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Bell nonlocality with intensity information only
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We address the problem of detecting bipartite Bell nonlocality whenever the only experimental information
are the intensities produced in each run of the experiment by an unknown number of particles. We point out
that this scenario naturally occurs in Bell experiments with parametric down-conversion when the crystal is
pumped by strong pulses, in Bell tests with distant sources and in which particles suffer different delays during
their flight, in Bell experiments using living cells as photo detectors, and in Bell experiments where the pairing
information is physically removed. We show that, although Bell nonlocality decreases as the number of particles
increases, if the parties can distinguish arbitrarily small differences of intensities and the visibility is larger than
0.98, then Bell nonlocality can still be experimentally detected with fluxes of up to 15 particles. We show that
this prediction can be tested with current equipment in a Bell experiment where pairing information is physically
removed, but requires the assumption of fair sampling.
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I. INTRODUCTION

A. Motivation

Bell nonlocality, that is, the violation of Bell inequalities
[1], is one of the most characteristic signatures of quantum
theory and has a wide range of applications for communica-
tion and computation [2]. However, Bell nonlocality vanishes
if the following hold true.

(i) The only experimental information available to the par-
ties (Alice and Bob) are the intensities registered by their
respective detectors.

(ii) Intensities are produced by continuous fields (rather
than by discrete particles).

(iii) The parties can only measure changes in intensity
values of the order of

√
N , where N is the number of particles.

To explain why, let us consider the simplest Bell scenario:
two parties, each of them with two measurement options,
x ∈ {1, 2} for Alice and y ∈ {1, 2} for Bob, and each mea-
surements with two possible outcomes, a ∈ {0, 1} for Alice’s
measurements and b ∈ {0, 1} for Bob’s. Alice and Bob, using
classical communication, can compute the marginal probabil-
ity densities p(Ia|x, Ib|y)dIa|xdIb|y, where Ia|x and Ib|y are the
intensities registered by, respectively, Alice’s and Bob’s de-
tectors. If conditions (i) to (iii) hold, then, in the limit N � 1,
consistency with classical physics forces this set of marginal
distributions to admit a local hidden variable model for the
intensities. In this case, it is said that the intensities exhibit
“macroscopic locality” [3].

Here, we investigate what happens when condition (i)
holds but conditions (ii) and (iii) do not. While in a standard
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Bell test, every time one party chooses a measurement setting
detects one particle, as illustrated in Fig, 1(a), in this work
we assume that, instead of that, each party detects N > 1
particles. In addition, we assume that each party only has
access to the intensities these N particles have produced and
may not even know in advance the value of N , which may also
be slightly different in different runs of the experiment. See
Fig. 1(b). However, we assume that the parties can distinguish
any small difference of intensity between their two detectors.
The problem we address is what happens with the violation of
a Bell inequality when, in each run of a Bell experiment (i.e.,
when Alice has chosen to measure x and Bob has chosen to
measure y), both detectors on each party might detect some
photons, and they have to provide an outcome based on the
detection.

Our motivation for investigating this problem is twofold.
From a fundamental perspective, we know that the electro-
magnetic field behaves as made of individual packets called
photons and, therefore, intensities can be seen as produced by
an accumulation of discrete particles. That is, we know that,
from a fundamental perspective, condition (ii) does not hold.

In addition, from a practical perspective, there are several
scenarios in which the only experimental information avail-
able to Alice and Bob are intensities while Alice and Bob
can still distinguish small differences of intensities. We have
identified the following examples.

(1) Bell experiments, where the source uses a paramet-
ric down-conversion process [4] and the nonlinear crystal is
pumped with strong pulses, so each pulse sometimes produces
N pairs of entangled photons rather than a single pair. Here,
we assume that the detectors can collect all these photons.
This is possible using, for instance, special arrays of nanowire
detectors [5]. Notice that in these experiments the visibility
of the state is intrinsically affected by the thermal nature
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FIG. 1. (a) Standard Bell test in which the source emits a pair of
entangled particles and each of Alice and Bob detects one of them
after choosing their respective measurement setting. (b) Bell test
studied here, in which the source emits N pairs of entangled particles
and each of Alice and Bob only detect the intensities produced by
a flux of N particles after choosing their respective measurement
setting.

of the source thus it may be difficult to achieve very high
visibilities.

(2) Bell experiments where the source of entangled pairs
is moving and far from the detectors. In addition, there may
be disturbances during the propagation of the particles which
make it impossible to identify which particle of Alice is
entangled with which particle of Bob. For example, this hap-
pens when the source randomly oscillates in the direction of
propagation of the particles at higher speeds than the speed
of propagation of the particles and/or when particles propa-
gate at different speeds due to local disturbances. Recall that
the propagating particles may not be photons and also that
photons can slow down when passing through a slow-light
medium [6]. A similar situation is that of future satellite-to-
ground Bell tests in which the source is in the satellite and
both Alice and Bob are in the ground (in current satellite-to-
ground Bell tests, Alice is in the satellite with the source [7]).
Other example would be Bell tests with hypothetical cosmic
sources of entanglement.

(3) In Bell experiments that use hybrid photo detectors
that incorporate living cells. For example, rod photoreceptor
cells taken from the eye of a frog [8]. There, each rod has
an outer segment that contains rhodosin molecules that under-
goes a chemical change when exposed to light. This results in
an electrical signal that is picked up by the nervous system and
relayed to the brain. When submitted to a flux of photons, each
photon interacts with just one rhodosin molecule [8]. If one
can distinguish which electrical signal (the one corresponding
to 0 or the one corresponding to 1) corresponds to a higher
intensity, then we are in the case that we are considering.
If this distinction would be possible in the brain, we could
detect Bell nonlocality using human eyes and without needing
entanglement amplification (as in [9,10]).

(4) In Bell experiments where pairing information is
physically erased. We introduce and discuss one of these ex-
periments in Sec. III.

B. Relation to previous works

Bell experiments with only intensity information have been
discussed before for different purposes [3,11–13]. Here, we
point out some differences between these works and the
present work.

Bancal et al. [11] defined a “multipair [bipartite] scenario”
as one where there are N independent sources and each pro-
duces a pair of particles (or, equivalently, there is a single
source producing N pairs), the pairing between Alice’s and
Bob’s particles is lost during their transmission, and each
party measures all their incoming particles in the same basis.
For these scenarios, they showed that several strategies allow
for Bell nonlocality. However, none of the scenarios 1 to 4
above, is mentioned.

In a follow-up paper, Poh et al. [12] showed a strategy
that leads to a larger violation for multipair scenarios and
include an experiment to demonstrate this advantage. These
works assumed that N is constant during the experiment and
known by the parties, so adaptive strategies depending on N
are possible.

In contrast to that, in the physical Bell tests with only
intensity information we are interested in (scenarios 1 to 4),
N can be unknown to the parties and can slightly change in
each run of the experiment. Hence, the parties may have to
chose their measurements not knowing N . This is the reason
why in this paper we fix the local measurements and do not
consider strategies that depend on N . On the other hand,
while the experiment in [12] is a Bell experiment with particle
pairing information but postprocessed to simulate the loss of
pairing information, in this work we emphasize that there are
actual Bell experiments in which the pairing information is
physically removed either effectively, as in examples 1 to 3,
or fundamentally, as in example 4 (see Sec. III).

To conclude, in [13] Zhou et al. also considered Bell exper-
iments with only detection intensities. However, their aim was
to discuss a version of the macroscopic locality “principle”
introduced in [3] for trying to single out Bell nonlocal corre-
lations from fundamental principles. For a recent development
on this subject, see [14].

C. Bell versus contextuality experiments with intensities

Before continuing, it is important to stress that the limi-
tation that the only experimental information available is the
intensities in each detector creates a fundamentally different
problem in Bell experiments than in Kochen-Specker con-
textuality experiments [15]. In the second case, space-like
separation plays no role so in the Kochen-Specker contex-
tuality experiment equivalent to the simplest Bell inequality
experiment Bob’s measurement can be time-like separated
from Alice’s. This allows us to encode each of Alice’s discrete
outcomes in an extra degree of freedom (for example, path
[16], time [17], or polarization [18]) before Bob’s measure-
ment is performed. This allows us to guide the flux of discrete
particles to four different detectors: the first, corresponding to
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the case the outcomes of Alice and Bob are 0,0 (respectively);
the second for the case 0,1; the third for 1,0; and the fourth
detector for 1,1. This trick of encoding Alice’s outcomes in an
extra degree of freedom before performing Bob’s measure-
ment allows us to recover quantum contextual correlations
even using classical microwaves and classical light [19,20].
However, this trick is not possible when there is space-like
separation between Alice’s and Bob’s measurements as is the
case in Bell experiments.

D. Structure of the paper

The structure of the paper is as follows. In Sec. II A, we
begin by assuming that both the state preparation and the de-
tection efficiency are perfect. That is, that there is no noise and
each of Alice and Bob detects N particles. Then, in Sec. II B,
we study the effect of noise, and in Sec. II C, we study the
effect of imperfect detection. In Sec. III, we propose testing
this prediction in an experiment in which pairing information
is physically erased.

II. RESULTS

A. Ideal case

We consider the simplest Bell inequality, the Clauser-
Horne-Shimony-Holt [21] Bell inequality, in the version
proposed by Zohren and Gill in [22], namely,

S � 1, (1)

with

S = p(01|22) + p(10|12) + p(01|11)

+ p(11|21) + p(10|21) + p(00|21), (2)

where p(ab|xy) is the probability of obtaining outcomes a and
b for measurements x and y, respectively.

In the case of N = 1, the maximum quantum violation is

S = 3 − √
2

2
≈ 0.793, (3)

and is achieved, for example, with the state

|φ+〉 = 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B), (4)

where, e.g., |0〉A denotes that Alice’s particle is in the state
represented by the vector (1

0) and |1〉B denotes that Bob’s

particle is in the state represented by (0
1), and the following

measurement settings:

Mx=1 = 1

2
(1 − σx ), Mx=2 = 1

2
(1 − σy), (5a)

My=1 = 1

2

(
1 − σx + σy√

2

)
, My=2 = 1

2

(
1 − σx − σy√

2

)
,

(5b)

where 1 denotes the identity matrix and σn the Pauli matrix
in the direction n. Each of these observables has two possible
outcomes: 0 and 1, corresponding to the eigenvalues of the
operator that represents the observable.

Now we consider the case in which, in each run of the Bell
experiment, each of Alice and Bob receives a number N > 1
of particles every time they chose their measurement. N0 of the
particles end up in the detector corresponding to the outcome
0 of the measurement and N1 = N − N0 of the particles end
up in the detector corresponding to the outcome 1. There is no
information about the order in which the particles arrived. The
only information are the intensities I0 = kN0 and I1 = kN1

in each detector. Using this information, each of the parties,
without communicating with the other party, should provide
an outcome 0 or 1. The question is which is the strategy that
better preserves Bell nonlocality.

After checking all possible alternatives, we found that an
optimal strategy is the one in which each party outputs the
detector that has higher intensity. That is, if I0 > I1, then the
party outputs 0, while, if I0 � I1, then the party outputs 1.

Then, for example, to compute pN (ab|xy), defined as the
probability of Alice yielding the outcome a for measurement
x, and Bob yielding the outcome b for measurement y, when
each of them detect N particles, we have to sum the probabil-
ities of all the possible ways in which N particles in Alice’s
side and N particles in Bob’s side may have induced Alice to
output a and Bob to output b.

For example, for N = 2,

p2(01|xy) = p(00|xy)p(01|xy) + p(01|xy)p(00|xy)

+ p(01|xy)p(01|xy), (6)

where p(00|xy)p(01|xy) is the probability that the first pair
of particles ended in detector 0 for Alice and Bob, while the
second pair ended in Alice’s detector 0 and Bob’s detector 1.

For arbitrary N ,

pN (00|xy) =
∑

∑N
i=1 ai<

N
2

∑
∑N

j=1 b j<
N
2

N∏
k=1

p(akbk|xy), (7a)

pN (01|xy) =
∑

∑N
i=1 ai<

N
2

∑
∑N

j=1 b j� N
2

N∏
k=1

p(akbk|xy), (7b)

pN (10|xy) =
∑

∑N
i=1 ai� N

2

∑
∑N

j=1 b j<
N
2

N∏
k=1

p(akbk|xy), (7c)

pN (11|xy) =
∑

∑N
i=1 ai� N

2

∑
∑N

j=1 b j� N
2

N∏
k=1

p(akbk|xy). (7d)

Therefore, we can define

SN = pN (01|22) + pN (10|12) + pN (01|11)

+ pN (11|21) + pN (10|21) + pN (00|21) (8)

and compute the maximum quantum violation of the Bell
inequality SN � 1 as a function of N . The result of our cal-
culations is presented in Fig. 2 (the case V = 1.0).

Notice that the maximum quantum violation depends on
whether N is even or odd. The violation of the Bell inequality
is larger for N odd. This is due to the fact that only when N is
odd are the intensities in both detectors always unequal, so the
strategy of yielding the largest intensity as outcome partially
keeps the quantum behavior. In contrast, when N is even, the
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FIG. 2. Maximum quantum violation of the Bell inequality SN �
1 as a function of the number N of particles detected by each party for
states of the form (9), for different values of V . For a given V , the vi-
olation is larger when N is odd. For V = 0.95, the violation vanishes
for N > 9, if N is odd, and for N > 4 if N is even. For V = 0.97,
the violation vanishes for N > 17, if N is odd, and for N > 6 if N is
even. For V � 0.99, there is always violation (although very small)
at least up to N = 18. Obtaining the maximum quantum violation
for higher values of N requires computing power that exceeds our
capabilities.

intensities in both detectors are sometimes equal and then
yielding 1 as the outcome destroys any quantum correlation
and degrades the violation.

B. Effect of noise

So far, we assumed that the state is perfect. Here, we ex-
amine the case in which the state is affected by some amount
of white noise. Specifically, we assume that the prepared
state is

ρ = V |φ+〉〈φ+| + (1 − V )14 , (9)

where V , sometimes referred to as the visibility of the state,
is not 1. For state-of-the-art photonic experiments V � 0.98
[23]. Here, we computed the maximum quantum violation for
V = 0.95, V = 0.97, and V = 0.99. The results are presented
in Fig. 2 (red circles, blue squares, and green triangles, respec-
tively).

The maximum quantum violation depends on whether N
is even or odd. Higher noise makes the violation disappear
for smaller values of N . Interestingly, our results suggest
that, with V ≈ 0.99, it is possible to experimentally observe
a statistically significant violation of the Bell inequality even
with fluxes of up to 15 particles.

C. Inefficient detectors

So far we assumed that the detectors capture the N pairs
of particles emitted by the source. However, in actual ex-
periments detectors only capture a fraction of the particles.
Therefore, an interesting question is how robust the violation
of inequality SN � 1 is when some of the particles are missing
but the parties keep following the same strategy. That is, if one
party observes I0 > I1 in its detectors, then the party outputs
0, and, if it observes I0 � I1, then the party outputs 1.

Here we obtain the minimum detection efficiency ηmin

needed to observe the violation of inequality SN � 1 using the
strategy mentioned above, as a function of N . The detection
efficiency is the ratio between the number of particles detected
by a detector and the number of particles emitted towards that
detector. We assume that the source is heralded, V = 1, all
detectors have the same detection efficiency η, and there are
no dark counts during the experiment.

For N = 1, the strategy described above is equivalent to
yielding outcome 1 when no detection occurs. Then, we have
the following cases.

1.1 With probability η2, both parties detect its particle. For
this subensemble, S1 = 3−√

2
2 .

1.2 With probability η(1 − η), Alice detects and Bob
does not. Therefore, Bob observes I0 = I1 and always outputs
1. Therefore, for this subensemble, S1 = pA(0|2) + 0 +
pA(0|1) + pA(1|2) + 0 + 0 = 1

2 + 0 + 1
2 + 1

2 + 0 + 0 = 3
2 ,

where pA(0|2) is the probability that Alice finds the particle
in detector 0 (and then outputs 0) when she measures 2.

1.3 With probability (1 − η)η, Alice does not detect
and Bob detects. Therefore, Alice observes I0 = I1 and al-
ways outputs 1. Therefore, for this subensemble, S1 = 0 +
pB(0|2) + 0 + pB(1|1) + pB(0|1) + 0 = 3

2 .
1.4 Finally, with probability (1 − η)2, neither Alice nor

Bob detects, so each of them always outputs 1. For this
subensemble, S1 = 0 + 0 + 0 + 1 + 0 + 0 = 1.

Therefore, ηmin follows from demanding that

η2

(
3 − √

2

2

)
+ 2η(1 − η)

3

2
+ (1 − η)2 < 1, (10)

which implies

ηmin(N = 1) = 2

1 + √
2

≈ 0.828. (11)

That is, there is Bell nonlocality (without making the fair
sampling assumption; see below) if the detection efficiency
is higher than this value. This value coincides with the one
obtained for N = 1 after optimizing over all strategies [24].

Let us now suppose that N = 2. Then, we have the follow-
ing cases.

2.1 With probability η4, each of Alice and Bob detects the
two particles. For this subensemble, S2 = 21

16 − 1
2
√

2
, where S2

is defined in Eq. (8).
2.2 With probability 2η3(1 − η), Alice detects the two

particles and Bob only detects one (and thus he outputs the
detector in which he found the particle). The factor of 2 comes
from the fact that the particle that Bob detects can be the one
of the first part or the one of the second pair. To compute
the value of S2 for this subensemble, let us assume that Bob
detects the first particle but not the second (the value of S2 is
the same if Bob detects the second but not the first one). Then,

S2 = p(01|22)pA(0|2) + p(00|12)pA(1|1)

+ p(10|12)pA(0|1) + p(10|12)pA(1|1)

+ p(01|11)pA(0|1) + p(01|21)pA(1|2)

+ p(11|21)pA(0|2) + p(11|21)pA(1|2)

+ p(00|21)pA(1|2) + p(10|21)pA(0|2)
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+ p(10|21)pA(1|2) + p(00|21)pA(0|2)

= [p(01|22) + p(00|12) + p(10|12) + p(10|12)

+ p(01|11) + p(01|21) + p(11|21) + p(11|21)

+ p(00|21) + p(10|21) + p(10|21) + p(00|21)] 1
2

= 6 − √
2

4
. (12)

For example, p(01|xy)pA(0|x) is the probability that, for this
subensemble, Alice outputs 0 and Bob outputs 1 when they
measure x and y, respectively. This follows from the fact that
Alice only outputs 0 when she finds the two particles in detec-
tor 0, and Bob only outputs 1 when he finds his (first) particle
in detector 1 (the second particle is undetected). Similarly,
p(00|xy)pA(1|x) + p(10|xy)pA(0|x) + p(10|xy)pA(1|x) is the
probability that Alice outputs 1 and Bob outputs 0 since Alice
outputs 1 when she finds one or the two particles in detector 1,
and Bob only outputs 0 when he finds his particle in detector
0 (the second particle is undetected).

2.3 With probability 2η3(1 − η), Alice detects one parti-
cle (and thus she outputs the detector in which she found
the particle) and Bob detects the two particles. To compute
the value of S2 for this subensemble, let us assume that Alice
detects the first particle but not the second (the value of S2 is
the same in the other case). Then,

S2 = p(00|22)pB(1|2) + p(01|22)pB(0|2)+p(01|22)pB(1|2)

+ p(10|12)pB(0|2) + p(00|11)pB(1|1)

+ p(01|11)pB(0|1) + p(01|11)pB(1|1)

+ p(10|21)pB(1|1) + p(11|21)pB(0|1)

+ p(11|21)pB(1|1) + p(10|21)pB(0|1)

+ p(00|21)pB(0|1)

= [p(00|22) + p(01|22) + p(01|22) + p(10|12)

+ p(00|11) + p(01|11) + p(01|11) + p(10|21)

+ p(11|21) + p(11|21) + p(10|21) + p(00|21)] 1
2

= 6 − √
2

4
. (13)

2.4 With probability 2η2(1 − η)2, Alice detects one parti-
cle and Bob detects its entangled companion for one of the
pairs but none of them detects the particle of the other pair.
Then, they output what the detectors in which they found
their respective particle. Therefore, the value of S2 for this
subensemble is S2 = 3−√

2
2 .

2.5 With probability 2η2(1 − η)2, Alice detects one par-
ticle and Bob detects the one that it is not entangled with it.
Therefore, since their outputs are statistically independent, the
value of S2 for this subensemble is S2 = 6 × 1

4 = 3
2 .

2.6 With probability η2(1 − η)2, Alice detects the two par-
ticles and Bob none (and thus he always outputs 1). For this
subensemble, S2 = 1

4 + 0 + 1
4 + 3

4 + 0 + 0 = 5
4 .

2.7 With probability η2(1 − η)2, Bob detects the two par-
ticles and Alice none (and thus she always outputs 1). For this
subensemble, S2 = 0 + 1

4 + 0 + 3
4 + 0 + 1

4 = 5
4 .

2.8 With probability 2η(1 − η)3, Alice detects one particle
and Bob none (and thus, since he observes equal intensities,
he outputs 1). Therefore, the value of S2 for this subensemble
is S2 = 1

2 + 0 + 1
2 + 1

2 + 0 + 0 = 3
2 .

2.9 With probability 2η(1 − η)3, Bob detects one particle
and Alice none (and thus since she observes equal intensities,
she outputs 1). Therefore, the value of S2 for this subensemble
is S2 = 0 + 1

2 + 0 + 1
2 + 1

2 + 0 = 3
2 .

2.10 Finally, with probability (1 − η)4, no one detects any
particle so each of them outputs 1. The value of S2 for this
subensemble is S2 = 0 + 0 + 0 + 1 + 0 + 0 = 1.

Therefore, ηmin follows from demanding that

η4

(
21

16
− 1

2
√

2

)
+ 4η3(1 − η)

(
6 − √

2

4

)

+ 2η2(1 − η)2

(
3 − √

2

2
+ 5

4

)

+ [2η2(1 − η)2 + 4η(1 − η)3]
3

2
+ (1 − η)4 < 1, (14)

which implies

ηmin(N = 2) = 0.941. (15)

Similarly, for the case N = 3, we found

ηmin(N = 3) = 0.905. (16)

Calculating ηmin(N ) for higher values of N becomes diffi-
cult and it is not really necessary as it is clear that ηmin(N )
will increase with N . The reason for this is that the maxi-
mum quantum violation rapidly decreases as N increases (see
Fig. 2), so the fact that the parties yield a quantum-based
outcome even when they do not detect all N particles is
not enough to account for the possible local hidden variable
models.

The problem is that, for Bell experiments with V � 0.98,
the highest experimental detection efficiencies reported are
η = 0.77–0.81 [25,26]. Therefore, the values for the detec-
tion efficiency required to observe Bell nonlocality based
on the intensities produced by N particles are too high for
what is achievable with current technology: η ≈ 1 can be
achieved [27,28], but at the cost of visibilities which are not
enough for Bell nonlocality based on the intensities of N > 5
particles.

However, even if the detection efficiency is not enough for
a loophole-free Bell test, we can run an experiment adopting
the fair sampling assumption. That is, selecting those runs
of the experiment in which both parties detect N particles
and making the assumption of fair sampling, namely, that the
selected runs are a faithful subset of those that would have
been obtained if detection efficiency would be perfect. This
will allow us to experimentally observe Bell nonlocality using
only intensities with current equipment.

III. PROPOSED EXPERIMENT

While in scenarios 1 to 3 discussed in Sec. I A, particle
pairing information can be, in principle, recovered, there are
also scenarios where pairing information is physically erased.
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Here we introduce a modified Bell test where pairing informa-
tion is physically erased. Arguably, this is a more convenient
experiment for testing the predictions of the previous sections
than one in which pairing information exists. The proposed
experiment is as follows.

(a) Suppose a source of polarization-entangled pairs of
photons based on quantum dots [29,30] which emits an odd
number N � 15 of pairs of entangled photons, with visibility
V > 0.98. The pairs are emitted one by one, with temporal
separation τ between each pair.

(b) In the space between the source and Alice’s measure-
ment device, we introduce beam splitters and mirrors in such
a way that photons can go through paths of different lengths.
See details later on. In contrast, there is only one possible path
between the source and Bob’s measurement device.

(c) For each of the local measurements, we use two
single-photon detectors, one for each outcome. Each of these
detectors must allow us to distinguish two photons that arrive
with a time difference τ . If we suitably postselect some runs,
we can have no information of which photon of Alice is en-
tangled with which photon of Bob. Notice that, by physically
erasing the pairing information before the individual photons
are detected one by one, the parties can measure “changes of
intensity” produced by single photons.

For example, let us assume for simplicity that N = 3 and
that the three photons of Alice are emitted by the source
at times t0, t0 + τ , and t0 + 2τ . Suppose that each of these
photons can follow a path of length 6τ , or 7τ , or 8τ , or
9τ , or 10τ . Now consider those runs in which one photon is
detected at 8τ , one photon is detected at 9τ , and one photon
is detected at 10τ . In these runs, Alice cannot know which
is the photon of Bob each of her photons is entangled with.
Still, according to the results in Fig. 2, if the visibility is high
enough and adopting the assumption of fair-sampling, Alice
and Bob can observe a violation of the Bell inequality SN � 1
for any N � 15 (with N odd).

IV. CONCLUSION

In the “macroscopic” limit of infinite number of particles,
the violation of Bell inequalities vanishes when the only
experimental information are the intensities and we cannot
distinguish arbitrarily small differences of intensities. How-
ever, here we showed that, for visibilities reachable in current
photonic Bell experiments, if the number of photons that reach
the detectors every time a local measurement is fixed is N �
15, then Bell nonlocality can be experimentally observed with
sufficient statistical significance from the detected intensities,
assuming that parties can distinguish any small differences of
intensity between their detectors.

We identified four scenarios in which this result can be use-
ful: Bell experiments based on parametric down-conversion
pumped by strong pulses, Bell tests with distant moving
sources of entangled pairs and/or local disturbances in the
propagation of the particles, Bell experiments using pho-
todetectors based on living cells, and Bell experiments in
which particle pairing information is physically erased. In
addition, we proposed a Bell experiment of this last type to
experimentally test the prediction that Bell nonlocality can be
experimentally observed with sufficient statistical significance
from the detected intensities whenever N � 15.
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