction for bound electrons. All the
derivations are presented in the framework of rigorous quantum electrodynamic theory at finite temperatures
and are applicable for the H-like ions. On this basis, we found a contribution to the level broadening induced by
the blackbody radiation which is fundamentally different from the usual line broadening caused by the stimulated
two-photon decay and the Raman scattering of thermal photons. Numerical calculations of the two-loop thermal
correction to the two-photon width for the 2s state in hydrogen and singly ionized helium atoms show that the
effect could significantly exceed the higher-order relativistic and radiative QED corrections commonly included
in the calculations. In addition, the thermal two-loop self-energy correction significantly exceeds the “ordinary”
stimulated one-photon depopulation rate at the relevant laboratory temperatures. In this work, detailed analysis
and the corresponding comparison of the effect with the existing laboratory measurements in H-like ions are
carried out.
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I. INTRODUCTION

During the last decades two-photon processes became of
high interest in fundamental investigations of field theories,
astrophysics, laboratory experiments, constructing of atomic
clocks, chemistry, and biology [1–8]. Since the early days
of quantum mechanics, a special role was assigned to the
two-photon decay of the 2s state in the hydrogen atom [9].
Recent accurate measurements of the temperature and the
polarization distribution of the cosmic microwave background
(CMB) renewed interest in this process [8,10]. The modern
theory of the cosmological recombination starts from works
by Zel’dovich, Kurt, and Sunyaev [11] and Peebles [12].
In particular, the 2s → 1s + 2γ (E1) decay rate in hydro-
gen was found to be the main channel within the bound-
bound transitions for the radiation escape from the matter
and formation of CMB. Hence the present properties of the
CMB are strongly dependent on the particular qualities of the
two-photon processes during the cosmological recombination
epoch. In addition to the transition 2s → 1s + 2γ (E1), no
less attention is paid to the two-photon decays of excited
states with principal quantum number n > 2, whose total
contribution to the ionization fraction of primordial plasma
reaches the percent level and exceeds the accuracy of CMB
measurements [8,13,14].

However, the study of two-photon transitions for excited
states is complicated by the crucial difference between the
decays of nl (n > 2) and 2s atomic levels. This difference
is determined by the presence of cascade transitions as
the dominant decay channels of the excited levels which
are absent in the case of 2s level. In connection with the
presence of a cascade channel (resonant transitions), the prob-
lem of the separating of nonresonant two-photon emission

(resulting in the immediate radiation escape from the matter)
arose in astrophysical studies. This question was studied
within the quantum mechanical approach in a number of
works (see, for example, Refs. [8,13]). Within the frame-
work of QED theory the ambiguity of such separation was
demonstrated in Refs. [15–17], while an alternative approach
to obtaining a “pure” two-photon contribution based on an
evaluation of the imaginary part of the two-loop self-energy
of bound electrons was proposed in Refs. [18–21]. According
to this “alternative” approach the found contributions were
called “two-photon widths” since in the absence of cascade
emission (the case of the 2s state in a hydrogen atom) it co-
incides with the two-photon transition rate [18–21]. However,
within the framework of the line profile approach [22] it was
shown that the imaginary part of the two-loop radiative level
shift does not coincide with the two-photon decay rate for
higher states and should be considered only as a radiative
correction to the level widths [23] (see also Ref. [24]). The
study of radiative correction of this type (but in the thermal
case) according to the “alternative” method suggested in
Refs. [18–21] is the main purpose of present work and we
use the designation “two-loop width” assuming the imaginary
part of a two-loop self-energy radiative correction to the
energy level.

Besides the spontaneous decays, the corresponding transi-
tions induced by the blackbody radiation (BBR) are also of
particular interest. Accounting for the induced level broad-
ening leads to an additional correction to CMB properties.
A comprehensive analysis of the induced two-photon tran-
sitions in recombination processes based on the quantum
mechanical approach has been the subject of discussion in
Refs. [25–27]. However, the necessity to use the quantum
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electrodynamics (QED) theory was recently demonstrated in
Refs. [28–31] (see also Refs. [32,33]). Since the CMB has an
almost Planck spectrum, the atomic line broadening can be de-
scribed within the framework of QED for bound states at finite
temperatures [34].

Particular attention can be paid to the analysis of CMB
properties and the corresponding determination of the 2s state
lifetime in a hydrogen atom with an 8% error, which is
much better than in any existing laboratory experiments [35].
Nonetheless, despite a special astrophysical role of the 2s state
in the hydrogen atom, its importance is even more significant
for the laboratory spectroscopic experiments. Being especially
metastable, this state allows precision measurements of var-
ious transition frequencies with an accuracy reaching 10−13

of relative magnitude in hydrogen, which are pursued to im-
prove optical standards of frequency, accurate determination
of physical constants, and testing of fundamental interactions
in hydrogen and H-like atomic systems. To accomplish this in-
tention, an accurate theoretical calculation of the two-photon
widths of metastable states is also of experimental importance.
The results of laboratory measurements of the 2s state lifetime
in a hydrogen atom can be found in Refs. [36–38], and the
results for the singly ionized helium can be found in Ref. [39].
The experimental data for the H-like highly charged ions
(HCI) can be found, for example, in Refs. [40–46]. Gener-
ally speaking, experiments on measuring the natural widths
of energy levels are incredibly complicated. Improving the
accuracy of an experiment requires controlling the impact of
physical conditions, such as the influence of external fields,
Doppler broadening, evaluation of QED corrections, and such
tiny effects as the Stark shifts and level broadening induced
by BBR [47,48].

The formalism of thermal QED theory for bound states
developed in Refs. [34] allows one to take into account more
complex effects revealing the impact of thermal environment
on atomic systems [32,33]. Following this theory, we inves-
tigate the two-photon level broadening caused by the “heat
bath” employing the “alternative approach” [18–21] to evalu-
ate the imaginary part of the two-loop self-energy corrections
for a bound electron. The “heat bath” acting on the atomic
system implies an environment described by blackbody radi-
ation, i.e., the photon field distributed according to Planck’s
law.

The paper is organized as follows. In Sec. II the general
equations for the induced two-photon transitions and Raman
scattering of thermal photons are given. The derivation of
two-photon decay widths at finite temperatures within the
two-loop approach is given in Sec. III and the correspond-
ing expressions are presented in Sec. IV within the non-
relativistic limit. All the derivations are presented in the
framework of rigorous quantum electrodynamics theory at
finite temperatures and are applicable for the H-like ions. The
results of numerical calculations of the thermal two-photon
decay widths for hydrogen and singly ionized helium atoms
and their comparison with the existing laboratory measure-
ments are discussed in Sec. V. Throughout the paper we
use the relativistic units h̄ = me = c = 1 (me is the electron
rest mass, c is the speed of light, and h̄ is the reduced
Planck constant).

II. INDUCED TWO-PHOTON TRANSITIONS AND RAMAN
SCATTERING IN HYDROGEN

In this section, a description of the two-photon transition
rates in hydrogen in the presence of blackbody radiation
(BBR) is given briefly. In the absence of external fields, only
spontaneous decays of atomic states are possible. Isotropic
external radiation, such as BBR, leads to additional level
broadening due to the processes of thermal radiation, absorp-
tion, and Raman scattering. In the nonrelativistic limit and
the electric dipole approximation, the total rate of the two-
photon decay a → b + 2γ (E1) [a(b) denotes the standard set
of quantum numbers na(b)la(b), where na(b) is the principal
quantum number of the state a(b) and la(b) is the correspond-
ing orbital angular momentum] in hydrogenlike atoms after
the integration over photon directions, summation over photon
polarizations, averaging over the projections ma of the initial
state, and summation over projection of the final state mb (see
Ref. [24]) transforms to

W 2γ ,tot
ab = 1

2

∫ ω0

0
dW 2γ ,tot

ab . (1)

Here dW 2γ ,tot
ab = dW 2γ ,spon

ab + dW 2γ ,ind
ab , ω0 = |Ea − Eb| is the

transition energy, and the differential spontaneous decay rate
is expressed by

dW 2γ ,spon
ab = 8e4

9π

ω3(ω0 − ω)3

2la + 1

∑
mamb

∣∣∣∣ ∑
n

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω

)∣∣∣∣2

dω. (2)

The differential induced decay rate corresponding to the
emission process can be obtained in the following form:

dW 2γ ,ind
ab = 8e4

9π

ω3(ω0 − ω)3

2la + 1

∑
mamb

∣∣∣∣∑
n

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω

)∣∣∣∣2

× [nβ (ω) + nβ (ω0 − ω) + nβ (ω)nβ (ω0 − ω)]dω.

(3)

In Eq. (3), nβ (ω) = (eβω − 1)−1 represents the Planck distri-
bution function giving the mean occupation number of pho-
tons in the BBR field, β = (kBT )−1, where T is the radiation
temperature and kB is the Boltzmann constant. In the BBR
field, the two-photon absorption process a + 2γ (E1) → b
should also be taken into account. The corresponding differ-
ential rate reduces to the following expression:

dW 2γ ,abs
ab = 8e4

9π

ω3(ω0 − ω)3

2la + 1

∑
mamb

∣∣∣∣∑
n

( 〈b|r|n〉〈n|r|a〉
En − Ea − ω

+ 〈b|r|n〉〈n|r|a〉
En − Eb + ω

)∣∣∣∣2

nβ (ω)nβ (ω0 − ω)dω. (4)

In the case when na = nb ± 1, there are no cascade tran-
sitions (the energy denominators in these expressions are not
equal to zero), the frequency distributions given by Eqs. (2)–
(4) are regular, and the integral Eq. (1) is convergent. The
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TABLE I. The BBR-induced W 2γ ,ind
2s1s and total two-photon transition rates W 2γ ,tot

2s1s (in s−1) at different temperatures T (in Kelvin) in H
and He+ atoms. The nonrelativistic values of the spontaneous 2s → 1s + 2γ (E1) transition rate in vacuum are W 2γ ,spon

2s1s = 8.229 352 s−1 and
5.266 785 × 102 s−1 [49] for H and He+, respectively.

Atom T 77 300 1000 3000 5000 104

H W 2γ ,ind
2s1s 1.358 × 10−4 2.028 × 10−3 2.151 × 10−2 1.731 × 10−1 4.389 × 10−1 1.467

W 2γ ,tot
2s1s 8.229 8.231 8.251 8.402 8.668 9.697

He+ W 2γ ,ind
2s1s 5.438 × 10−4 8.243 × 10−3 9.044 × 10−2 7.868 × 10−1 2.118 × 10−1 7.893

W 2γ ,tot
2s1s 5.267 × 102 5.267 × 102 5.268 × 102 5.275 × 102 5.288 × 102 5.346 × 102

results of the dW 2γ ,ind
ab evaluation, Eq. (3), for the 2s → 1s +

2γ (E1) transition at different temperatures in a hydrogen
atom (H) and singly ionized helium (He+) are given in Table I,
where the total contribution (spontaneous plus induced) is
given also.

The frequency distributions for this transition in H are
shown in Fig. 1, where the contribution of the induced transi-
tion depending on temperature is observed visually. Calcula-
tions show that the contribution, arising from the cross product
nβ (ω)nβ (ω0 − ω) in Eq. (3) and interpreted as interference of
two thermal photons, is negligible up to the temperatures of
the order of T = 104 K.

In addition to the usual induced emission and absorption
transitions, the BBR-stimulated Stokes and anti-Stokes Ra-
man scattering process a + γ (E1) → b + γ ′(E1) should be
also considered. Its differential rate can be obtained within
the same methodology [50]. The result is

dW 2γ ,ram
ab = 8e4

9π

ω3(ω0 + ω)3

2la + 1

∑
mamb

∣∣∣∣∑
n

( 〈b|r|n〉〈n|r|a〉
En − Ea − ω

+ 〈b|r|n〉〈n|r|a〉
En − Eb + ω

)∣∣∣∣2

×[nβ (ω) + nβ (ω)nβ (ω0 + ω)]dω, (5)

where for the Stokes process ω0 = Ea − Eb < 0 and for
the anti-Stokes process ω0 = Ea − Eb > 0. The correspond-
ing total rate is defined by W 2γ ,AS−ram

ab = ∫ ∞
0 dW 2γ ,ram

ab and

FIG. 1. Differential transition rate dW tot
2s1s(ω) in s−1 for the 2s →

1s + 2γ (E1) transition in H atoms in the presence of the BBR field
with temperature T (in Kelvin). The bold line corresponds to the
transition rate in the absence of the BBR field (vacuum).

W 2γ ,S−ram
ab = ∫ ∞

|ω0| dW 2γ ,ram
ab for anti-Stokes and Stokes pro-

cesses, respectively.
For the hydrogen atom with the fixed a = 2s and b = 1s

states the corresponding distribution of the anti-Stokes scatter-
ing rate is shown in Fig. 2. In particular, from Fig. 2 it follows
that the induced cascade contributions in the Raman scattering
become significant with the increasing of temperature.

III. TWO-LOOP ELECTRON SELF-ENERGY WITH ONE
AND TWO THERMAL LOOPS

Until now, the well-known effects arising in the BBR
field were considered. The results expressed by Eqs. (2)–(5)
can be easily obtained within the framework of the quantum
mechanical approach. The same can be found within the
rigorous QED theory in approximation of zero level widths of
bound states. Nevertheless, the application of QED theory can
be used to identify new effects (see, for example, Ref. [28]).
In particular, within the framework of the QED perturbation
theory for a bound electron, such self-energy radiative correc-
tions as the one-loop (second-order in the coupling constant),
two-loop (fourth-order in the coupling constant), etc., can be
treated as sequential contributions. In the absence of external
fields and cascades, the imaginary parts of these corrections
give the one-photon width �

1γ
a , the two-photon width �

2γ
a ,

etc.. Then the total level width �a of the atomic state a can be

FIG. 2. Differential transition rate dW ram
2s1s (ω) in s−1 for the Ra-

man scattering of BBR photons on H atoms in the process 2s +
γ (E1) → 1s + γ (E1). The BBR field temperature is denoted as T
(in Kelvin). Sharp peaks correspond to resonances in Eq. (5).
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TABLE II. BBR-induced level widths �
1γ ,BBR
2s [see Eq. (11)] and �

1γ ,BBR−QED
2s [see Eq. (12)] in s−1 at different temperatures T (in Kelvin)

for H and He+ atoms. The Lamb shift 2p-2s is taken into account [52]. The values marked with ∗ and ∗∗ are taken from Refs. [28,47] and [53],
respectively.

Atom T 77 300 1000 3000 5000 104

H �
1γ ,BBR
2s 3.653 × 10−6 1.423 × 10−5 2.023 × 10−2 4.701 × 104 9.671 × 105 1.248 × 107

1.42 × 10−5 ∗ 4.706 × 104 ∗∗

�
1γ ,BBR−QED
2s 2.766 × 10−4 4.159 × 10−3 6.633 × 10−2 4.701 × 104 9.671 × 105 1.248 × 107

�
1γ ,BBR
3s 2.328 × 10−6 8.035 × 10−5 4.346 × 103 9.903 × 105 4.042 × 106 1.772 × 107

7.97 × 10−5 ∗

�
1γ ,BBR−QED
3s 5.148 × 10−4 7.865 × 10−3 4.346 × 103 9.903 × 105 4.042 × 106 1.772 × 107

He+ �
1γ ,BBR
2s 1.599 × 10−4 6.249 × 10−4 2.085 × 10−3 6.472 × 10−3 25.97 1.712 × 105

�
1γ ,BBR−QED
2s 1.251 × 10−3 1.720 × 10−2 1.863 × 10−1 1.665 30.58 1.712 × 105

�
1γ ,BBR
3s 8.596 × 10−5 3.352 × 10−4 1.125 × 10−3 5.318 × 103 3.296 × 105 8.621 × 106

�
1γ ,BBR−QED
3s 4.053 × 10−3 6.057 × 10−2 6.708 × 10−1 5.324 × 103 3.296 × 105 8.621 × 106

presented by the infinite series

�a = �1γ
a + �2γ

a + · · · . (6)

In turn, the natural one-photon width �
1γ
a is equal to the

sum of the one-photon transition rates to lower levels. In the
nonrelativistic limit it can be written as follows:

�1γ
a = 4e2

3

1

2la + 1

∑
b<a

∑
mamb

ω3
ab|〈b|r|a〉|2, (7)

where ωab = Ea − Eb. Recently, the two-photon width �
2γ
a

was evaluated within the relativistic adiabatic QED theory
[23], where the expression for �

2γ
a was also obtained in the

nonrelativistic limit:

�2γ
a = 4e4

9π

1

2la + 1
lim
η→0

Re
∑
b<a

∑
mamb

∫ ωab

0
dωω3(ωab − ω)3

×
∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea + ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb − ω + iη

)
. (8)

This result was obtained at first in Ref. [18]. It is worth
noting that the expression (8) coincides with Eq. (2) for the
two-photon decay rate only in the absence of resonant energy
denominators. Then the imaginary infinitesimal part iη (η is
the adiabatic parameter) in Eq. (8) can be omitted and the
product of two terms in parentheses is equal to the square
modulus, making �

2γ
a the same with the spontaneous decay

rate W 2γ ,spon
a .

aa

FIG. 3. Ordinary loop inside thermal loop Feynman diagram.
The bold wavy line denotes the thermal photon propagator. A double
line is the electron propagator in the Furry picture.

The situation is different for the two-photon transitions
with cascades, i.e., when the presence of resonant interme-
diate states in the sum over n in Eq. (8) leads to the divergent
contributions. In this case, the transition rate, Eq. (2), should
be regularized in the vicinity of resonances. The regularization
procedure of multiphoton transition amplitudes within the
framework of QED theory can be found, for example, in
Ref. [51]. As a result the corresponding level widths arise in
the divergent contributions that lead to the regular expression.

In contrast, there is no need to regularize Eq. (8) (see
Refs. [18–20]). In particular, in Ref. [18] it was demonstrated
that the integral

lim
η→0

Re
∫ 1

0
dω

(
1

a − ω + iη

)2

= 1

a(a − 1)
+ O(η2) (9)

is finite, when the limit is taken after integration over the
frequency ω (here it is assumed that 0 < a < 1). With that, the
integral, arising in the expression for the two-photon transition
rate or Raman scattering rate, is divergent when η → 0:∫ 1

0
dω

∣∣∣∣ 1

a − ω + iη

∣∣∣∣2

= π

η
+ 1

a(a − 1)
+ O(η2). (10)

The integration method corresponding to Eq. (9) was also
justified in Ref. [23] within the adiabatic S-matrix for-
malism. However, in opposite to Ref. [18] the main con-
clusion is that the contribution Eq. (8) represents the ra-
diative correction to the one-photon level widths, but not
the two-photon transition rate since it can be negative
(see Refs. [23,24]).

In the presence of BBR, there is an additional line broad-
ening due to the induced transitions. Within the framework
of finite temperature QED for bound states [34], the induced

aa

FIG. 4. Thermal loop inside ordinary loop Feynman diagram. All
the notations are the same as those in Fig. 3.
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aa aa

FIG. 5. Thermal loop over ordinary loop.

one-photon width �
1γ ,BBR
a is given by the imaginary part of

thermal one-loop electron self-energy [28]. In the nonrela-
tivistic limit, the result of such evaluation leads to the well-
known quantum mechanical expression [47], which is

�1γ ,BBR
a = 4e2

3

1

2la + 1

∑
b

∑
mamb

|ωab|3|〈b|r|a〉|2nβ (|ωab|).

(11)

Here, summation over states b extends to the entire spectrum
of the Schrödinger equation, including upper, lower, and
continuum states.

In Ref. [28] it was shown that the expression (11) arises
in the framework of the QED theory in the approximation
of zero level widths. In turn, taking into account the fi-
nite lifetimes of atomic levels, the more general expression
for the one-photon BBR-induced line broadening can be
obtained as

�1γ ,BBR−QED
a = 2e2

3π

1

2la + 1

∑
b

∑
mamb

|〈a|r|b〉|2
∫ ∞

0
dωnβ (ω)ω3

×
[

�ba

(ω̃ba + ω)2 + 1
4�2

ba

+ �ba

(ω̃ba − ω)2 + 1
4�2

ba

]
,

(12)

where �ba = �b + �a is the sum of natural widths of states b
and a. It is easy to see that, in the limit �ba → 0, Eq. (12) turns
to Eq. (11). The comparison of �

1γ ,BBR
2s and �

1γ ,BBR−QED
2s for

the 2s state in H and He+ atoms is presented in Table II. In
particular, it can be found that the accounting for finite life-
times plays an important role in the broadening of the 2s state
at low temperatures and is negligible at high temperatures (see
also Ref. [31]).

Finally, the total level widths of the atomic state a in the
presence of the BBR field can be written as

�tot
a = �a + �BBR

a , (13)

where �a is the “zero-temperature” contribution, Eq. (6), and

�BBR
a = �1γ ,BBR

a + �2γ ,BBR
a + · · · (14)

aa

FIG. 6. Thermal loop inside thermal loop.

aa

FIG. 7. Thermal loop over thermal loop.

represents the contributions (one-photon, two-photon, etc.,
respectively) corresponding to the BBR-induced level broad-
ening.

To describe the thermal-induced two-photon contribution
to the level broadening, �

2γ ,BBR
a , that arises in an atom under

the influence of blackbody radiation, we employ the formal-
ism of QED theory at finite temperatures (see, for example,
Ref. [34] and references therein). To take into account the
“heat bath” influence on an atom in the framework of this
formalism, it is sufficient to consider sequentially the inser-
tions of the thermal part of the photon propagator instead of
the ordinary one in the Feynman graphs, which are Figs. 3–
7 in our case. As a result, the imaginary part of two-loop
SE corrections (Figs. 3–7), in addition to the two-photon
processes, contains also the thermal radiative corrections to
the one-photon transitions [54]. Recently, these contributions
were considered in Ref. [33] and we omit their description
here. In turn, the induced two-photon decay widths result from
the integration over the pole in the middle electron propagator
of the irreducible Feynman diagrams depicted in Figs. 3–7
[54,55].

According to Ref. [56], the corrections �Ea to the energy
of the state a for any irreducible graphs can be obtained using
the relations

�Ea = 〈a|Ûirr|a〉, (15)

where 〈a′|Ûirr|a〉 is the matrix element of amplitude of the S
matrix:

〈a′|Ŝ|a〉 = −2π iδ(Ea′ − Ea)〈a′|Ûirr|a〉. (16)

Then the two-photon radiative correction to the level width
is defined by the imaginary part of the second-order SE level
shift �E (2)

a , which is given by the sum of Feynman diagrams
shown in Figs. 3–7. The result can be presented as

�2γ
a = −2Im�E (2)

a . (17)

It should be noted here again that the expression (17)
reproduces the two-photon level width in the absence of
cascade processes and is merely the radiative correction in the
general case. Further, we give the step-by-step description of
each diagram in Figs. 3–7 within the S-matrix formalism. For
clarity, the replacements of the “ordinary” loop by the thermal
one (one and two times) are denoted by the bold wavy line in
the each irreducible graph.
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A. Ordinary loop inside thermal loop

We start from the consideration of Fig. 3. The corresponding S-matrix element is

Ŝ(4) Fig. 3
aa = (−ie)4

∫
d4x1d4x2d4x3d4x4ψa(x4)γμ4 S(x4x3)γμ3 S(x3x2)γμ2 S(x2x1)γμ1ψa(x1)Dβ

μ4μ1
(x4x1)Dμ3μ2 (x3x2). (18)

Here ψa(x) = ψa(r)e−iEat , ψa(r) is the solution of the Dirac equation for the atomic electron, Ea is the Dirac energy, ψa′ = ψ+
a γ0

is the Dirac conjugated wave function with ψ+
a being its Hermitian conjugate, γμ = (γ0, γ ) are the Dirac matrices, S(x1, x2) is

the electron propagator, Dμiμ j (xix j ) is the “ordinary” photon propagator, and Dβ
μiμ j

(xix j ) is the thermal photon propagator. The
eigenmode decomposition of S(x1, x2) with respect to one-electron eigenstates is

S(x1, x2) = i

2π

∫ ∞

−∞
d� e−i�(t1−t2 )

∑
n

ψn(r1)ψn(r2)

� − En(1 − i0)
, (19)

where summation runs over the entire Dirac spectrum. The ‘zero-temperature” photon propagator in the Feynman gauge is

Dμiμ j (xix j ) = 1

2π i

gμiμ j

ri j

∫ ∞

−∞
dωeiω(ti−t j )+i|ω|ri j , (20)

while the thermal part Dβ
μiμ j

(xix j ) can be reduced to [28,34]

Dβ
μiμ j

(xix j ) = −gμiμ j

πr12

∫ ∞

−∞
dωnβ (|ω|)sin(|ω|ri j )e

−iω(ti−t j ). (21)

Then, performing integration over time variables in Eq. (18) and using Eq. (16), the amplitude of the process shown in Fig. 3 is
given by

U Fig. 3
a =

∑
n1n2n3

−ie4

2π2

∫ ∞

−∞

∫ ∞

−∞
dω1dω2nβ (|ω1|)

[
1 − α1α4

r14
sin(|ω1|r14)

]
an1n3a

[
1 − α2α3

r23
ei|ω2|r23

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea + ω1][En2 (1 − i0) − Ea + ω1 + ω2][En1 (1 − i0) − Ea + ω1]
. (22)

The matrix elements [F (12)]abcd should be understood as [F (12)]a(1)b(2)c(1)d (2), where indexes 1 and 2 denote the variables and
αi are the Dirac matrices.

As it is mentioned above, the two-photon contribution to the level widths is defined by the pole contribution in the middle
electron propagator of Eq. (22). The corresponding integration over ω2 in Eq. (22) can be performed with the use of the Cauchy
theorem. Repeating the procedure described in Ref. [56], one can obtain∫ ∞

−∞
dω2

ei|ω2|r23

En2 (1 − i0) − Ea + ω1 + ω2
= π i

2

(
1 + En2

|En2 |
)(

1 − ωn2a + ω1

|ωn2a + ω1|
)

ei|ωn2a+ω1|r23

+ 2i
ωn2a + ω1

|ωn2a + ω1| [ci(|ωn2a + ω1|ri j ) sin(|ωn2a + ω1|r23)

− si(|ωn2a + ω1|ri j ) cos(|ωn2a + ω1|r23)], (23)

where ωn2a = En2 − Ea. Then substituting Eq. (22) into Eq. (17), using Eq. (23), and taking into account the explicit insertion of
the remaining modulus sign, we arrive at

�Fig. 3
a = 2e4

π

∑
n1n2n3

{
Re

∫ ∞

0
dω1nβ (ω1)

[
1 − α1α4

r14
sin(ω1r14)

]
an2n3a

[
1 − α2α3

r23
sin(|ωn2a − ω1|r23)

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea − ω1][En1 (1 − i0) − Ea − ω1]

[
π

2

(
1 + En2

|En2 |
)(

1 − ωn2a − ω1

|ωn2a − ω1|
)]

+ Re
∫ ∞

0
dω1nβ (ω1)

[
1 − α1α4

r14
sin(ω1r14)

]
an2n3a

[
1 − α2α3

r23
sin(|ωn2a + ω1|r23)

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea + ω1][En1 (1 − i0) − Ea + ω1]

[
π

2

(
1 + En2

|En2 |
)(

1 − ωn2a + ω1

|ωn2a + ω1|
)]}

. (24)

For further evaluation, the two cases should be considered separately: ωn2a > 0 and ωn2a < 0. First, ωn2a > 0, and then the
second integral in Eq. (24) vanishes, because ωn2a + ω1 is always positive, and the integration interval runs through the positive
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half-axis. Then, for the positive energies En2 > 0, Eq. (24) reduces to

�Fig. 3
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

|ωn2a|
dωnβ (ω)

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

[
1 − α2α3

r23
sin[(ω − |ωn2a|)r23]

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − Ea − ω]
. (25)

For the second case, ωn2a < 0, and positive energies En2 > 0, Eq. (24) transforms to

�Fig. 3
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

0
dωnβ (ω)

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

[
1 − α2α3

r23
sin[(|ωn2a| + ω)r23]

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − Ea − ω]

+ 2e4

π

∑
n1n2n3

Re
∫ |ωn2a|

0
dωnβ (ω)

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

[
1 − α2α3

r23
sin[(|ωn2a| − ω)r23]

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − Ea + ω]
. (26)

It is shown below, see Sec. IV, that Eq. (25) and the first term in Eq. (26) represent a part of the thermal correction to
the level broadening associated with the Stokes and anti-Stokes Raman scattering rates of thermal photons on virtual states:
a + γT → n2 + γ . The second term in Eq. (26) gives correction to the induced two-photon emission.

B. Thermal loop inside ordinary loop

The evaluation of the digram in Fig. 4 repeats the calculations performed in previous subsection, its S-matrix element reads

Ŝ(4) Fig. 4
aa = (−ie)4

∫
d4x1d4x2d4x3d4x4ψa(x4)γμ4 S(x4x3)γμ3 S(x3x2)γμ2 S(x2x1)γμ1ψa(x1)Dμ4μ1 (x4x1)Dβ

μ3μ2
(x3x2). (27)

Integration over the time variables in Eq. (27) leads to the following amplitude:

U Fig. 4
a = −ie4

2π2

∑
n1n2n3

∫ ∞

−∞

∫ ∞

−∞
dω1dω2nβ (|ω1|)

[
1 − α1α4

r23
sin(|ω1|r23)

]
an1n3a

[
1 − α2α3

r14
ei|ω2|r14

]
n2n3n1n2

× 1[
En3 (1 − i0) − Ea + ω2

][
En2 (1 − i0) − Ea + ω1 + ω2

][
En1 (1 − i0) − Ea + ω2

] . (28)

Performing integration over ω2 in Eq. (28) with the use of Eq. (23), for ωn2a > 0, we arrive at

�Fig. 4
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

|ωn2a|
dωnβ (ω)

[
1 − α2α3

r23
sin(ωr23)

]
an1n3a

[
1 − α1α4

r14
sin[(ω − |ωn2a|)r14]

]
n2n3n1n2

× 1

[En3 (1 − i0) − En2 + ω][En1 (1 − i0) − En2 + ω]
, (29)

and for ωn2a < 0, we have

�Fig. 4
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

0
dωnβ (ω)

[
1 − α2α3

r23
sin(ωr23)

]
an1n3a

[
1 − α1α4

r14
sin[(|ωn2a| + ω)r14]

]
n2n3n1n2

× 1

[En3 (1 − i0) − En2 + ω][En1 (1 − i0) − En2 + ω]

+ 2e4

π

∑
n1n2n3

Re
∫ |ωn2a|

0
dωnβ (ω)

[
1 − α2α3

r23
sin(ωr23)

]
an1n3a

[
1 − α1α4

r14
sin[(|ωn2a| − ω)r14]

]
n2n3n1n2

× 1

[En3 (1 − i0) − En2 − ω][En1 (1 − i0) − En2 − ω]
. (30)
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C. Thermal loop over ordinary loop

The contribution corresponding to the Feynman graph depicted in Fig. 5 is given by the following S-matrix element:

Ŝ(4) Fig. 5
aa = (−ie)4

∫
d4x1d4x2d4x3d4x4ψa(x4)γμ4 S(x4x3)γμ3 S(x3x2)γμ2 S(x2x1)γμ1ψa(x1)Dμ4μ2 (x4x2)Dβ

μ3μ1
(x3x1). (31)

Integration over the time variables in Eq. (31) leads to the following expression for the amplitude:

U Fig. 5
a = −ie4

2π2

∑
n1n2n3

∫ ∞

−∞

∫ ∞

−∞
dω1dω2nβ (|ω1|)

[
1 − α3α1

r31
sin(|ω1|r31)

]
an2n3n1

[
1 − α4α2

r42
ei|ω2|r42

]
n3n1n2a

× 1

[En3 (1 − i0) − Ea + ω1][En2 (1 − i0) − Ea + ω1 + ω2][En1 (1 − i0) − Ea + ω2]
. (32)

Performing integration over ω2 in Eq. (32), using Eq. (23), and repeating the steps described above, we obtain

�Fig. 5
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

|ωn2a|
dωnβ (ω)

[
1 − α3α1

r31
sin(ωr31)

]
an2n3n1

[
1 − α4α2

r42
sin[(ω − |ωn2a|)r42]

]
n3n1n2a

× 1

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − En2 + ω]
, (33)

where ωn2a > 0, and for ωn2a < 0, we have

�Fig. 5
a = 2e4

π

∑
n1n2n3

Re
∫ ∞

0
dωnβ (ω)

[
1 − α3α1

r31
sin(ωr31)

]
an2n3n1

[
1 − α4α2

r42
sin[(|ωn2a| + ω)r42]

]
n3n1n2a

× 1

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − En2 + ω]

+ 2e4

π

∑
n1n2n3

Re
∫ |ωn2a|

0
dωnβ (ω)

[
1 − α3α1

r31
sin(ωr31)

]
an2n3n1

[
1 − α4α2

r42
sin[(|ωn2a| + ω)r42]

]
n3n1n2a

× 1

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − En2 − ω]
. (34)

D. Thermal loop inside thermal loop

The contribution of the Feynman graph depicted in Fig. 5 corresponds to the S-matrix element:

Ŝ(4) Fig. 6
aa = (−ie)4

∫
d4x1d4x2d4x3d4x4ψa(x1)γμ4 S(x1x2)γμ3 S(x2x3)γμ2 S(x3x4)γμ1ψa(x4)Dβ

μ1μ4
(x1x4)Dβ

μ2μ3
(x2x3). (35)

Integration over the time variables in Eq. (35) leads to

U Fig.6
a = − e4

π2

∑
n1n2n3

∫ ∞

−∞

∫ ∞

−∞
dω1dω2nβ (|ω1|)nβ (|ω2|)

×
[

1 − α1α4

r14
sin(|ω1|r14)

]
an1n3a

[
1 − α2α3

r23
sin(|ω2|r23)

]
n2n3n1n2

× 1

[En3 (1 − i0) − Ea + ω1][En2 (1 − i0) − Ea + ω1 + ω2][En1 (1 − i0) − Ea + ω1]
. (36)

Then integration over ω2 in Eq. (36) can be performed with the use of the Sokhotski-Plemelj theorem:

1

x ± i0
= P 1

x
∓ π iδ(x), (37)

where P means the principal value of the integral. Taking into account Eq. (37), the imaginary part is

�Fig. 6
a = 2e4

π

∑
n1n2n3

∫ ∞

−∞

∫ ∞

−∞
dω1dω2

nβ (|ω1|)nβ (|ω2|)δ(En2 − Ea + ω1 + ω2)

[En3 (1 − i0) − Ea + ω1][En1 (1 − i0) − Ea + ω1]

×
[

1 − α1α4

r14
sin(|ω1|r14)

]
an1n3a

[
1 − α2α3

r23
sin(|ω2|r23)

]
n2n3n1n2
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= 2e4

π

∑
n1n2n3

{∫ ∞

−∞
dω1

∫ ∞

0
dω2

nβ (|ω1|)nβ (ω2)δ(En2 − Ea + ω1 − ω2)[
En3 (1 − i0) − Ea + ω1

][
En1 (1 − i0) − Ea + ω1

]
×

[
1 − α1α4

r14
sin(|ω1|r14)

]
an1n3a

[
1 − α2α3

r23
sin(ω2r23)

]
n2n3n1n2

+
∫ ∞

−∞
dω1

∫ ∞

0
dω2

nβ (|ω1|)nβ (ω2)δ(En2 − Ea + ω1 + ω2)[
En3 (1 − i0) − Ea + ω1

][
En1 (1 − i0) − Ea + ω1

][
1 − α1α4

r14
sin(|ω1|r14)

]
an1n3a

×
[

1 − α2α3

r23
sin(ω2r23)

]
n2n3n1n2

}
. (38)

As before, the integration over frequency ω2 in Eq. (38) differs for ωn2a < 0 and ωn2a > 0. The result for ωn2a > 0 is

�Fig. 6
a = 2e4

π

∑
n1n2n3

{∫ |ωn2a|

0
dω

nβ (ω)nβ (|ωn2a| − ω)

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − Ea − ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| − ω)r23]

]
n2n3n1n2

+
∫ ∞

|ωn2a|
dω

nβ (ω)nβ (ω − |ωn2a|)
[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − Ea − ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(ω − |ωn2a|)r23]

]
n2n3n1n2

+
∫ ∞

0
dω

nβ (ω)nβ (|ωn2a| + ω)

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − Ea + ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| + ω)r23]

]
n2n3n1n2

}
, (39)

and for ωn2a < 0, we have

�Fig. 6
a = 2e4

π

∑
n1n2n3

{∫ ∞

0
dω

nβ (ω)nβ (|ωn2a| + ω)

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − Ea − ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| + ω)r23]

]
n2n3n1n2

+
∫ |ωn2a|

0
dω

nβ (ω)nβ (|ωn2a| − ω)

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − Ea + ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| − ω)r23]

]
n2n3n1n2

+
∫ ∞

|ωn2a|
dω

nβ (ω)nβ (ω − |ωn2a|)
[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − Ea + ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(ω − |ωn2a|)r23]

]
n2n3n1n2

}
. (40)

E. Thermal loop over thermal loop

The contribution corresponding to the Feynman graph depicted in Fig. 7 is given by the S-matrix element:

Ŝ(4) Fig. 7
aa = (−ie)4

∫
d4x1d4x2d4x3d4x4ψa(x1)γμ4 S(x1x2)γμ3 S(x2x3)γμ2 S(x3x4)γμ1ψa(x4)Dβ

μ1μ4
(x2x4)Dβ

μ2μ3
(x1x3). (41)
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Integration over the time variables in Eq. (41) yields

U Fig. 7
a = − e4

π2

∑
n1n2n3

∫ ∞

−∞

∫ ∞

−∞
dω1dω2nβ (|ω1|)

[
1 − α3α1

r31
sin(|ω1|r31)

]
an2n3n1

[
1 − α4α2

r42
sin(|ω2|r42)

]
n3n1n2a

× 1

[En3 (1 − i0) − Ea + ω1][En2 (1 − i0) − Ea + ω1 + ω2][En1 (1 − i0) − Ea + ω2]
. (42)

Then, substituting Eq. (38) into Eq. (17) and integrating over ω2 according to the Sokhotski-Plemelj theorem, the result for
ωn2a > 0 is

�Fig. 7
a = 2e4

π

∑
n1n2n3

{∫ |ωn2a|

0
dω

nβ (ω)nβ (|ωn2a| − ω)

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − EN2 + ω]

[
1 − α3α1

r31
sin(ωr31)

]
an2n3n1

×
[

1 − α4α2

r42
sin[(|ωn2a| − ω)r42]

]
n3n1n2a

+
∫ ∞

|ωn2a|
dω

nβ (ω)nβ (ω − |ωn2a|)
[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − En2 + ω]

[
1 − α3α1

r31
sin(ω1r31)

]
an2n3n1

×
[

1 − α4α2

r42
sin[(ω − |ωn2a|)r42]

]
n3n1n2a

+
∫ ∞

0
dω

nβ (ω)nβ (|ωn2a| + ω)

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − En2 − ω]

[
1 − α3α1

r31
sin(ωr31)

]
an2n3n1

×
[

1 − α4α2

r42
sin[(|ωn2a| + ω)r42]

]
n3n1n2a

}
, (43)

and for ωn2a < 0, one can obtain

�Fig. 7
a = 2e4

π

∑
n1n2n3

{∫ ∞

0
dω

nβ (ω)nβ (|ωn2a| + ω)

[En3 (1 − i0) − Ea − ω][En1 (1 − i0) − En2 + ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| + ω)r23]

]
n2n3n1n2

+
∫ |ωn2a|

0
dω

nβ (ω)nβ (|ωn2a| − ω)

[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − En2 − ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(|ωn2a| − ω)r23]

]
n2n3n1n2

+
∫ ∞

|ωn2a|
dω

nβ (ω)nβ (ω − |ωn2a|)
[En3 (1 − i0) − Ea + ω][En1 (1 − i0) − En2 − ω]

[
1 − α1α4

r14
sin(ωr14)

]
an1n3a

×
[

1 − α2α3

r23
sin[(ω − |ωn2a|)r23]

]
n2n3n1n2

}
. (44)

IV. TWO-LOOP DECAY WIDTHS AT FINITE TEMPERATURES: NONRELATIVISTIC LIMIT

In the present section we collect all the contributions above to form the thermal-induced two-photon decay widths. The
combination of these contributions should be compared with Eqs. (3) and (5) for the induced two-photon transitions and Raman
scattering of thermal photons. This is reasonable to perform in the nonrelativistic limit (see Ref. [56]). Then the matrix elements
in Eqs. (25), (26), (29), (30), (33), (34), (39), (40), (43), and (44) can be simplified with[

1 − αiα j

ri j
sin(ωri j )

]
a(i)b( j)c(i)d ( j)

∼ ωδacδbd +
(

−ωωacωdb + ω3

3

)
〈a|r|c〉〈b|r|d〉, (45)

where δab is the Kronecker symbol and relation 〈a|p|b〉 = iωab〈a|r|b〉 is used.
The first term in the right-hand side of Eq. (45) generates infrared divergences of the type

∫ ∞
0 dωnβ (ω)/ω for each diagram in

Figs. 3–7. However, in the sum of loop-inside-loop and loop-over-loop diagrams they arise with different signs and, finally, cancel

032204-10



TWO-PHOTON ATOMIC LEVEL WIDTHS AT FINITE … PHYSICAL REVIEW A 102, 032204 (2020)

each other. This is the ordinary situation occurring for evaluation of the radiative QED corrections to the emission processes [57].
Recently, the same conclusion was verified for the one-loop self-energy corrections at finite temperature [33]. It should be noted
here that the regularization of energy shifts suggested in Ref. [34] is also fulfilled in this case. All the divergences arising for
each Feynman diagram would be canceled by the coincident limit separately, and the final result would be the same as here. The
rigorous proof of this repeats the derivations in previous papers and we omit it for brevity.

To evaluate the terms linear on ω in the sum of all contributions [corresponding to the second term in Eq. (45)], the following
equality is helpful [56,58]:

ω(ω0 − ω)
∑
nn′

ωbnωan

( 〈b|r|n〉〈n|r|a〉
En(1 − i0) − Ea + ω

+ 〈b|r|n〉〈n|r|a〉
En(1 − i0) − Eb − ω

)
ωbn′ωan′

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ (1 − i0) − Ea + ω
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ (1 − i0) − Eb − ω

)
= ω3(ω0 − ω)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En(1 − i0) − Ea + ω

+ 〈b|r|n〉〈n|r|a〉
En(1 − i0) − Eb − ω

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ (1 − i0) − Ea + ω
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ (1 − i0) − Eb − ω

)
, (46)

where ω0 = Ea − Eb.
The combination of Eqs. (25), (26), (29), (30), (33), (34), (39), (40), (43), and (44), as well as the use of Eq. (9) and Eqs. (45),

(46), the averaging over projections of the initial state, and the summation over projections of the final state results in the thermal
two-photon decay width �

2γ ,BBR
a . The latter could be presented as a sum of three different contributions: �

2γ ,trans
a , �

2γ ,ram
a , and

�
2γ ,int
a . In the absence of resonances, they are associated with two-photon transitions, Raman scattering, and interference between

Raman and emission (absorption) branches, respectively. Finally, the total thermal two-photon level width is

�2γ ,BBR
a =

∑
b

�
2γ ,BBR
ab =

∑
b

(
�

2γ ,trans
ab + �

2γ ,ram
ab + �

2γ ,int
ab

)
, (47)

where for b < a (i.e., ωba < 0)

�
2γ ,trans
ab = 4e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ |ωba|

0
dωω3(|ωba| − ω)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea + ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb − ω + iη

)
[nβ (ω) + nβ (|ωba| − ω) + nβ (ω)nβ (|ωba| − ω)], (48)

�
2γ ,ram
ab = 8e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ ∞

0
dωω3(|ωba| + ω)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea − ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb + ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea − ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb + ω + iη

)
[nβ (ω) + nβ (ω)nβ (|ωba| + ω)], (49)

�
2γ ,int
ab = 8e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ ∞

|ωba|
dωω3(ω − |ωba|)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea + ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb − ω + iη

)
nβ (ω)nβ (ω − |ωba|), (50)

and for b > a (i.e., ωba > 0)

�
2γ ,trans
ab = 4e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ |ωba|

0
dωω3(|ωba| − ω)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea − ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb + ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea − ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb + ω + iη

)
nβ (ω)nβ (|ωba| − ω), (51)

�
2γ ,ram
ab = 8e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ ∞

|ωba|
dωω3(ω − |ωba|)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea − ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb + ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea − ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb + ω + iη

)
[nβ (ω) + nβ (ω)nβ (ω − |ωba|)], (52)
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TABLE III. Different contributions to the partial two-photon decay width �
2γ ,BBR
2s1s and the total two-photon decay width �2s (in s−1) at

different temperatures T (in Kelvin) in H. Values for �
2γ ,trans
2s1s in the first line coincide with the induced transition rates W 2γ ,ind

2s1s (see Table I),
since the cascades are absent for the partial widths. The partial contribution �

2γ ,int
2s1s is negligibly small at all given temperatures.

T 77 300 1000 3000 5000 104

�
2γ ,trans
2s1s 1.358 × 10−4 2.028 × 10−3 2.151 × 10−2 1.731 × 10−1 4.389 × 10−1 1.467

�
2γ ,ram
2s1s 1.373 × 10−4 2.120 × 10−3 2.500 × 10−2 2.917 × 10−1 9.141 × 10−1 2.455∑

b �
2γ ,trans
2sb 1.358 × 10−4 2.028 × 10−3 2.151 × 10−2 1.732 × 10−1 4.546 × 10−1 1.481∑

b �
2γ ,ram
2sb 1.373 × 10−4 2.120 × 10−3 2.500 × 10−2 2.916 × 10−1 9.039 × 10−1 2.395∑

b �
2γ ,int
2sb 1.677 × 10−17 3.466 × 10−13 1.655 × 10−9 2.452 × 10−5 1.511 × 10−3 5.972 × 10−2∑

b �
2γ ,trans+ram+int
2sb 2.731 × 10−4 4.148 × 10−3 4.651 × 10−2 4.648 × 10−1 13.600 × 10−1 3.936

�
2γ ,int
ab = 8e4

9π

1

2la + 1
lim
η→0

Re
∑
mamb

∫ ∞

0
dωω3(|ωba| + ω)3

∑
nn′

( 〈b|r|n〉〈n|r|a〉
En − Ea + ω + iη

+ 〈b|r|n〉〈n|r|a〉
En − Eb − ω + iη

)

×
( 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Ea + ω + iη
+ 〈b|r|n′〉∗〈n′|r|a〉∗

En′ − Eb − ω + iη

)
nβ (ω)nβ (|ωba| + ω). (53)

From the expressions above, it follows that their structure is similar to the ordinary “zero-temperature” two-photon decay
widths (see Ref. [23]). In the absence of the resonant intermediate states in the sum over n, Eqs. (48) and (51), the imaginary
infinitesimal part iη in each energy denominator can be omitted. The situation is slightly different for the Raman-like
contributions given by Eqs. (49) and (52). Since the integration interval over the frequency ω in these equations is presented by
the real half-axis, there are an infinite number of resonances for any initial and final states a and b. Therefore, the contributions
(49) and (52) cannot be interpreted as the pure Raman scattering rate expressed by Eq. (5). The same holds for the remaining
interference contributions, Eqs. (50) and (53). Their algebraic structure allows one to validate that this is the interference
contribution between Raman and emission (absorption) branches.

We can conclude that the contributions Eqs. (48) and (51) are equal to transition rates given by Eqs. (3) and (4), respectively,
only in the absence of resonant intermediate states. However, for the total width equation, Eq. (47), where summation over all
possible final states b is performed, such states are always existing and calculation of �

2γ ,BBR
a should be performed with the use

of Eq. (9). In contrast to this, the two-photon transition rate equations, Eqs. (3) and (4), require the regularization by introducing
the level widths into the denominators [23]. It is important to note that within the two-loop approach summation over final states
b arises immediately in a full analogy with the well-known QED derivation of one-photon level widths via the imaginary part of
the one-loop self-energy (see, for example, Ref. [56]).

Numerical calculations with the summation over the entire spectrum in Eqs. (2)–(5) for the transition rates and the thermal
two-photon decay widths in Eqs. (48)–(53) were performed with the use of th B-spline method [59]. The results for 2s and 3s
states in H and He+ atoms are presented in Tables I–VI.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have considered thermal two-loop self-
energy corrections. Their imaginary part represents the two-
photon thermal correction to the natural (spontaneous) width
of the atomic energy level. In general, the total contribu-
tion can be expressed by Eqs. (47)–(53). Then, according to

Eqs. (13) and (14), the contribution �BBR
a should be compared

with others “ordinary” radiative QED corrections and with
the BBR-induced rates known from the quantum mechanical
approach.

The relativistic and “zero-temperature” QED corrections
(see Ref. [60]) of the leading order to the 2s level width in the

TABLE IV. Different contributions to the partial two-photon decay width �
2γ ,BBR
3s1s and the total two-photon decay width �3s (in s−1) at

different temperatures T (in Kelvin) in H. The partial contribution �
2γ ,int
3s1s is negligibly small at all given temperatures. The zero-temperature

two-photon width is �
2γ

3s1s = 2.082 854 s−1.

T 77 300 1000 3000 5000 104

�
2γ ,trans
3s1s 2.161 × 10−4 3.179 × 10−3 3.268 × 10−2 2.632 × 10−1 6.707 × 10−1 1.924

�
2γ ,ram
3s1s 2.214 × 10−4 3.498 × 10−3 4.751 × 10−2 3.980 × 10−1 6.675 × 10−1 6.822 × 10−1∑

b �
2γ ,trans
3sb 2.382 × 10−4 3.500 × 10−3 3.585 × 10−2 2.863 × 10−1 7.253 × 10−1 2.116∑

b �
2γ ,ram
3sb 2.442 × 10−4 3.863 × 10−3 5.275 × 10−2 4.390 × 10−1 7.386 × 10−1 9.513 × 10−1∑

b �
2γ ,int
3sb 1.285 × 10−15 2.731 × 10−11 5.862 × 10−7 8.614 × 10−4 7.269 × 10−3 8.337 × 10−2∑

b �
2γ ,trans+ram+int
3sb 4.824 × 10−4 7.363 × 10−3 8.860 × 10−2 7.261 × 10−1 1.471 3.151
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TABLE V. Different contributions to the partial two-photon decay width �
2γ ,BBR
2s1s and the total thermal two-photon decay width �2s (in s−1)

at different temperatures T (in Kelvin) in He+. The partial contribution �
2γ ,int
2s1s is negligibly small at all given temperatures.

T 77 300 1000 3000 5000 104

�
2γ ,trans
2s1s 5.438 × 10−4 8.243 × 10−3 9.044 × 10−2 7.868 × 10−1 2.118 7.893

�
2γ ,ram
2s1s 5.468 × 10−4 8.335 × 10−3 9.385 × 10−2 8.801 × 10−1 2.562 12.072∑

b �
2γ ,trans
2sb 5.452 × 10−4 8.243 × 10−3 9.044 × 10−2 7.868 × 10−1 2.118 7.894∑

b �
2γ ,ram
2sb 5.468 × 10−4 8.335 × 10−3 9.385 × 10−2 8.801 × 10−1 2.562 12.08∑

b �
2γ ,int
2sb 6.546 × 10−20 1.351 × 10−15 6.183 × 10−12 1.384 × 10−8 5.241 × 10−7 2.558 × 10−4∑

b �
2γ ,trans+ram+int
2s 10.880 × 10−4 1.658 × 10−2 1.843 × 10−1 1.667 2.774 19.974

nonrecoil limit are given by

W̃ 2γ ,spon
ab = W 2γ ,spon

ab [1 + εrel + εQED], (54)

where

εrel = c2(αZ )2, (55)

εQED = c3
α

π
(αZ )2ln[(αZ )−2]. (56)

The coefficients c2 and c3 in the equation above were evalu-
ated for the two-photon decay rate of higher excited ns and nd
states in Ref. [60]. Using numerical values of the parameters
c2 and c3, one can find that the relativistic and radiative QED
corrections to the 2s → 1s + γ (E1) transition in H atoms are
equal to −2.908 × 10−4 and −2.024 × 10−5 s−1, respectively.
The depopulation rates with the account for the finite lifetimes
and the thermal two-photon level widths of the 2s state at
room temperature are �

1γ ,BBR−QED
2s = 4.159 × 10−3 s−1 and∑

b �
2γ ,trans+ram+int
2sb = 4.148 × 10−3 s−1 (see Tables II and

III). Thus, the two-loop thermal corrections to the 2s level
broadening in H atoms dominate over the relativistic and ra-
diative corrections. However, all these corrections are still less
than the experimental uncertainty in measuring the lifetime of
the 2s state in hydrogen (see Table VII).

The situation is different for the 2s state in the He+

atom, where more accurate experiments were carried out,
and the measured decay rate is 525 ± 5 s−1 [43]. Accord-
ing to Eq. (54) the relativistic and radiative QED correc-
tions to the 2s-1s transition in He+ atoms are −7.445 ×
10−2 and −4.451 × 10−3 s−1, respectively. Assuming that
the experiment [43] is carried out at room temperature, one
can find the corresponding BBR-induced depopulation rate
�

1γ ,BBR−QED
2s = 1.720 × 10−2 s−1 and the total thermal two-

photon width
∑

b �
2γ ,trans+ram+int
2sb = 1.658 × 10−2 s−1 (see

Table V). Again, the two-loop thermal corrections to the 2s
level broadening at T = 300 K in the He+ ion reach the
same order as the one-photon depopulation width at higher
temperatures. Although the contribution of thermal correc-
tions is 2 orders less than the experimental uncertainty, the
further improvement of accuracy could verify directly this
effect. The current status of experiments on the measurement
of the 2s state lifetime in other H-like ions is presented in
Table VII.

Except for the He+ results, the precision on the level of 1%
is also achieved for Ar17+ and Ni27+ hydrogenlike ions. How-
ever, since the Planck distribution function is mainly in the
low-frequency region at low temperatures one can neglect ω

in the energy denominators of Eqs. (48)–(53). This leads to the
parametric estimation (kBT )4/(m3Z2) r.u. (relativistic units)
for the �2γ ,BBR contribution in the low-temperature regime.
Keeping in mind that kBT ∼ m(αZ )2 in r.u., the well-known
αZ parametrization can be found in the form mα2(αZ )6 for
the two-photon contribution �2γ ,BBR. It follows that �2γ ,BBR

behaves like Z6; however, at high values of Z and room
temperature, the total contribution is damped by the distant
Planck tails, where the characteristic transition energies are
concentrated for a given Z . Using this estimation, numerical
calculations show that the thermal effect described in this
paper is much less than the uncertainty of the experiments
listed in Table VII. The calculations performed in the present
work could be easily extended to the case of many-electron
atoms where two-photon decays of K-shell vacancies are
also the subject of theoretical and experimental investigations
[61–64].

It is also interesting to note the peculiarity of the total
Raman-like contribution

∑
b �

2γ ,ram
ab to the two-photon level

broadening. As seen from Table III the total value
∑

b �
2γ ,ram
ab

at some temperatures becomes less than the partial contribu-

TABLE VI. Different contributions to the partial two-photon decay width �
2γ ,BBR
3s1s and the total thermal two-photon decay width �3s

(in s−1) at different temperatures T (in Kelvin) in He+. The partial contribution �
2γ ,int
3s1s is negligibly small at all given temperatures. The

zero-temperature two-photon widths is �
2γ

3s1s = 1.333 × 102 s−1.

T 77 300 1000 3000 5000 104

�
2γ ,trans
3s1s 8.722 × 10−4 1.312 × 10−2 1.422 × 10−1 1.206 3.197 11.90

�
2γ ,ram
3s1s 8.772 × 10−4 1.344 × 10−2 1.540 × 10−1 1.571 5.088 19.610∑

b �
2γ ,trans
3sb 9.615 × 10−4 1.447 × 10−2 1.566 × 10−1 1.325 3.504 12.97∑

b �
2γ ,ram
3sb 9.674 × 10−4 1.482 × 10−2 1.700 × 10−1 1.741 5.652 21.670∑

b �
2γ ,int
3sb 4.997 × 10−18 1.031 × 10−13 4.823 × 10−10 2.267 × 10−6 2.727 × 10−4 2.313 × 10−2∑

b �
2γ ,trans+ram+int
3s 1.929 × 10−3 2.929 × 10−2 3.266 × 10−1 3.066 9.156 34.663
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TABLE VII. Comparison of the experimental and theoretical lifetimes τ2s = �−1
2s (in s) of the 2s level in H-like ions. Theoretical values

of τ2s and �
2γ

2s were calculated in a fully relativistic approach with the account for finite nuclear size effects. The relativistic calculation of
the M1 decay rate 2s → 1s + γ (M1) is also taken into account. In the last column values for �

2γ ,BBR
2s at T = 300 K are estimated within the

nonrelativistic approach.

Z Experiment τ2s (s) Theory τ2s (s) Theory �
2γ

2s (s−1) Theory �
2γ ,BBR
2s (s−1)

1 0.67 ± 0.29 a 1.215 × 10−1 8.229 4.148 × 10−3

0.12+0.03
−0.04

b

2 (1.922 ± 0.082) × 10−3 c 1.899 × 10−3 526.607 1.658 × 10−2

(2.04+0.81
−0.34) × 10−3 d

(1.905 ± 0.018) × 10−3e

8 (4.53 ± 0.43) × 10−7f 4.640 × 10−7 2.155 × 106 2.652 × 10−1

9 (2.37 ± 0.19) × 10−7 f 2.288 × 10−7 4.370 × 106 3.357 × 10−1

16 (7.3 ± 0.7) × 10−9 g 7.161 × 10−9 1.396 × 108 1.061
18 (3.54 ± 0.25) × 10−9g 3.498 × 10−9 2.859 × 108 1.343

(3.487 ± 0.036) × 10−9h

28 (2.171 ± 0.018) × 10−10i 2.157 × 10−10 4.636 × 109 1.625
36 (3.68 ± 0.14) × 10−11 j 3.703 × 10−11 2.700 × 1010 2.685

aReference [38]; bReference [35] (this value is extracted from the analysis of CMB); cReference [40]; dReference [65]; eReference [43];
fReference [41]; gReference [42]; hReference [44]; iReference [46]; jReference [45].

tion �
2γ ,ram
ab . This occurs via the contributions with b > a in

the sum over b in Eq. (52). They change the sign with the
increasing of temperature and, as a result, this leads to the
decreasing of the total value. The same situation is well known
for the thermal Stark shift (see, for example, Refs. [28,47]).
Such behavior of partial contributions, namely, that they can
be negative, was found previously in Ref. [23]. In addition, the
numerical calculations showed that all two-photon contribu-
tions proportional to nβ (ω)nβ (ω′) are negligible at reasonable
temperatures. In particular, it was found that the interference
part given by Eqs. (50) and (53), as well as the absorptionlike
part given by Eq. (51), does not make a tangible contribution
to the thermal two-photon width.

The corrections found in this work can also play an im-
portant role in describing the cosmological recombination
processes. The standard calculation of the ionization frac-
tion of the primordial hydrogen plasma takes into account
only the induced two-photon decay and Raman scattering.

In Refs. [25–27] it was shown that the induced two-photon
transition 2s → 1s + 2γ corrects the ionization fraction on
the level of a few percent. The two-loop thermal corrections
for the 2s level width listed in Table III are several times
larger then the corresponding induced rates at recombination
temperatures (1000 < T < 5000). Thus, one can expect the
contribution to the ionization fraction at the same level.

In conclusion, we can expect that the radiative temperature-
dependent corrections to the level widths found in this paper
will play a role in both astrophysical and laboratory investiga-
tions. At least, a further increase of the experimental accuracy
requires the need to take these corrections into account.
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