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Progress toward the solution of the strongly correlated electron problem has been stymied by the exponential
complexity of the wave function. Previous work established an exact two-body exponential product expansion for
the ground-state wave function. By developing a reduced density-matrix analog of Dalgarno-Lewis perturbation
theory, we prove here that (i) the two-body exponential product expansion is rapidly and globally convergent
with each operator representing an order of a renormalized perturbation theory, (ii) the energy of the expansion
converges quadratically near the solution, and (iii) the expansion is exact for both ground and excited states.
The two-body expansion offers a reduced parametrization of the many-particle wave function as well as the
two-particle reduced density matrix with potential applications on both conventional and quantum computers
for the study of strongly correlated quantum systems. We demonstrate the result with the exact solution of the
contracted Schrödinger equation for the molecular chains H4 and H5.
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Introduction. Computations of strongly correlated elec-
trons are critical to the study of molecules and the prediction
of their properties from medicine to materials. However, such
computations are stymied by the exponential complexity of
the wave function. Significant progress has been made in two
general directions: (1) circumventing the wave function by
expressing the energy with few electron quantities such as
the two-electron reduced density matrix [1–22] (or even the
one-electron reduced density matrix [23–27]) and (2) simpli-
fying the structure of the wave function in theories such as
coupled cluster [28,29], density-matrix renormalization group
[30,31], and stochastic or sparse configuration interaction
methods [32–35]. In this Rapid Communication we show that
the pairwise nature of the electron interactions that is central
to reduced density matrix methods can be exploited to further
simplify the structure of the wave function.

While two-body expansions of the wave function
have been previously proposed [36–44] and implemented
[18–22,45–47], questions about their rates of convergence
and their applicability to arbitrary stationary states have not
been adequately addressed. It was originally conjectured that
a single exponential of a general two-body operator could
produce the exact ground-state wave function from a Slater
determinant reference [37,38,40–44]. While this conjecture is
false, we showed in previous work that an exact ground-state
wave function with a size-extensive energy can be generated
from a product of exponentials of two-body operators on a
Slater determinant reference [43]. Recently, there has been
renewed interest in such expansions, especially in the context
of molecular simulations on near-term quantum computers
[48–51]. Here, we extend our previous work to show that
the two-body exponential-product expansion is rapidly con-
vergent and exact for both ground and excited states. By
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developing a contraction of Dalgarno-Lewis perturbation the-
ory [52–54] onto the space of two particles, we prove that,
although a single exponential of a two-body operator is not
exact in general, it is sufficient to generate any wave function
within the reach of a renormalized first-order perturbation
theory about the reference wave function. Consequently, the
product of two-body exponential operators can move the wave
function efficiently through the ground or excited states of a
family of Hamiltonians connecting the reference state to the
target state. For any stationary state the expansion is globally
convergent with local quadratic convergence in the energy.
We demonstrate the theory with the exact solution of the
contracted Schrödinger equation [1,55–61] for the ground and
excited states of the molecular chains H4 and H5.

Theory. Consider a many-particle quantum system with at
most pairwise interactions. By Nakatsuji’s theorem [55,59],
we have that there is a one-to-one mapping between the solu-
tions of the Schrödinger equation

(Ĥ − E )|�〉 = 0, (1)

and the solutions of the contracted Schrödinger equation
(CSE) [1,55–61]

〈�|â†
i â†

j âl âk (Ĥ − E )|�〉 = 0. (2)

The proof of Nakatsuji’s theorem follows from showing that
the CSE implies the dispersion relation 〈�|(Ĥ − E )2|�〉 = 0
which is true if and only if the wave function |�〉 satisfies the
Schrödinger equation [55,59].

Let us parametrize the Hamiltonian operator Ĥ in terms of
a reference Hamiltonian operator Ĥ0, the perturbation opera-
tor V̂ , and the perturbation parameter λ,

Ĥλ = Ĥ0 + λV̂ . (3)
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Differentiating the Schrödinger equation yields

(Ĥλ − Eλ)
d|�λ〉

dλ
+

(
V̂ − dEλ

dλ

)
|�λ〉 = 0. (4)

In Dalgarno-Lewis perturbation theory we express the deriva-
tive of |�λ〉 in terms of an operator F̂λ,

d|�λ〉
dλ

= F̂λ|�λ〉. (5)

Substituting Eq. (5) into Eq. (4) yields the equation for the F̂λ

operator

(Ĥλ − Eλ)F̂λ|�λ〉 +
(

V̂ − dEλ

dλ

)
|�λ〉 = 0. (6)

Using Rayleigh-Schrödinger perturbation theory, we can for-
mally express the F̂λ as an N-body operator generated from the
sum over all N-body eigenstate wave functions of the Hamil-
tonian Hλ. The operator F̂λ, however, is not uniquely defined
because a convex set of operators will map one quantum state
into another quantum state. In the following discussion we
exploit this nonuniqueness in combination with the CSE to
prove that for a quantum system with any number of particles
but at most pairwise interactions there always exists a two-
body operator F̂λ that satisfies Eq. (5).

Consider differentiating the CSE in Eq. (2) with respect to
the perturbation parameter λ and using the definition of F̂λ in
Eq. (5) to obtain

〈�λ|â†
i â†

j âl âk

(
Ĥλ − Eλ

)
F̂λ +

(
V̂ − dEλ

dλ

)
|�λ〉. (7)

As discussed earlier, by Nakatsuji’s theorem [55,59] there is
a one-to-one mapping between the wave-function solutions
of the Schrödinger equation and the CSE. By continuity of
the Schrödinger equation and the CSE with respect to λ the
one-to-one mapping of Nakatsuji’s theorem must hold for the
differential forms of the Schrödinger equation and the CSE in
Eqs. (6) and (7). Hence, we have an extension of Nakatsuji’s
theorem to the differential Schrödinger equation and CSE.
Furthermore, an F̂λ operator solves the differential CSE in
Eq. (7) if and only if it solves the differential Schrödinger
equation in Eq. (6).

Despite the derivation of the contracted form of the
Dalgarno-Lewis equation, we have not yet shown that the
F̂λ operator has a special form for Hamiltonians with only
two-body interactions. Consider the variational formulation of
the Dalgarno-Lewis equation [52–54]

min
F̂λ

�(F̂λ), (8)

where

�(F̂λ) = 〈�λ|
(
V̂ − dEλ

dλ

)
F̂λ|�λ〉

+〈�λ|F̂ †
λ

(
V̂ − dEλ

dλ

)
|�λ〉

+〈�λ|F̂ †
λ

(
Ĥλ − Eλ

)
F̂λ|�λ〉. (9)

At the minimum we have

∂�(F̂λ)

∂F̂λ

= 0. (10)

If we assume that F̂λ is a two-body operator,

F̂λ =
∑
i jkl

2F i j;kl
λ â†

i â†
j âl âk, (11)

then the stationary condition in Eq. (10) implies the differen-
tial CSE in Eq. (7). Because there is a one-to-one mapping
between the solutions of Eqs. (6) and (7) by the extension of
Nakatsuji’s theorem to the differential limit, we have proved
that the Dalgarno-Lewis equations—both Eqs. (6) and (7)—
are satisfied by a Dalgarno-Lewis operator F̂λ that is two-body.

Integration of the differential equation for the wave func-
tion in Eq. (5) yields the wave function of the quantum system
at λ = 1. If the Fλ operators commute with each other, the
solution can be expressed in closed form

|�〉 = e
∫ 1

0 F̂λdλ|�0〉, (12)

where the exponent is a two-body operator representing the
integral of the two-body Dalgarno-Lewis operator. In general,
however, the Fλ operators do not commute, and the solution
cannot be expressed as a single two-body exponential trans-
formation of the reference wave function. Nonetheless, if we
divide the integration over λ into M intervals on each of which
Fλ is nearly constant, we can express the wave function as

|�〉 =
M∏

k=1

eεF̂k |�0〉, (13)

where F̂k represents the integral of F̂λ over λ in the kth interval.
Because the accuracy of the expansion can be arbitrarily im-
proved by increasing M, we have derived an exact two-body
exponential product expansion of the wave function.

While the expansion was derived by the author for the
ground state in Ref. [43], the derivation from the perspective
of Dalgarno-Lewis perturbation theory allows us to establish
the expansion’s exactness for excited states as well as its rate
of convergence. Because Eq. (5) is valid for both ground and
excited states, we can generate an expansion of the wave
function that is exact for not only the ground state but also the
excited states. To prove exactness, we select the nth excited
state of the initial reference Hamiltonian to be the initial ref-
erence wave function. By propagating this excited state from
the solution of the initial-value differential equation in Eq. (5)
as a function of the parameter λ, we generate an expansion
that is exact for the nth excited state, and hence the expansion
is exact for both ground and excited states.

Because the expansion solves Eq. (5) without invoking
the Taylor-series approximation of traditional perturbation
theory, it is globally convergent to a stationary state of the
Hamiltonian from an initial state of the reference Hamilto-
nian. The rate of global convergence is inversely related to
the number M of product terms in the expansion required to
achieve a given precision ε in the energy. Each term in the
product can be chosen to be a first-order step in the solution
of Eq. (5), and hence M is bounded from above by the number
of first-order steps required to solve the differential equation
to precision ε. Practically, M can be made much smaller
by optimizing the parameters in the expansion variationally
(i.e., by a variational principle or solution of the CSE) rather
than following the perturbative path of Eq. (5), as shown in
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TABLE I. The hydrogen chain H4 at each bond length R (in Å) has a two-body Dalgarno-Lewis operator that satisfies both the Dalgarno-
Lewis CSE (DL CSE) and the Dalgarno-Lewis (DL) equation. The errors in the DL CSE and the DL are defined by the Frobenius norms of
their residuals. The total energies are given in units of hartrees.

Total Error in DL CSE Error in DL

R energy One-body F Two-body F One-body F Two-body F

0.6 −1.98120 0.00461 2.51 × 10−15 0.05113 2.47 × 10−13

1.0 −2.18097 0.00581 2.28 × 10−15 0.06430 4.25 × 10−14

1.4 −2.04488 0.00504 2.11 × 10−16 0.03671 1.08 × 10−15

1.8 −1.94221 0.00218 2.96 × 10−15 0.01358 1.06 × 10−14

2.2 −1.90061 0.00066 6.72 × 10−16 0.00402 2.36 × 10−15

2.6 −1.88828 0.00019 5.15 × 10−16 0.00115 1.79 × 10−15

the results below. Because each first-order transformation of
the wave function corresponds to a second-order change in
the energy, variational optimization of the energy with re-
spect to the expansion’s parameters exhibits local quadratic
convergence—the energy converges quadratically in the vicin-
ity of the solution.

The two-body exponential product expansion can also be
cast in other forms. By expanding each exponential through
first order, we have

|�〉 =
M∏

k=1

(1 + εF̂k )|�0〉. (14)

This form of the wave function was initially proposed by
Nakatsuji [36]. It remains exact and can also be obtained
directly from Eq. (5) by integrating the differential equation
by a first-order Euler method with M steps. While Nakatsuji
proved that this expansion is exact for the ground state, the
present work shows that it is exact not only for the ground
state but also excited states. Furthermore, from our analysis
of Eq. (13) it follows immediately that this expansion is also
globally convergent at a rate at least as fast as the differential
solution of Eq. (5) with a quadratic local convergence of the
energy. Nonetheless, Eq. (14) has a potential disadvantage
relative to Eq. (13). Equation (14) is only size extensive in
its energy upon convergence to the exact stationary state,
but Eq. (13) is size extensive in its energy upon truncation
at any M because the exponential generates the higher-order
operators that are products of the lower-order operators. We

can also express the differential equation for the wave function
in Eq. (5) as an integral equation

|�〉 =
∫ 1

0
F̂λ|�λ〉dλ. (15)

Expansion of this integral equation in powers of F̂λ generates
an exact Feynman-like diagrammatic expansion in terms of
two-body Dalgarno-Lewis operators.

Results. To demonstrate the validity and potential applica-
bility of the theory, we examine the two-body expansion for
the molecular hydrogen chains H4 and H5. Upon dissociation
the chain undergoes a Mott metal-insulator transition [62,63]
with the insulator phase being strongly correlated due to spin
entanglement. The bonds are chosen to be equally spaced
at a distance R, and we use a minimal Slater-type-orbital
(STO-6G) basis set [64]. All calculations are performed with
extensions to the quantum chemistry package in the computer
algebra system MAPLE.

According to the theory, for a Hamiltonian with only two-
body interactions there exists a two-body Dalgarno-Lewis
operator F̂ that satisfies the Dalgarno-Lewis equation. To
demonstrate this result for the most general case in which the
reference Hamiltonian is a two-body operator, we choose the
reference Hamiltonian to be the full molecular Hamiltonian
of H4 rather than its one-body Hartree-Fock Hamiltonian and
the perturbation to be the full molecular Hamiltonian minus
the Hartree-Fock Hamiltonian. In Table I we show that the
hydrogen chain H4 at each bond length R has a two-body
Dalgarno-Lewis operator that satisfies the Dalgarno-Lewis

TABLE II. For H4 the error in the total energy, relative to a full configuration interaction, is shown for several bond distances R (in Å) from
CSE(1) and CSE(2) as well as second-order many-body perturbation theory (MP2), coupled cluster with single-double excitations (CCSD),
and CCSD with perturbative triple excitations [CCSD(T)]. The CSE(2) energies are exact to within the numerical convergence of the optimizer.
The energies and their errors are given in units of hartrees.

Total Correlation Energy error (hartrees)

R energy energy MP2 CCSD CCSD(T) CSE(1) CSE(2)

0.6 −1.98120 −0.03071 0.00869 0.000005 −0.0000004 0.00012 4.80 × 10−15

1.0 −2.18097 −0.06851 0.02700 0.000007 −0.0000048 0.00153 2.00 × 10−14

1.4 −2.04488 −0.14234 0.06709 −0.000658 −0.0010788 0.01190 2.00 × 10−14

1.8 −1.94221 −0.25768 0.12698 −0.009118 −0.0103678 0.04418 7.70 × 10−13

2.2 −1.90061 −0.38321 0.17058 −0.026423 −0.0290752 0.10168 9.99 × 10−15

2.6 −1.88828 −0.48404 0.16432 −0.030854 −0.0353096 0.15575 1.64 × 10−13
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FIG. 1. The potential energy curves of H4 from Hartree-Fock
(HF), MP2, CCSD(T), CSE(2), and FCI are shown. The CSE(2)
energies, shown by solid circles (red), are in exact agreement with
the black line of FCI.

CSE. The Dalgarno-Lewis operator is computed from a
linear least-squares solution of the Dalgarno-Lewis CSE.
For comparison we also show that the optimal one-body
Dalgarno-Lewis operator has a nonzero minimum residual
and hence, does not satisfy the Dalgarno-Lewis CSE. In the
table we also show for all bond lengths R that the two-body F̂
operator that satisfies the Dalgarno-Lewis CSE also solves the
N-body Dalgarno-Lewis equation, which is consistent with
the differential extension of Nakatsuji’s theorem.

To illustrate the potential applicability of the theory, we
use the two-body expansion of the wave function in Eq. (14)
to solve the CSE for H4. The use of M = 1 and M = 2 in
Eq. (14) to solve the CSE, we denote by CSE(1) and CSE(2),
respectively. The expansion in Eq. (14) is inserted directly into
the CSE in Eq. (2). The solution of the resulting equation is
performed by a least-squares minimization of the equation’s
residual using a limited-memory Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [65]. Table II shows the error in the
total energy, relative to full configuration interaction (FCI),
from CSE(1) and CSE(2) with comparisons to second-order
many-body perturbation theory (MP2) as well as coupled
cluster with single-double (CCSD) and perturbative triple
[CCSD(T)] excitations. Figure 1 presents the potential energy
curves from Hartree-Fock (HF), MP2, CCSD(T), CSE(2), and
FCI. The CSE(2) energies, shown by red solid circles, are
in agreement with the black line of FCI; in fact, the energy
errors in Table II show that the CSE(2) energies are exact
to within the numerical convergence of the optimizer. Hence,
the product of two of the Dalgarno-Lewis operators, we find,
yields an exact wave function expansion for H4 at all R.

Using the CSE with the expansion in Eq. (14) with M = 2,
we computed the first six excited states of H4 at R = 1.4 Å
shown in Table III. The optimization procedure is the same
as for the ground state with each state’s reference wave func-
tion initialized to a different Hartree-Fock excited state. As
in the ground-state calculations the excited-state energies are
exact to the precision limit of the floating-point arithmetic

TABLE III. For H4 the energies of the first six excited states from
FCI and CSE(2) are reported in hartrees.

State 2S + 1 FCI Energy CSE(2) energy error

1 3 −1.954146208801 1.0 × 10−15

2 3 −1.862192277442 1.0 × 10−15

3 1 −1.824236275023 1.0 × 10−15

4 3 −1.759315766605 1.0 × 10−14

5 5 −1.702244608174 1.0 × 10−14

6 1 −1.584316227353 1.0 × 10−15

despite the strong correlation present at this stretched geom-
etry. The present calculations are very different from those
of Nakatsuji who approximated the excited states from their
response to the exact ground-state calculation [36]. We also
computed the lowest two doublet states of H5. The CSE(2)
and FCI agree to machine precision in the states’ energies of
−2.538 653 212 914 and −2.446 397 756 519 hartrees.

Discussion and conclusions. The two-body expansions
have connections to established methods. The integral formu-
lation of the expansion in Eq. (15) shares the same mathemat-
ical structure as the generator of the Feynman diagrammatic
expansion [66]. Nevertheless, there are significant differences
between Feynman diagrams and the present method. While
Feynman diagrams are expressed in terms of the Hamilto-
nian operator as a function of time t or frequency ω, the
Feynman-like expansion of the generator in Eq. (15) depends
upon the two-body Dalgarno-Lewis operator as a function of
the dimensionless perturbation parameter λ. The exponential
product formulation of the expansion in Eq. (13) also has simi-
larities to the coupled-cluster expansion. Both theories depend
upon the exponential of operators. However, while the exact
coupled-cluster expansion depends upon p-body excitation
operators with p ranging from one to the number of particles,
the wave-function expansion in Eq. (13) depends upon only
general two-body operators. The expansion in Eq. (13) is a
CSE ansatz rather than a conventional coupled-cluster ansatz
because the CSE acts as the stationary equation with respect
to variations in each of the two-body operators.

Previous work established the two-body exponential ex-
pansion for the ground-state wave function [43]. By connect-
ing the expansion to a contracted formulation of Dalgarno-
Lewis theory, the present work rigorously establishes that
(i) the two-body operators generate a renormalized, glob-
ally convergent expansion, (ii) the energy of the expansion
converges quadratically near the solution, and (iii) the expan-
sion is exact for both ground and excited states. The two-
body expansion offers a significant simplification of the many-
particle wave function as well as the two-particle reduced
density matrix that promises to provide more efficient and ef-
fective methods on both conventional and quantum computers
[48–51,67] for the treatment of strong correlation.
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