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We study the quantum phase transition (QPT) in a non-Hermitian Tavis-Cummings (TC) model of experimen-
tally accessible parameters, which is engineered with two drive fields applied to an ensemble of two-level systems
(TLSs) and a cavity, respectively. When the two drive fields satisfy a given parameter-matching condition, the
coupled cavity-TLS ensemble system can be described by an effective standard TC Hamiltonian in the rotating
frame. In this ideal Hermitian case, the engineered TC model can exhibit the super-radiant QPT with spin
conservation at an experimentally accessible critical coupling strength, but the QPT is, however, spoiled by
the decoherence. We find that in this non-Hermitian case, the QPT can be recovered by introducing a gain in the
cavity to balance the loss of the TLS ensemble. Also, the spin-conservation law is found to be violated due to
the decoherence of the system. Our study offers an experimentally realizable approach to implementing QPT in
the non-Hermitian TC model.
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I. INTRODUCTION

Quantum phase transition (QPT) has been widely studied
in various quantum systems (see, e.g., [1–13]), because of
its fundamental importance in quantum physics and potential
applications in quantum technologies [14]. Among them, the
super-radiant QPT was predicted [15–18] in, e.g., the Dicke
model [19], which involves the collective interaction between
an ensemble of two-level systems (TLSs) and the quantized
field in a cavity. In the thermodynamic limit of a large number
of TLSs, the ground-state properties of the Dicke model,
such as the excitations in the TLS ensemble, can display an
abrupt change related to the QPT in the system [20–22], when
continuously varying the collective coupling strength around
a critical value. As required to be comparable to the frequen-
cies of the TLS ensemble and the cavity mode, this critical
coupling strength is difficult to achieve experimentally. More-
over, the no-go theorem due to the squared electromagnetic
vector potential also hinders the presence of the super-radiant
QPT in the Dicke model [23–25]. Due to these difficulties,
the nonequilibrium QPT (i.e., the simulated QPT) has been
proposed [26–28] and observed [29–31] in cavity quantum
electrodynamics (QED) systems by engineering an effective
Dicke Hamiltonian.

In the experiment, most quantum systems can only reach
the strong-coupling regime [32,33], where the Dicke model
can be reasonably reduced to the Tavis-Cummings (TC)
model [34] via the rotating-wave approximation (RWA) [35],
i.e., ignoring the counter-rotating coupling terms between the
TLS ensemble and the cavity mode. Similar to the Dicke
model, the TC model is another archetypal model known to
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exhibit the super-radiant QPT [36]. Nevertheless, QPT in the
TC model can occur only in the regime of extremely strong
coupling, which is unaccessible for a realistic system and
in which the RWA actually breaks down [35]. In addition,
the decoherence inevitably occurring in the realistic system
can spoil the QPT in the TC model [37–40]. Therefore, it is
of great importance to explore the nonequilibrium QPT by
engineering an effective experimentally accessible TC Hamil-
tonian [40–42].

In this paper, we study the QPT in a driven quantum system
consisting of a TLS ensemble coupled to a cavity mode. To
reduce the critical coupling strength of the TC model, we use
two external fields with the same frequency to drive the TLS
ensemble and the cavity, respectively. By choosing proper
drive-field parameters, an effective TC model can be rebuilt
in the rotating frame, with the effective frequencies of the
TLS ensemble and the cavity mode being their respective fre-
quency detunings from the drive fields. In the ideal Hermitian
case (i.e., without decoherence in the system), we can demon-
strate the QPT in the driven system, where the corresponding
critical coupling strength is tunable (via varying the drive-field
frequency) and experimentally accessible. However, decoher-
ence inevitably occurs in the system and the QPT of the TC
model is spoiled in this non-Hermitian case [37–40]. We find
that the QPT in the non-Hermitian TC model can be recovered
by using a cavity with gain to balance the loss of the TLS
ensemble. In sharp contrast to the spin conservation in the
ideal Hermitian case, the spin-conservation law is found to
be violated in the non-Hermitian case [43,44]. Moreover, we
propose to implement this non-Hermitian TC model with a
hybrid circuit-QED system.

As indicated above, we propose to engineer an experi-
mentally accessible non-Hermitian TC model that can have
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FIG. 1. (a) Schematic representation of the engineered TC model
with a TLS ensemble strongly coupled to a cavity mode, where two
drive fields with the same frequency are applied to the ensemble
and the cavity mode, respectively. (b) Implementation of the pro-
posed TC model using a hybrid circuit-QED system composed of
an ensemble of NV centers in diamond interacting with an active
coplanar-waveguide resonator, where the gain of the resonator results
from an auxiliary flux qubit controlled by two microwave fields [52].
Also, two fields with the same frequency drive the NV ensemble and
the resonator, respectively.

QPT in the presence of decoherence in the system. By engi-
neering cavity-mediated Raman transitions, an effective Dicke
Hamiltonian can be built in a cavity QED system consisting
of an ensemble of four-level systems [26,31] or three-level
systems [27] coupled to a quantized cavity field. In these
schemes [26,27,31], the two drive fields both directly pump
the ensemble and the nonequilibrium QPT in the effective
Dicke model is demonstrated by tuning the frequencies and
magnitudes of the two drive fields. In addition, the spatial
self-organization of a Bose-Einstein condensate (BEC) inside
an optical cavity can be mapped to the Dicke Hamiltonian
[28–30], where the motional degree of freedom of the BEC
is coupled to the cavity mode and the BEC is driven by a
far-detuned laser field. On the contrary, in our proposal, only
an ensemble of TLSs, rather than the ensemble of multilevel
systems or the BEC, are used and the two drive fields pump
the TLS ensemble and the cavity, respectively. This exploits a
different mechanism to engineer the model.

II. QPT IN THE IDEAL HERMITIAN CASE

The proposed system consists of N TLSs (e.g., spins) in a
cavity, each with the same transition frequency ωs and coupled
to a cavity mode with coupling strength λs [see Fig. 1(a)].
This system can be described in a RWA by the TC model (we
set h̄ = 1),

HTC = ωca†a + ωsJz + λ√
N

(a†J− + aJ+), (1)

where a (a†) is the annihilation (creation) operator of the
cavity mode with resonant frequency ωc, Jx, Jy, and Jz are the
collective spin operators of the TLS ensemble with raising and

lowering operators J± = Jx ± iJy, and λ = λs

√
N is the col-

lective coupling strength between the TLS ensemble and the
cavity mode. This Hamiltonian has a conserved parity [36],
[HTC,�] = 0, where � = exp [iπ (a†a + Jz + N/2)]. In the
ideal case without decoherence in the system, the TC model
exhibits a QPT at the critical coupling strength λ = λc ≡√

ωsωc in the thermodynamic limit N → +∞ [36]. However,
this QPT is spoiled by the decoherence of the system [37–40].
Also, it is extremely difficult to demonstrate the QPT due to
the inaccessibility of the very large critical coupling strength
λc in a realistic system.

To solve these problems, we first manage to re-
duce the critical coupling strength by applying two
drive fields of the same frequency ωd to the cav-
ity and the TLS ensemble, respectively. This corre-
sponds to adding the drive Hamiltonian Hd = (�aa†e−iωd t +
�∗

aaeiωd t ) + (1/
√

N )(�JJ+e−iωd t + �∗
JJ−eiωd t ) to the Hamil-

tonian in Eq. (1). Here �a is the Rabi frequency between
the drive field and the cavity mode, and �J ≡ �s

√
N is the

collective Rabi frequency between the drive field and the
TLS ensemble, where �s is the Rabi frequency between the
drive field and each TLS. In a rotating reference frame with
respect to the frequency ωd of the two drive fields, the total
Hamiltonian of the system can be converted to

H (d )
TC = �ca†a + �sJz + λ√

N
(aJ+ + a†J−) + (�aa† + �∗

aa)

+ 1√
N

(�JJ+ + �∗
JJ−), (2)

where �c(s) ≡ ωc(s) − ωd (>0) is the frequency detuning of
the cavity mode (TLS ensemble) relative to the corresponding
drive field. By introducing a displacement a = A + α and
a† = A† + α∗ with α = −�a/�c, i.e., a translation transform,
the above Hamiltonian becomes

H (d )
TC = �cA†A + �sJz + λ√

N
(AJ+ + A†J−)

+ 1√
N

[(�J + λα)J+ + (�∗
J + λα∗)J−], (3)

where A† and A are also bosonic creation and annihilation op-
erators obeying [A, A†] = 1. When the two drive fields satisfy
the parameter-matching condition �a/�J = �c/λ, the effects
of these two drive fields cancel each other and the Hamiltonian
is reduced to

H (d )
TC = �cA†A + �sJz + λ√

N
(AJ+ + A†J−), (4)

which has the same form as the standard TC model in Eq. (1),
but the critical coupling strength λ = λc ≡ √

�s�c becomes
experimentally accessible by reducing �c (�s) via tuning
the drive-field frequency ωd . Like the standard TC model in
Eq. (1), the effective TC model in Eq. (4) also exhibits a
normal (super-radiant) phase with unbroken (broken) parity
symmetry when λ < λc (λ > λc), and the TLS ensemble in
the thermodynamic limit has the critical behaviors [42],

〈Jz〉
(N/2)

=
{ −1, λ < λc;

−λ2
c/λ

2, λ � λc,
(5)
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and

〈J−〉
(N/2)

=
{ 0, λ < λc;(

1 − λ4
c/λ

4
)1/2

, λ � λc.
(6)

This gives 〈Jz〉 ∼ |λ − λc|νz and 〈J−〉 ∼ |λ − λc|ν− around
λ = λc, with critical exponents νz = 1 and ν− = 1/2. The
displaced cavity field can also display a QPT because
〈A〉 = −λ〈J−〉/(

√
N�c), i.e., 〈A†A〉 behaves as 〈A†A〉 ∼

|λ − λc|νA , with νA = 1. Therefore, 〈a†a〉 ∼ |λ − λc|νa , with
νa = 1/2 (see Appendix A), owing to 〈a〉 ≡ 〈A〉 + α =
−λ〈J−〉/(

√
N�c) − �a/�c. Note that two suitable drive

fields are required to demonstrate the QPT. If only one finite
drive field is applied (i.e., either �a 
= 0 but �J = 0 or �J 
= 0
but �a = 0), the effective Hamiltonian of the driven system
does not preserve the parity symmetry [45]. In this case, the
system can only tend to exhibit the critical behavior when the
sole drive field becomes extremely weak [42].

III. QPT IN THE NON-HERMITIAN CASE WITH GAIN

A. The passive-cavity case with loss

When the decoherence of the system is considered, the
system becomes non-Hermitian. For the standard TC model,
as demonstrated in Refs. [38,39], the QPT is spoiled by the
presence of any decay of the cavity. When including the
damping of the TLS ensemble, this limitation still exists [see
Eq. (10) below]. This discontinuity looks counterintuitive, but
is actually an intrinsic characteristic of the TC model. In most
cases when considering the damping of the system, the Dicke
model can exhibit the QPT [43,46,47], but it also has the sim-
ilar characteristic under specific circumstances. For instance,
when the decay of the cavity is considered but the radiative
decay of the TLS ensemble is ignored, the presence of an
infinitesimal nonradiative dephasing of the TLS ensemble can
completely spoil the QPT in the Dicke model [44]. Below we
first show that in our engineered TC model, the spoiling of
the QPT by an infinitesimal damping of the system occurs
only when the parameter-matching condition for the two drive
fields is exactly satisfied. If this condition is loosened, the
system can have nontrivial solutions in the presence of the
decoherence, but the corresponding behaviors deviate from
the QPT of the system. Then, we study how to recover the
QPT by introducing a gain medium in the cavity.

Here we use a quantum Langevin approach [35] to study
the critical behavior of the non-Hermitian system. With the
Hamiltonian in Eq. (2), the dynamics of the driven system is
governed by the following Langevin equations:

ȧ = −i(�c − iκc)a − i
λ√
N

J− − i�a+
√

2κc ain,

J̇− = −i(�s − iγ⊥)J− + i
2λ√

N
Jza + i2Jz

�J√
N

+
√

2γ⊥ J−, in,

J̇z = −i
λ√
N

(aJ+ − a†J−) − i
1√
N

(�JJ+ − �∗
JJ−)

− γ‖

(
N

2
+ Jz

)
+√

2γ‖ Jz, in, (7)

where κc is the decay rate of the cavity, γ⊥ (γ‖) is the transver-
sal (longitudinal) relaxation rate of the TLS ensemble, and

ain as well as J−, in and Jz, in are the input noise operators
related to the cavity and TLS ensemble, with 〈ain〉 = 〈J−, in〉 =
〈Jz, in〉 = 0. For any operator O, it can be written as a sum of
its expected value 〈O〉 and fluctuation δO, i.e., O = 〈O〉 + δO.
It follows from Eq. (7) that the expected values 〈a〉, 〈J−〉, and
〈Jz〉 satisfy

〈ȧ〉 = − i(�c − iκc)〈a〉 − i
λ√
N

〈J−〉 − i�a,

〈J̇−〉 = − i(�s − iγ⊥)〈J−〉 + i2
λ√
N

〈Jza〉 + i2〈Jz〉 �J√
N

,

〈J̇z〉 = − i
λ√
N

(〈aJ+〉 − 〈a†J−〉) − i
1√
N

(�J〈J+〉 − �∗
J〈J−〉)

− γ‖

(
N

2
+ 〈Jz〉

)
. (8)

As shown in Appendix B, the above equations can also be
derived using a master equation approach [48]. At the steady
state, 〈ȧ〉 = 〈J̇−〉 = 〈J̇z〉 = 0. From Eq. (8), we then obtain

(�c − iκc)〈a〉 + λ√
N

〈J−〉 + �a = 0,

(�s − iγ⊥)〈J−〉 − 2λ√
N

〈Jz〉〈a〉 − 2〈Jz〉 �J√
N

= 0,

λ√
N

(〈a〉〈J+〉 − 〈a†〉〈J−〉) + 1√
N

(�J〈J+〉 − �∗
J〈J−〉)

− iγ‖

(
N

2
+ 〈Jz〉

)
= 0, (9)

where a mean-field approximation is applied to the two-
operator terms, i.e., 〈Jza〉 = 〈Jz〉〈a〉 and 〈aJ+〉 = 〈a〉〈J+〉.
Note that the mean-field approximation is usually used to
study the QPT in both TC and Dicke models [39,41,44], be-
cause it can give accurate results in the thermodynamic limit
of the TLS ensemble (i.e., when the number of the TLSs is
sufficiently large) (cf. the results and discussions in Ref. [49]).
In Appendix C, we also show the results obtained beyond the
mean-field approximation in Eq. (9) and compare them with
the results obtained using Eq. (9). Actually, the difference
between them is negligibly small.

Substituting the first equation in Eq. (9) into the second and
third equations in Eq. (9) to eliminate 〈a〉, we have
[

1 + λ2

(�c�s − κcγ⊥) − i(�cγ⊥ + �sκc)

〈Jz〉
(N/2)

]
〈J−〉 = 0,

κcλ
2

�2
c + κ2

c

〈J+〉〈J−〉
(N/2)2

+ γ‖

(
1 + 〈Jz〉

(N/2)

)
= 0,

(10)

when using the parameter-matching condition for the two
drive fields, �a/�J = (�c − iκc)/λ, in the non-Hermitian
case. Obviously, Eq. (10) has only a set of trivial solutions
〈J−〉 = 0 and 〈Jz〉/(N/2) = −1. This verifies that the deco-
herence of the system ruins the QPT occurring in the standard
Hermitian TC model, which has also been demonstrated in
Refs. [38,39]. When parameter mismatch occurs for the two
drive fields, i.e., �a/�J 
= (�c − iκc)/λ, Eq. (10) can have
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nontrivial solutions for 〈J−〉 and 〈Jz〉, but the results consider-
ably deviate from the cusplike QPT behavior of the standard
TC model [cf. Fig. 5(b) in Appendix C], due to the decoher-
ence of the system.

B. The active-cavity case with gain

To recover the QPT, we introduce a gain medium in the
dissipative cavity. With the gain included, we obtain the same
equations as Eqs. (7)–(10), but κc is replaced by κ ≡ κc − κg,
where κg is the gain rate of the cavity owing to the gain
medium. Correspondingly, the parameter-matching condition
for the two drive fields becomes �a/�J = (�c − iκ )/λ. In
the non-Hermitian system with parity-time symmetry (see,
e.g., [50,51]), a gain medium is also introduced in the cavity,
where the damping rate κc of the cavity is replaced by κc − κg

as well. It balances the loss and gain in the system to have
real eigenvalues for the non-Hermitian Hamiltonian. In the
non-Hermitian system we consider, Eq. (10) has only a set
of real but trivial solutions 〈J−〉 = 0 and 〈Jz〉/(N/2) = −1.
Also, Eq. (10) has another set of solutions for 〈J−〉 and 〈Jz〉,
but this set of solutions is not physical because the obtained
〈Jz〉 is complex. Here, a gain medium is also introduced in
the cavity to balance the loss and gain in the system, but
the purpose is to have the complex solution of 〈Jz〉 become
real. As for the gain medium, it can be different for different
types of cavities. For instance, driven rare-earth-metal ions are
often used as the gain medium in optical cavities [50,51]. In
Sec. III C below, we will discuss the possible implementation
of the hybrid system, where a driven flux qubit can be used as
the gain medium of a coplanar-waveguide resonator [52].

Therefore, to recover the QPT, it is required that �cγ⊥ +
�sκ ≡ �cγ⊥ − �s(κg − κc) = 0, which gives the required
gain rate κ (0)

g = κc + γ⊥�c/�s. The parameter-matching con-
dition is reduced to �a/�J = �c(1 + iγ⊥/�s)/λ and Eq. (10)
becomes [

1 + λ2

�c�s
(
1 + γ 2

⊥/�2
s

) 〈Jz〉
(N/2)

]
〈J−〉 = 0,

γ⊥λ2

�c�s
(
1 + γ 2

⊥/�2
s

) 〈J+〉〈J−〉
(N/2)2

− γ‖

(
1 + 〈Jz〉

(N/2)

)
= 0. (11)

Now, besides the set of trivial solutions 〈Jz〉/(N/2) = −1 and
〈J−〉 = 0, Eq. (11) has also another set of nontrivial solutions,

〈Jz〉
(N/2)

= −λ2
c

λ2
,

〈J−〉
(N/2)

= λc

λ

[(
1 − λ2

c

λ2

)
γ‖
γ⊥

]1/2

, (12)

with λc modified as

λc ≡
√

�c�s
(
1 + γ 2

⊥/�2
s

)
. (13)

Here 〈J−〉 is assumed to be real for simplicity. As shown in
Fig. 2, when varying the critical coupling strength λc from
λ < λc to λ > λc, the proposed driven system exhibits a QPT
from the normal phase with 〈Jz〉/(N/2) = −1 and 〈J−〉 = 0 to
the super-radiant phase with 〈Jz〉 and 〈J−〉 given in Eq. (12).
In the non-Hermitian case with gain, 〈Jz〉/(N/2) has the same
behavior as in the Hermitian case [see Fig. 2(a)]. In fact,
around λ = λc, 〈Jz〉 ∼ |λ − λc|νz , with νz = 1. Figure 2(b)
shows that in the non-Hermitian case with gain, 〈J−〉/(N/2)
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0.0
0.2
0.4
0.6
0.8
1.0

(a)

0.0 0.5 1.0 1.5 2.0 2.5
-1.0
-0.8
-0.6
-0.4
-0.2
0.0

(b)

c c

FIG. 2. (a) 〈Jz〉/(N/2) and (b) 〈J−〉/(N/2) versus the reduced
coupling strength λ/�c under the parameter-matching condition
of the two drive fields. For the (black) solid curve, κc = γ⊥ =
γ‖ = κg = 0, while κc = γ⊥ = 1, γ‖ = 0.1, and κg = κ (0)

g = κc +
γ⊥�c/�s for the (red) dashed curve. Other parameters are λ =
8, �a/

√
N = 1, and �s = �c.

is much reduced in the regime of super-radiant phase, but it
can be analytically derived from Eq. (12) that around λ =
λc, 〈J−〉/(N/2) still exhibits the same critical behavior as in
the Hermitian case: 〈J−〉 ∼ |λ − λc|ν− , with ν− = 1/2.

From the first equation in Eq. (9), but with κc replaced by
κ = κc − κ (0)

g = −γ⊥�c/�s, we have

〈a〉 = − λ√
N�c(1 + iγ⊥/�s)

〈J−〉 − �a

�c(1 + iγ⊥/�s)
.

(14)
With γ⊥ = 0, it reduces to the result in the ideal Hermitian
case. In Fig. 3(a), we plot 〈a†a〉/N versus the reduced cou-
pling strength λ/�c in both the ideal Hermitian case and the
non-Hermitian case with gain. In these two cases, the results
for 〈a†a〉/N globally look different, but we can analytically
derive that 〈a†a〉/N in the non-Hermitian case with gain also
exhibits the same critical behavior as in the Hermitian case,
i.e., around λ = λc, 〈a†a〉/N ∼ |λ − λc|νa , with νa = 1/2 (see
Appendix A).

Without decoherence in the system (κc = γ⊥ = γ‖ = 0),
�a/�J = (�c − iκc)/λ is reduced to the parameter-matching
condition in the ideal Hermitian case, �a/�J = �c/λ, and
the second equation in Eq. (10) becomes trivial. In this Her-
mitian case, the results in Eqs. (5) and (6) are obtained by
solving the first equation in Eq. (10) and using the spin-
conservation law 〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2 = (N/2)2 [39,41]. In
contrast, when the decoherence of the system is considered,

0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.2
0.4
0.6
0.8
1.0

(a)
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0.2
0.4
0.6
0.8
1.0

(b)

c c

FIG. 3. (a) Mean photon number 〈a†a〉/N and (b) characteristic
quantity F of the TLS ensemble versus the reduced coupling strength
λ/�c, where κc = γ⊥ = γ‖ = κg = 0 for the (black) solid curve, and
κc = γ⊥ = 1, γ‖ = 0.1, and κg = κ (0)

g = κc + γ⊥�c/�s for the (red)
dashed curve. Other parameters are the same as in Fig. 2.
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FIG. 4. (a) 〈Jz〉/(N/2) versus the reduced coupling strength λ/�c

for κg = κ (0)
g , where �a/�J = �c(1 + iγ⊥/�s )/λ for the (black)

solid curve, �a/�J = 1.1�c(1 + iγ⊥/�s )/λ for the (red) dashed
curve, and �a/�J = 1.2�c(1 + iγ⊥/�s )/λ for the (blue) dotted
curve. (b) 〈Jz〉/(N/2) versus the reduced coupling strength λ/�c for
�a/�J = �c(1 + iγ⊥/�s )/λ, where κg = κ (0)

g for the (black) solid
curve, κg = 1.2κ (0)

g for the (red) dashed curve, and κg = 1.4κ (0)
g for

the (blue) dotted curve. Other parameters are the same as in Fig. 2.

the spin-conservation law is usually violated, with 〈Jx〉2 +
〈Jy〉2 + 〈Jz〉2 < (N/2)2 [43,44]. To characterize this viola-
tion, we define a characteristic quantity F = (〈Jx〉2 + 〈Jy〉2 +
〈Jz〉2)/(N/2)2. Obviously, F = 1 in the ideal Hermitian case
owing to the spin-conservation law. For the non-Hermitian
case with gain, it is easy to verify that F = 1 in the regime
of normal phase, but

F = λ2
c

λ2

(
1 − λ2

c

λ2

)
γ‖
γ⊥

+ λ4
c

λ4
(15)

in the regime of super-radiant phase, where the ratio γ‖/γ⊥ be-
tween the longitudinal- and transversal-relaxation rates plays
a significant role. In the non-Hermitian case with gain, F
monotonically decreases when λ/�c > 1.008 (corresponding
to λ > λc) [see the red dashed curve in Fig. 3(b)].

So far we have systematically studied the QPT of the driven
hybrid system in the parameter-matching case. However, in
the experiment, it is difficult to perfectly satisfy either the
parameter-matching condition for the two drive fields or the
condition for balancing the loss and gain in the system. Thus,
it is useful to investigate the effect of the parameter mis-
matches on the QPT. In Fig. 4, we plot 〈Jz〉/(N/2) versus the
reduced coupling strength λ/�c in both cases of the drive-
field mismatch and the gain-loss mismatch, as calculated from
Eq. (9) by replacing κc with κ = κc − κg. For comparison,
we also show the results for the perfect parameter-matching
case (the black solid curve) in which both �a/�J = �c(1 +
iγ⊥/�s)/λ and κg = κ (0)

g are satisfied. When κg = κ (0)
g but

the two drive fields have a mismatch, i.e., �a/�J 
= �c(1 +
iγ⊥/�s)/λ, the cusplike behavior of the QPT in the ideal case
becomes obscured, as shown in the red dashed and blue dotted
curves in Fig. 4(a). On the other hand, when the two drive
fields obey the condition �a/�J = �c(1 + iγ⊥/�s)/λ but
κg 
= κ (0)

g , the cusplike behavior of the QPT in the ideal case
becomes obscured as well [see the red dashed and blue dotted
curves in Fig. 4(b)]. Moreover, Eq. (9) can have bistable so-
lutions in the regime where the parameter-matching condition
for the two drive fields is largely deviated (see Appendix D).
Here, it is not the case we focus on.

C. Possible implementation

In the experiment, the proposed model with gain can be im-
plemented using a hybrid circuit-QED system composed of a
dissipative TLS ensemble, such as the nitrogen-vacancy (NV)
centers in diamond, coupled to an active coplanar-waveguide
resonator [see Fig. 1(b)]. The transition frequency of NV
centers can be tuned by an external magnetic field and the
number of NV centers in the sample can be N ∼ 1012 [53,54],
approaching the thermodynamic limit of the proposed system.
The hybrid system is usually in the strong-coupling regime
and can be described by a standard TC Hamiltonian in Eq. (1).

To engineer an active resonator, one can harness an aux-
iliary flux qubit transversely coupled to the resonator with
a coupling strength ga and longitudinally driven by two mi-
crowave fields [52]. After eliminating the degree of freedom
of the auxiliary qubit, the effective gain rate κg of the resonator
can be tuned from 0 to, e.g., 0.2ga (i.e., 2π × 6 MHz for
ga/2π = 30 MHz) by varying the amplitudes and frequencies
of the two microwave fields [52]. Moreover, as shown in
Fig. 1(b), two additional drive fields with Rabi frequencies �a

and �J pump the NV-center ensemble and the resonator, re-
spectively. When the parameter-matching condition �a/�J =
�c(1 + iγ⊥/�s)/λ is achieved for these two drive fields, an
experimentally accessible TC model is then engineered and
the relevant quantities for demonstrating the QPT are gov-
erned by Eqs. (11) and (14).

IV. DISCUSSIONS AND CONCLUSIONS

The special case with only one drive field was studied in
Refs. [42,45], which is related to the cavity or the TLS en-
semble pumped by a drive field, i.e., Eq. (2) with �a 
= 0 but
�J = 0 [42] or �J 
= 0 but �a = 0 [45]. At a finite strength
of this drive field, the biased TC model does not preserve
the parity symmetry due to the bias term and the QPT dis-
appears in the system [45]. Only in the weak drive-field limit
[i.e., either �a → 0 when �J = 0 or �J → 0 when �a = 0
in Eq. (2)] can the model tend to have the QPT [42]. For
a realistic system, the cusplike QPT behavior is, however,
much smoothened by the inevitable cavity loss and the dis-
sipation of the TLS ensemble even in the weak drive-field
limit [40]. In our proposal, when the two drive fields satisfy
the parameter-matching condition, we can obtain an effective
TC Hamiltonian with parity symmetry [i.e., Eq. (4)]. This TC
Hamiltonian can exhibit QPT at an experimentally accessible
critical coupling strength and the weak drive-field limit is
not necessary. Even with the decoherence of the system, the
QPT behavior is still achievable by harnessing an active cavity
(instead of a passive cavity). Very recently, the QPT in a TC
model induced by a single squeezed drive field was investi-
gated [41], where the effective Hamiltonian is a biased TC
model with a two-photon drive term, corresponding to Eq. (2)
with �aa† + �∗

aa replaced by �aa†2 + �∗
aa2 and �J = 0.

Using a squeezing transformation, this biased TC Hamilto-
nian can be transformed to an anisotropic Dicke Hamiltonian
[55]. Experimentally, if a pure squeezed drive field, a†2 + a2,
cannot be achieved, as discussed above, any finite unsqueezed
part of the single drive field can ruin the QPT. In our study,
the obtained effective Hamiltonian in Eq. (4) is a standard TC
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model without the bias term and no squeezed drive field is
required. Also, the spin-conservation law is used in Ref. [41].
It is different from our non-Hermitian case in which the spin-
conservation law is found to be violated [43,44].

In conclusion, we have studied the QPT in a TC model
engineered with two drive fields applied to the TLS ensem-
ble and the cavity, respectively. In the ideal Hermitian case
without decoherence, the QPT can occur at an experimentally
accessible critical coupling strength, but it is spoiled by the
decoherence of the system. In this non-Hermitian case, we
find that the QPT can be recovered by harnessing a gain in the
cavity to balance the loss of the TLS ensemble. In sharp con-
trast to the spin conservation in the ideal Hermitian case, the
spin-conservation law is, however, found to be violated in our
non-Hermitian case. Moreover, we propose to implement this
non-Hermitian TC model using a hybrid circuit-QED system.
Our work provides an experimentally realizable approach to
achieving QPT in the non-Hermitian TC model.
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APPENDIX A: CRITICAL EXPONENT OF THE MEAN
PHOTON NUMBER IN THE CAVITY

1. The ideal Hermitian case

In the ideal Hermitian case without decoherence in the
system, it follows from Eq. (14) that

〈a〉 = − λ√
N�c

〈J−〉 − �a

�c
, (A1)

by having γ⊥ = 0, where 〈J−〉 is given by Eq. (6). The mean
photon number 〈a†a〉 in the cavity can be written as

〈a†a〉
N

=
⎧⎨
⎩

∣∣ (�a/
√

N )
�c

∣∣2
, λ < λc;

∣∣ λ
2�c

(
1 − λ4

c
λ4

)1/2 + (�a/
√

N )
�c

∣∣2
, λ � λc.

(A2)

To reveal the critical behavior of the mean photon number,
we study the variation of the mean photon number around the
critical coupling strength λc = √

�c�s,

δn ≡ 〈a†a〉
N

− 〈a†a〉
N

∣∣∣∣
λ=λc

= λ2

4�2
c

(
1 − λ4

c

λ4

)
+ λ(�a/

√
N )

�2
c

(
1 − λ4

c

λ4

)1/2

+
[

(�a/
√

N )2

�2
c

− (�a/
√

N )2

�2
c

∣∣∣∣
λ=λc

]
. (A3)

Here we assume the Rabi frequency �a to be real. In our
model, a finite drive power (�a 
= 0) is applied to the cavity,
so the critical behavior of the mean photon number around the
critical coupling strength λc is dominantly determined by the
second term in Eq. (A3). Therefore, we have

lim
λ→λc

δn = 2(�a/
√

N )
√

λc

�2
c

(λ − λc)1/2 ∼ (λ − λc)νa , (A4)

with the critical exponent νa = 1/2.

2. The non-Hermitian case with gain

In the non-Hermitian case with gain, it follows from
Eqs. (12) and (14) that the mean photon number 〈a†a〉 in the
cavity can be written as

〈a†a〉
N

=
⎧⎨
⎩

∣∣ (�a/
√

N )
�c (1+iγ⊥/�s )

∣∣2
, λ < λc;

∣∣ λc
2�c (1+iγ⊥/�s )

[(
1 − λ2

c
λ2

) γ‖
γ⊥

]1/2 + (�a/
√

N )
�c (1+iγ⊥/�s )

∣∣2
, λ � λc,

(A5)

where the critical coupling strength is modified as λc ≡√
�c�s(1 + γ 2

⊥/�2
s ). The variation of the mean photon num-

ber around the critical coupling strength λc is

δn ≡ 〈a†a〉
N

− 〈a†a〉
N

∣∣∣∣
λ=λc

= λ2
c

4�2
c

(
1 + γ 2

⊥/�2
s

)
[(

1 − λ2
c

λ2

)
γ‖
γ⊥

]

+ λc(�a/
√

N )

�2
c

(
1 + γ 2

⊥/�2
s

)
[(

1 − λ2
c

λ2

)
γ‖
γ⊥

]1/2

+
[

(�a/
√

N )2

�2
c

(
1 + γ 2

⊥/�2
s

) − (�a/
√

N )2

�2
c

(
1 + γ 2

⊥/�2
s

)
∣∣∣∣
λ=λc

]
. (A6)

The critical behavior of the mean photon number around the
critical coupling strength λc is also dominantly determined
by the second term in Eq. (A6). Then, we obtain the criti-
cal behavior of 〈a†a〉 in the considered non-Hermitian case
with gain,

lim
λ→λc

δn = (�a/
√

N )
√

2λcγ‖/γ⊥
�2

c

(
1 + γ 2

⊥/�2
s

) (λ − λc)1/2 ∼ (λ − λc)νa ,

(A7)
which has the same critical exponent νa = 1/2 as in the Her-
mitian case.

APPENDIX B: DERIVATION OF EQ. (8) VIA A MASTER
EQUATION APPROACH

In the non-Hermitian case, we can also study the QPT
using a master equation approach. With the relations
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Jα = 1
2

∑N
k=1 σ (k)

α and J± = ∑N
k=1 σ

(k)
± , α = x, y, z, the

Hamiltonian of the driven system in Eq. (2) can be rewritten
as

H (d )
TC = �ca†a + �s

2

N∑
k=1

σ (k)
z + λ√

N

N∑
k=1

[aσ
(k)
+ + a†σ

(k)
− ]

+ (�aa† + �∗
aa) + 1√

N

N∑
k=1

[�Jσ
(k)
+ + �∗

Jσ
(k)
− ],

(B1)

where σ (k)
α are the spin-1/2 Pauli operators related to the

kth TLS in the ensemble, and σ
(k)
± = [σ (k)

x ± iσ (k)
y ]/2 are the

corresponding raising and lowering operators.
The master equation for the density matrix ρ of the system

can be written, in the Lindblad form, as [48]

ρ̇ = i[ρ, H] + κc(2aρa† − a†aρ − ρa†a)

+ γp

N∑
k=1

[
σ (k)

z ρσ (k)
z − ρ

]

+ γh

N∑
k=1

[
2σ

(k)
− ρσ

(k)
+ − σ

(k)
+ σ

(k)
− ρ − ρσ

(k)
+ σ

(k)
−

]
, (B2)

where γp and γh are the nonradiative dephasing rate and
the radiative decay rate of the individual TLSs, respectively,
while κc is the decay rate of the cavity. From the master
equation in Eq. (B2), we can derive the equation of motion
for the expectation value of the operator O (= {a, σ

(k)
− , σ (k)

z })
via the relation 〈Ȯ〉 = Tr[ρ̇O],

〈ȧ〉 = −i(�c − iκc)〈a〉 − i
λ√
N

N∑
k=1

〈σ (k)
− 〉 − i�a,

〈σ̇ (k)
− 〉 = −i(�s − iγ⊥)〈σ (k)

− 〉 + i
λ√
N

〈
σ (k)

z a
〉 + i

〈
σ (k)

z

〉 �J√
N

,

〈
σ̇ (k)

z

〉 = −γ‖
(
1 + 〈

σ (k)
z

〉) − 2i
λ√
N

(〈aσ
(k)
+ 〉 − 〈a†σ

(k)
− 〉)

− 2i
1√
N

(
�J〈σ (k)

+ 〉 − �∗
J〈σ (k)

− 〉), (B3)

where the transverse relaxation rate is γ⊥ = γh + 2γp and the
longitudinal relaxation rate is γ‖ = 2γh. Summing the second
and third equations in Eq. (B3) over all TLSs in the ensemble,
respectively, we obtain

〈ȧ〉 = −i(�c − iκc)〈a〉 − i
λ√
N

〈J−〉 − i�a,

〈J̇−〉 = −i(�s − iγ⊥)〈J−〉 + i
2λ√

N
〈Jza〉 + i2〈Jz〉 �J√

N
,

〈J̇z〉 = −i
λ√
N

(〈aJ+〉 − 〈a†J−〉) − i
1√
N

(�J〈J+〉 − �∗
J〈J−〉)

− γ‖

(
N

2
+ 〈Jz〉

)
, (B4)

where the relations Jz = 1
2

∑N
k=1 σ (k)

z and J± = ∑N
k=1 σ

(k)
± are

used. This is just Eq. (8) in the main text.

APPENDIX C: RESULTS BEYOND THE MEAN-FIELD
APPROXIMATION IN EQ. (9)

In Sec. III, we have used the mean-field approximation,
〈Jza〉 = 〈Jz〉〈a〉 and 〈aJ+〉 = 〈a〉〈J+〉, and neglect the correla-
tions due to the two-operator terms Jza and aJ+. Below we
consider these correlations. Without the mean-field approxi-
mation, Eq. (8) at the steady state is reduced to

(�c − iκc)〈a〉 + λ√
N

〈J−〉 + �a = 0,

(�s − iγ⊥)〈J−〉 − 2λ√
N

〈Jza〉 − 2〈Jz〉 �J√
N

= 0,

λ√
N

(〈aJ+〉 − 〈a†J−〉) + 1√
N

(�J〈J+〉 − �∗
J〈J−〉)

− iγ‖

(
N

2
+ 〈Jz〉

)
= 0. (C1)

Also, with the quantum Langevin approach, we can further
write the equations of motion for the two-operator terms Jza
and aJ+,

d

dt
(Jza) = −i

[
�c − i(κc + γ‖)

]
Jza − N

2
γ‖a − i

λ√
N

(JzJ−

− a†aJ− + aaJ+) − i
1√
N

(�JaJ+ − �∗
JaJ−)

− i�aJz +
√

2κcJzain + √
2γ‖ aJz, in,

d

dt
(aJ+) = −i

[
(�c − �s) − i(κc + γ⊥)

]
aJ+ − i

λ√
N

(J−J+

+ 2Jzaa†) − i�aJ+ − i2
�∗

J√
N

Jza +
√

2κcJ+ain

+
√

2γ⊥aJ+, in. (C2)

Here we consider the leading contributions from Jza and aJ+
by applying a mean-field approximation to other multiple-
operator terms in Eq. (C2). Thus, we have

d

dt
〈Jza〉 = − i

[
�c − i(κc + γ‖)

]〈Jza〉 − N

2
γ‖〈a〉

− i
λ√
N

(〈Jz〉〈J−〉 − 〈a†J−〉〈a〉 + 〈aJ+〉〈a〉)

− i
1√
N

(�J〈aJ+〉 − �∗
J〈a〉〈J−〉) − i�a〈Jz〉,

d

dt
〈aJ+〉 = − i[(�c − �s) − i(κc + γ⊥)]〈aJ+〉

− i
λ√
N

(〈J−〉〈J+〉 + 2〈Jza〉〈a†〉) − i�a〈J+〉

− i2
�∗

J√
N

〈Jza〉.

(C3)
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FIG. 5. 〈Jz〉/(N/2) versus the reduced coupling strength λ/�c

under (a) the parameter-matching condition �a/�J = (�c − iκc )/λ
and (b) the parameter-mismatching condition �a/�J = 1.2(�c −
iκc )/λ for the two drive fields, where the (black) solid curves are
calculated using Eq. (9), while the (red) dashed curves are calculated
using both Eqs. (C1) and (C4). Here κg = 0, which corresponds to
the passive-cavity case. Other parameters are the same as in Fig. 2.

At the steady state, d〈Jza〉/dt = d〈aJ+〉/dt = 0, which gives

[�c − i(κc + γ‖)]〈Jza〉 − i
N

2
γ‖〈a〉 + λ√

N
(〈Jz〉〈J−〉

− 〈a†J−〉〈a〉 + 〈aJ+〉〈a〉) + 1√
N

(�J〈aJ+〉

− �∗
J〈a〉〈J−〉) + �a〈Jz〉 = 0,

[(�c − �s) − i(κc + γ⊥)]〈aJ+〉 + λ√
N

(〈J−〉〈J+〉

+ 2〈Jza〉〈a†〉) + �a〈J+〉 + 2
�∗

J√
N

〈Jza〉 = 0.

(C4)

We can also study the steady-state behaviors of the system
by numerically solving both Eqs. (C1) and (C4), which are
beyond the mean-field approximation in Eq. (9).

In Fig. 5, we plot the expectation value 〈Jz〉/(N/2)
versus the reduced coupled strength λ/�c under the
parameter-matching condition �a/�J = (�c − iκc)/λ and
the parameter-mismatching condition �a/�J = 1.2(�c −
iκc)/λ for the two drive fields, respectively (see the red dashed
curves). These results are obtained by numerically solving
both Eqs. (C1) and (C4). Obviously, they are nearly identical
to those obtained from Eq. (9) (comparing the red dashed
curves with the black solid curves in Fig. 5). This clearly
shows that the mean-field approximation in Eq. (9) can indeed
give accurate results in the thermodynamic limit of the TLS
ensemble, as demonstrated in Ref. [49] as well.

APPENDIX D: BISTABILITY OF THE SYSTEM

Below we show that when the deviation of the parameter-
matching condition for the two drive fields becomes
sufficiently large, bistability can occur in the driven sys-
tem. Here we take the passive-cavity case of κg = 0 as
an example to demonstrate this phenomenon. In Fig. 6,
we plot 〈Jz〉/(N/2) versus the reduced frequency detun-
ing �c/λ for various drive-field mismatches. When the
two drive fields satisfy the parameter-matching condition

-2 -1 0 1 2
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-0.2
0.0
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c c

FIG. 6. 〈Jz〉/(N/2) versus the reduced frequency detuning �c/λ

in the passive-cavity case of κg = 0, calculated using Eq. (9),
where (a) �a/�J = 0.87(�c − iκc )/λ, (b) �a/�J = 0.77(�c −
iκc )/λ, (c) �a/�J = 0.7(�c − iκc )/λ, and (d) �a/�J = 0.6(�c −
iκc )/λ. Other parameters are the same as in Fig. 2.

�a/�J = (�c − iκc)/λ, the effects of the two drive fields can-
cel each other, corresponding to a zero effective drive strength
on the system. It is expected that this effective drive strength
increases with the deviation of the parameter-matching condi-
tion for the two drive fields. For a small deviation (i.e., weak
effective drive strength), the TLS ensemble is in low-lying ex-
citations and the coupled TLS ensemble-cavity system can be
approximated by a model of two coupled harmonic oscillators
(see, e.g., Ref. [56]). In such a case, 〈Jz〉/(N/2) is a single-
valued function of the reduced frequency detuning �c/λ,
which has two peaks around �c/λ = ±1 [see Fig. 6(a)].

When the deviation is sufficiently large (corresponding to
a strong effective drive strength), the coupled TLS ensemble-
cavity system exhibits the bistable behavior [see Fig. 6(b)],
where the higher and lower branches are stable and the
intermediate branch (the red dashed parts of the curve) is
unstable. This is similar to the bistable phenomenon ob-
served in Ref. [57]. When further increasing the deviation
of the parameter-matching condition for the two drive fields,
the parts of the curve corresponding to the unstable so-
lutions form a closed loop [see the red dashed parts of
the curve in Fig. 6(c)]. For an even larger deviation of
the parameter-matching condition for the two drive fields,
〈Jz〉/(N/2) becomes a single-valued function of �c/λ again
[see Fig. 6(d)]. Now, the TLS ensemble is in the state of very
high excitations and it is approximately decoupled from the
cavity. In the active-cavity case with gain, we can also obtain
the similar results above. In the experiment, the parameter-
matching condition for the two drive fields can be closely
achieved. It is in the regime that has a small deviation of the
parameter-matching condition for the two drive fields, where
the bistability does not occur in the coupled TLS ensemble-
cavity system.
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