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Fundamental entanglement related challenges have prevented quantum-interference-based control (i.e., co-
herent control) of collisional cross sections from being implemented in the laboratory. Here, differential cross
sections for reactive scattering at low temperatures are shown to provide a unique opportunity to display
such interference-based control by forming coherent superpositions of degenerate rotational states of reactant
molecules | jm〉 with different m. In particular, we identify and quantify a unique signature of coherent control in
reactive scattering with applications to F + H2 → H + HF and HF + D ← F + HD → HD + F at 11 K. Control
is shown to be extensive.
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Coherent control of atomic and molecular processes (for
a review until 2012, see [1]), i.e., the use of quantum
interference to effect molecular outcomes, has proven enor-
mously successful for certain classes of processes. These
include light-induced control of unimolecular processes such
as photodissociation [2], photoionization [3], control of cur-
rents in live brain cells [4], control of population transfer
between system eigenstates [5], control of internal conver-
sion [6], etc. By preparing multiple interfering pathways
as initial states, primarily by laser excitation, quantum-
interference-based control over various processes has been
demonstrated both computationally (e.g., [1,7–9]) and experi-
mentally (e.g., [2,3,10]). However, control over the wide class
of collisional processes such as chemical reactions requires,
in general, entanglement between the translation motion of
the colliding partners and their internal degrees of freedom
[1,11,12], a nontrivial experimental challenge for molecular
collisional systems of interest. While this requirement can
be relaxed for coherent control over the differential cross
section (DCS) for A + BC collisions by forming coherent
superpositions of energetically degenerate states of BC, co-
herent control of reactive scattering is yet to be demonstrated
experimentally.

Such a demonstration would be particularly valuable for
cold and ultracold chemical reactions in the quantum regime
[13], which have become amenable to experimental studies
owing to recent advances in cooling, trapping, and manip-
ulating molecular gases [14]. These studies have revealed a
number of fascinating phenomena, such as resonant scattering
in cold He∗ + H2 [15,16] and He + NO [17] collisions, stere-
odynamics of H2 + HD collisions at 1 K [18,19], quantum
tunneling in the chemical reaction F + H2 → HF + H at cold
temperatures [20], and electric field control of the chemical
reaction 2KRb → K2 + Rb2 at 50 nK [21,22]. Several the-
oretical studies explored the effects of molecular polarization
[23] and alignment [24,25] on ultracold collision dynamics.

There are three primary motivations for using coherent
control to manipulate cold molecular collisions. First, in the
low-temperature regime the number of quantum states of
the reactants (including partial waves for the relative mo-
tion) is dramatically reduced [13,14], minimizing thermal
fluctuations and decoherence, and thereby enhancing quan-
tum controllability of molecular processes. Second, because
coherent control relies on the very general phenomenon of
quantum interference, it could potentially be applied to a
much wider range of molecular species than dc field control,
which typically employs, e.g., Feshbach resonances to tune
the scattering properties of ultracold atoms and molecules
[26]. Thus, coherent control may prove advantageous in ex-
perimental settings where the presence of dc fields can cause
undesirable perturbations, such as in precision measurements
using atomic and molecular clocks [27,28]. Third, recent ex-
perimental studies of low-temperature collisions of molecules
in single rotational states [17,20–22] and in superpositions
thereof [18,19] now provide an experimental platform where
such quantum-interference-based control of reactive scatter-
ing can be carried out.

Here we computationally demonstrate that (a) extensive
control can be achieved over the DCS for reactive F + H2 →
HF + H, and F + HD → HF + D or DF + H in cold (11 K)
scattering, by preparing a superposition of magnetic sublevels
of ortho-H2 and HD, and (b) that such control displays a
unique measurable signature, readily identifying quantum in-
terference as the basis for control. Computational results are
obtained within a scenario that can be realized in modern
experiments using merged beams of H2 molecules created in
superpositions of rotational states using, e.g., Stark-induced
adiabatic Raman passage (SARP) [18,19]. The results also
provide motivation for the extension to systems of particu-
lar interest in ultracold chemistry, such as those involving
alkali-metal dimers KRb, NaK, and NaLi [21,29–31], and 2�

molecular radicals CaF, SrF, and SrOH [32–36].
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We propose to control a reactive atom-molecule collision
A + BC → AB + C by preparing an initial state |ψs〉 as
a superposition of two m states of a diatomic molecule, a
procedure that has been experimentally demonstrated using
SARP [18,37,38]

|ψs〉 = cos(η) |1, v, j, m1〉 + sin(η) exp(iβ ) |1, v, j, m2〉 .

(1)

Here v and j are vibrational and rotational quantum numbers,
respectively, and the first quantum number α corresponds
to the chemical arrangement (i.e., A + BC, B +AC,
or C + AB) with α = 1 denoting the initial A + BC
arrangement. The parameter η sets the relative popula-
tion of the two states in the superposition with relative
phase β.

Given this initial superposition state (1), the DCS to a final
state (α′, v′, j′, m′

j) can be written as the sum of two terms:

σs→α′v′ j′m′
j
(θ, φ) = σ incoh

s→α′v′ j′m′
j
(θ ) + σ int

s→α′v′ j′m′
j
(θ, φ), (2)

where the subscript s denotes the initial superposition state
[Eq. (1)]. The first of these terms, σ incoh

s→α′v′ j′m′
j
(θ ) is an incoher-

ent contribution equivalent to the DCS from a mixture of m
states with probabilities cos2(η) and sin2(η):

σ incoh
s→α′v′ j′m′

j
(θ ) = cos2(η)| f1v jm1→α′v′ j′m′

j
(θ, φ)|2

+ sin2(η)| f1v jm2→α′v′ j′m′
j
(θ, φ)|2, (3)

where f1v jmi→α′v′ j′m′
j
(θ, φ, E ) (i = 1, 2) are the scattering

amplitudes into product states |α′v′ j′, m′
j〉 that are the key

quantities to compute:

fαv jm j→α′v′ j′m′
j
(θ, φ) = iπ1/2

(kαv jkα′v′ j′ )1/2

∑
J,M

∑
�,�′

∑
m′

�

i�−�′
(2� + 1)1/2

[ j � J
mj 0 M

][ j′ �′ J
m′

j m′
� M

]

×[
δαα′δvv′δ j j′δ��′ − SJ

αv jl→α′v′ j′l ′ (E )
]
Y�′m′

�
(θ, φ). (4)

Here, � (�′) is the initial (final) partial wave and m� (m′
�) is the initial (final) projection of �� on the space-fixed quantization axis Z ,

E is the collision energy, and kαv j (kα′v′ j′ ) are the initial (final) relative momenta. The symbols in brackets are the Clebsch-Gordan
(CG) coefficients, Y�′m′

�
(θ, φ) are the spherical harmonics, and SJ

αv jl→α′v′ j′l ′ (E ) are the S-matrix elements.
The second term in Eq. (2), σ int

s→α′v′ j′m′
j
, is the interference contribution, in which coherent control is manifest. Specifically,

coherent control occurs via the quantum interference between the two scattering pathways arising from the initial m superposition
(1). The interference term is then given by

σ int
s→α′v′ j′m′

j
(θ, φ) = cos(η) sin(η)[e−iβ f1v jm1→α′v′ j′m′

j
(θ, φ) f ∗

1v jm2→α′v′ j′m′
j
(θ, φ)

+ eiβ f ∗
1v jm1→α′v′ j′m′

j
(θ, φ) f1v jm2→α′v′ j′m′

j
(θ, φ)]. (5)

Note the characteristic difference between the direct terms [Eq. (4)] and the interference term [Eq. (5)]. Specifically, the latter
shows a dependence of scattering on the azimuthal angle φ whereas the direct terms are φ independent. Hence, φ-dependent
scattering is a unique signature of interfering quantum pathways in the differential scattering cross section. Previous experimental
studies [18,19] on scattering with this type of superposition state did not measure this dependence insofar as detection included
averaging over φ.

The φ dependence in Eq. (5) originates from the eim′
�φ term in the spherical harmonics contribution to the scattering amplitudes

[see Eq. (4)]. The two CG coefficients in Eq. (4) ensure that m′
� = mj − m′

j . Consequently, the scattering amplitudes can be

written as ei(mj−m′
j )φ times a θ -dependent part:

fαv jm j→α′v′ j′m′
j
(θ, φ) = ei(mj−m′

j )φ| fαv jm j→α′v′ j′m′
j
(θ )|eiξαv jm j →α′v′ j′m′

j
(θ )

. (6)

The products of the two scattering amplitudes in Eq. (5) are then proportional to ei(m1−m2 )φ . The interference term thus averages to
zero when integrated over φ, which precludes coherent control over the integral cross sections (ICS) via a coherent superposition
of a single reactant’s | jm〉 states (1). (Control over the ICS for Penning and associative ionization is still possible, however, using
a different scenario based on a coherent superposition of different m states of both reactants [12]). Inserting Eq. (6) into Eq. (5)
gives the DCS for a final state as

σs→α′v′ j′m′
j
(θ, φ) = σ incoh

s→α′v′ j′m′
j
(θ ) + 2 cos(η) sin(η)| fαv jm1→α′v′ j′m′

j
(θ )|| fαv jm2→α′v′ j′m′

j
(θ )|

× cos[(m1 − m2)φ + �ξ (θ ) + β], (7)

where �ξ (θ ) = ξαv jm1→α′v′ j′m′
j
(θ ) − ξαv jm2→α′v′ j′m′

j
(θ ) is the difference in the phase of the scattering amplitudes. The DCS for a

specific final arrangement α′, discussed below, is obtained by summing over all rovibrational states in this arrangement:

σs→α′ (θ, φ) = σ incoh
s→α′ (θ ) + 2 cos(η) sin(η)Fs→α′ (θ ) cos [(m1 − m2)φ + ξs→α′ (θ ) + β], (8)
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where Fs→α′ (θ ) and ξs→α′ (θ ) are, respectively, the
magnitude and the phase of

∑
v′, j′,m′

j
fαv jm1→α′v′ j′m′

j

(θ, φ) f ∗
αv jm2→α′v′ j′m′

j
(θ, φ).

Equation (8) provides the central result of this work, which
gives the DCS in terms of the scattering amplitude and the
control parameters η and β of the initial coherent superposi-
tion of the reactant molecule’s rotational states (1). Below, we
expose the θ dependence of the cross section via the amplitude
A, defined as

A(η, θ ) = 2 cos(η) sin(η)Fs→α′ (θ ). (9)

Given an initial superposition state [Eq. (1)], control can be
affected by varying the η and β parameters. Note that several
structural features of the interference term are universal, i.e.,
independent of the system under consideration. These include
the ei(mj−m′

j )φ dependence on φ, the role of β as a phase in the
DCS, and the dependence on η through cos(η) sin(η). Below,
we examine the case of a symmetric superposition (η = π/4),
which gives the maximum value of cos(η) sin(η), and set β =
0 since variations in β just correspond to a shift in phase of the
interference term. We emphasize below the φ dependence of
the cross sections because it is a unique signature of quantum
interference contribution to the scattering. The extent of this
contribution can be quantified via the visibility V (θ ) manifest
here as the difference between the maximum and minimum
DCSs as a function of φ, scaled by the sum of both

V (θ ) =
σ

max(φ)
s→α′v′ j′m′

j
(θ, φ) − σ

min(φ)
s→α′v′ j′m′

j
(θ, φ)

σ
max(φ)
s→α′v′ j′m′

j
(θ, φ) + σ

min(φ)
s→α′v′ j′m′

j
(θ, φ)

. (10)

From Eqs. (8) and (9), we obtain the visibility as the ratio
A(θ )/σ incoh

s→α′ (θ ). Indeed, the extent to which coherent control is
significant is dictated by the relative magnitude of the ampli-
tude A and the incoherent contributions, i.e., by the visibility
V of the interference fringes. For the case of two pathways, V
satisfies [39,40]

P (θ )2 + V (θ )2 � 1, (11)

an expression of wave-particle duality, with V measuring the
wavelike behavior and P (θ ) is the path distinguishability [40].
The highest value for the visibility V is then 1, corresponding
to a situation where the two pathways are completely indistin-
guishable. The closer it is to unity, the greater the contribution
of the interfering indistinguishable pathways to the scattering.
Note that the positivity of the DCS implies that A � σ incoh

s→α′ (θ ),
which is consistent with the unitary limit for the visibility.

We now apply the methodology developed above to ex-
plore the possibility of controlling cold chemical reactions
F + H2 → HF + H and F + HD → H + DF and D +
HF, whose quantum dynamics has been the subject of many
theoretical studies [20,41–49]. Recent experimental advances
in preparing coherent superpositions of rotational states of H2

[18,19] and in reactive scattering of F + H2 at 11 K [20]
indicate the feasibility of an experiment (the first coherent
control experiment of reactive scattering) of the kind moti-
vated by the results below. The reaction DCSs are computed
using Eqs. (2)–(5) parametrized by the S-matrix elements
obtained via a numerically exact time-independent quantum
reactive scattering approach [50]. The S-matrix elements were

calculated by solving the coupled-channel (CC) scattering
equations in hyperspherical coordinates using the ABC code
[50] based on the Stark-Werner potential energy surface (PES)
([51]). Calculations were carried out at an incident collision
energy of 11 K, for the total angular momenta J = 0–7 and for
the inversion parities ε = +1 (for J = 0) and ε = ±1 (for J >

0). The CC equations were propagated to a maximal hyperra-
dius of ρmax = 40 a.u. in steps of �ρ = 0.01 a.u. A cut-off
energy of 2.5 eV for the rovibrational basis sets was imposed,
with a maximum of 15 diatomic rotational levels. kmax is fixed
at 4 for J < 5 while it is equal to J for J > 5. The calculated
S-matrix elements are obtained in the body-fixed coordinate
frame (BFF) and then transformed to the space-fixed frame
(SFF). The transformation matrix between the BFF and SFF
is given by diagonalizing the operator L̂2, �L being the orbital
angular momentum of the collisional complex. The calculated
S-matrix elements and reaction probabilities were converged
to 10%. As a further test, we compared the energy dependence
of the F + H2 reaction probabilities between 1 and 10 K with
the previous calculations employing the same PES [42] and
found good agreement.

From the S matrix in the SFF, we calculated the scat-
tering amplitudes fαv jm j→α′v′ j′m′

j
(θ, φ, E ) using Eq. (4). The

DCSs were calculated in two different ways. First, we
used Eqs. (2), (3), and (5), summed over all rovibra-
tional levels in a given arrangement. Second, we cal-
culated the DCS through Eq. (8) using the quantity
Fs→α′ (θ ) and the phase ξ via the module and argument
of

∑
v′, j′,m′

j
fαv jm1→α′v′ j′m′

j
(θ, φ) f ∗

αv jm2→α′v′ j′m′
j
(θ, φ). The two

methods give the same DCS. Finally, for the cases without su-
perposition (η = 0 and η = π/2), we compared the calculated
DCS with the code provided by Dr. D. De Fazio, again finding
good agreement.

We note that (1) our calculations neglect the fine-structure
effects due to the open-shell nature of the fluorine atom, and
(2) the underlying Stark-Werner PES is known to overestimate
the F + H2 reaction rates at 11 K by a factor of �3. These
quantitative inaccuracies are unlikely to affect the qualitative
results of this work, which show efficient coherent control of
the DCS and the HF + D/DF + H product branching ratios,
and can therefore be used to establish qualitative trends in
controlling low-temperature reaction rates, the main goal of
this work. More extensive models including spin-orbit effects
and nonadiabatic coupling [41,46,49] could be considered in
future work, if motivated by experimental studies.

We consider two different m superpositions of the magnetic
sublevels of the first excited rotational state ( j = 1) of the
vibrational ground state (v = 0) of either ortho-H2 or HD.
The first superposition, between m1 = −1 and m2 = 0, is
denoted−1/0 and the second, between m1 = −1 and m2 =
+1, is denoted −1/+1.

The calculated DCS for the F + H2(−1/0) → HF + H re-
action is shown in Fig. 1(a) as a function of θ and φ. Although
the interference contribution affects both the dependence on θ

and φ, the explicit φ-dependent signature of interference at
the θ value, for which the DCS is maximal (here, θ = 0.65π )
is shown in Fig. 1(b). The φ dependence of the DCS is seen
to oscillate about the direct term, with a frequency equal to
the difference of the projections of magnetic sublevels in the

031303-3



DEVOLDER, TSCHERBUL, AND BRUMER PHYSICAL REVIEW A 102, 031303(R) (2020)

2

 (rad)
0 0

0
0.2
0.4
0.6

 
(u

ni
ts

 o
f a

02 )

0.8
1

1.2
1.4

(a)

/2

1

0.8

0.6

0.4

0.2

(b)

 

23 /20 /2 (rad)
(rad)

 
(u

ni
ts

 o
f a

02 )

FIG. 1. Reactive DCS for F + H2 at 11 K with the initial superpo-
sition −1/0 (η = π/4 and β = 0). (a) Three-dimensional (3D) plot
representing the θ and φdependences of the DCS. (b) φ dependence
at fixed θ (θ = 0.65π rad). The DCS is plotted in black while
the incoherent contribution is plotted in red (gray). Similar control
results are obtained at 1 K.

superposition (1), as anticipated from Eq. (8). A simple com-
putation gives V = 0.54, whose square, ≈0.33, constitutes a
considerable interference contribution.

Whereas the functional form (albeit not the magnitude) of
the φ dependence of the DCS given by exp [i(m − m′)φ] is
universal, the θ dependence of the amplitude A (9), of the
incoherent contribution (3) and therefore of the visibility (10)
are system dependent. Figure 2(a) shows the θ dependence
of the visibility for the F + H2 superpositions −1/0 and
−1/+1. No clear advantage of one superposition over the
other appears, with the maximal visibility Vmax = 0.54. The
interference clearly vanishes in the forward and backward
directions, where the scattering amplitudes are zero.
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FIG. 2. θ dependence of the visibility for (a) F + H2 → HF + H
with the initial superpositions −1/0 (black) and −1/+1 [red (gray)],
and for (b) F + HD → DF + H (black) and HF + D [red (gray)] with
the initial superpositions −1/+1.
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FIG. 3. Reactive DCS for F + HD at 11 K with the initial su-
perposition −1/+1 (η = π/4 and β = 0). (a) and (c) 3D plot of the
θ - and φ-dependent DCS. (b) and (d) φ dependence of the DCS at
θ = 0.64π . Panels (a) and (b) correspond to the reactive channel DF
+ H while panels (c) and (d) correspond to the reactive channel HF
+ D. The DCS are plotted in black while the incoherent contribu-
tions are plotted in red (gray). Note the difference in ordinate scale
for the two different products. Similar control results are obtained
at 1 K.

Similarly to the amplitude A(θ ), the phase ξs→α′ (θ ) of DCS
oscillations (8), given by the difference of phases of scattering
amplitudes, is system dependent. The phase is particularly
sensitive to the presence of a symmetry between the different
components of the superposition (1). For example, the two
states of the superposition −1/+1 are related by the time-
reversal symmetry and the phase ξ of the DCS oscillations
is zero for all θ . Inversely, for the superposition −1/0, we ob-
serve a θ -dependent phase ξ (θ ) of the DCS oscillations [see,
e.g., Fig. 1(b)]. Thus, by measuring the angular dependence
of the DCS for molecules reacting in quantum superposition
states (1), it is possible to infer information not only about
the magnitude, but also about the phase of the scattering
amplitudes.

Control over reactive F + HD scattering presents additional
challenges and opportunities, insofar as successful control
should be able to selectively distinguish between the H + FD
and D + HF product channels. Figure 3 shows the results
for controlling the individual DCSs for each of the product
channels with the initial superposition −1/+1. Extensive φ

dependences for both reactive channels are evident with large
visibility, V = 0.81 for the H + DF channel, and 0.69 for the
H + FD channel. Note that the DCS is larger for D + HF than
for the DF + H channel, a consequence of faster tunneling of
the hydrogen atom.

The vanishing of the phases ξ (θ ) for both of the product
channels [see Figs. 3(b) and 3(d)] due to time-reversal sym-
metry implies that the selectivity in the control over these
channels can only arise from differences in the θ dependence
of the visibilities V shown in Fig. 2(b). We observe that the
best selectivity is expected for θ = π/4−π/2 rather than at
the maximum of the visibilities, where the θ dependence is
similar for both of the product channels. To further reveal this
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FIG. 4. Differential branching ratio (HF + D)/DF + H) of the
DCS between the reactive channels for F+HD with the initial su-
perposition −1/1. (a) 3D surface plot of the θ and φ dependences
of the DCS. (b) φ dependence of the branching ratio at a fixed
θ = 0.47π . The differential branching ratio is plotted in black while
the incoherent contribution is plotted in red (gray).

selectivity, we plot in Fig. 4 the differential branching ratio,
the ratio of the DCS σ (θ, φ) for the two product channels HF
+ D and DF + H. The φ dependence of the ratio shown in
Fig. 4(b) is seen to vary over a wide range, from 3.6 to 16.5,
clearly demonstrating interference-based product channel se-
lectivity with interference quantified at V = 0.64. We note that
since the φ dependence of the HF + D/DF + H branching
ratio is given by the ratio of two in-phase oscillations, it is not

symmetric about the ratio of incoherent contributions shown
by the horizontal line in Fig. 4(b).

In summary, we have computationally demonstrated ex-
tensive quantum-interference-based coherent control over
low-temperature differential scattering in the F + H2 and F
+ HD chemical reactions using an approach that is experi-
mentally feasible. Quantum interference control is manifest
explicitly in a signature experimental observable, the nonzero
φ dependence of the scattering. The successful experimental
demonstration of this control would open the entire class of
scattering processes to coherent control.

The proposed control scenario is completely general and
can be extended to all reactive scattering processes of interest
to ultracold chemistry. Significantly, this scheme allows for
controlling chemical reactions that are not readily suscepti-
ble to traditional electric and magnetic field control, such as
those involving homonuclear ground-state alkali-metal dimers
[52–55] and H2, the most abundant molecule in the Universe
and one of the very few molecules, whose reaction dynam-
ics can be studied theoretically with spectroscopic accuracy
[16,56–58]. Furthermore, because φ-dependent interference
is observed only if the atom-molecule PES is anisotropic,
this dependence provides direct insight into the angular de-
pendence of the PES. Measuring the φ-dependent DCS in a
coherently controlled cold scattering experiment could, there-
fore, serve a useful probe of the interaction anisotropy in
atom-molecule reactive scattering.
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