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Passing a photon number state through a balanced beam splitter will produce an entangled state in which the
phases of the two output beams are highly correlated. This entangled state can be viewed as a generalized form
of a Schrödinger cat state where there is an equal probability amplitude for all possible phases. We show that
Bell’s inequality can be violated using this entangled state and two distant measuring devices that consist of a
single-photon interferometer with a Kerr medium in one path, a set of single-photon detectors, and postselection
based on a homodyne measurement. These entangled states are sensitive to photon loss and a violation of Bell’s
inequality requires either that the losses are inherently small or that their effects have been minimized using
linear optics techniques [Micuda et al., Phys. Rev. Lett. 109, 180503 (2012)]. Somewhat surprisingly, the use of
the fair sampling assumption is not required for a violation of Bell’s inequality despite the use of postselection
if the measurements are made in the correct order.
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I. INTRODUCTION

Quantum mechanics violates Bell inequality, which rules
out the possibility of local hidden-variable theories [1–5] as an
alternative to quantum mechanics. The earliest experimental
tests of Bell’s inequality were based on entanglement between
the polarizations or spins of two particles [6–12]. It was sub-
sequently shown that Bell’s inequality could be violated using
continuous degrees of freedom, such as energy-time entangle-
ment combined with two distant interferometers [13]. Here we
note that a photon number state incident on a balanced beam
splitter will produce an entangled state in which the phases
of the two output beams are highly correlated [14,15]. This
entangled state can be viewed as a generalized Schrödinger
cat state where there is an equal probability amplitude for all
phases.

We show that Bell’s inequality can be violated using this
entangled state and two distant measurement devices. Each
of the measurement devices consists of a single-photon inter-
ferometer with a Kerr medium in one path, a set of single-
photon detectors, and postselection based on a homodyne
measurement. The use of postselection suggests that the fair
sampling assumption may be required for a violation of
Bell’s inequality. Somewhat surprisingly, we show that the fair
sampling assumption is not required if the measurements are
performed in the correct order. Like other Schrodinger cats,
these states are highly sensitive to photon loss. A violation
of Bell’s inequality requires that either the photon loss is
inherently small or its effects have been minimized using
linear optics techniques based on postselection [16].

It is well known that photon number states are highly
nonclassical states of light [17] and that they are a useful
resource for generating other kinds of nonclassical states. For
example, a number state incident on a beam splitter has been
used to herald an approximate cat state in one output mode by
postselecting on the results of a homodyne measurement in

the other output mode [18]. It has previously been shown that
Bell’s inequality can be violated using a variety of continuous
variable states, homodyne measurements, or NOON states
[19–22]. The approach described here is somewhat similar to
earlier nonlocal interferometers [13,23], but the source of the
entangled state is very different.

This paper is organized as follows. Section II outlines the
basic approach. Section III derives the form of the entangled
cat state at the output of the beam splitter. The nonlocal
interference effects that can be observed using this entangled
state are calculated in Sec. IV. Section V shows that Bell’s
inequality can be violated provided that the effects of photon
loss are sufficiently small. In Sec. VI, we show that the fair
sampling assumption is not required if the measurements
are performed in the correct order. Section VII discusses an
intuitive explanation for the origin of these effects, while
Sec. VIII provides a summary and conclusions.

II. BASIC APPROACH

We consider a situation in which a photon number state
|N〉 is incident on a beam splitter with 50% transmission
and reflection as illustrated in Fig. 1. As will be shown in
the next section, the output state |ψ〉 from the beam splitter
corresponds to a superposition of identical coherent states
in each of the output beams. Since the photon number and
phase are conjugate variables, the phase of the input number
state is totally uncertain and the output state corresponds to a
superposition of all possible coherent-state phases between 0
and 2π . The nonlocal properties of this entangled state are the
main focus of this paper.

We will show that the entangled state |ψ〉 can be used
to violate Bell’s inequality using two distant measurement
devices as illustrated in Fig. 1. Each measurement device
includes a single-photon interferometer (shown in red) with a
Kerr medium in one of the two paths of the interferometer. The
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FIG. 1. A number state |N〉 incident on a balanced beam splitter
will produce two output beams that are entangled in phase. A phase
shift of ±θ is applied to each of the beams using a pair of single-
photon interferometers A and B with a Kerr medium located in
one path, combined with a constant bias phase shift (not shown).
Variable phase shifts σ1 and σ2 are introduced into one path of the
single-photon interferometers and their outputs are measured using
single-photon detectors D1 through D4. After the two beams have
passed through the single-photon interferometers, their quadratures
x1 and x2 are measured using homodyne detectors. Those events in
which x1 and x2 lie within a small range �x centered about x1M and
x2M are postselected. Bell’s inequality can be violated in the usual
way using the output of detectors D1 through D4 measured at four
different settings of the parameters σ1 and σ2.

two output beams from the beam splitter also pass through the
Kerr media, so that a phase shift will be applied depending on
which path the single photons took. A fixed phase shift (not
shown) is also included so that each of the beams will undergo
a phase shift of ±θ . Single-photon detectors D1 through D4

determine which path the single photons take when they leave
the interferometers. Variable phase shifts σ1 and σ2 are also
included in one path of the two interferometers as shown in
Fig. 1.

Homodyne measurements are used to determine the
quadratures x1 and x2 of the two beams after they have passed
through the single-photon interferometers. We postselect on
events in which the measured value of x1 lies within a small
range �x centered about some specific value x1M , while x2 lies
in a range �x about x2M . The combination of a single-photon
interferometer with a Kerr medium in one path, the single-
photon detectors, and postselection based on a homodyne
measurement can be viewed as a compound measurement
device. We will show that Bell’s inequality can be violated
in the usual way based on the output of the single-photon
detectors D1 through D4 measured at four different settings
of the parameters σ1 and σ2.

We will assume for the time being that the homodyne
measurements are made after the single photons have been
detected in detectors D1 through D4, which simplifies the

analysis. According to quantum mechanics, the same results
would be obtained if the homodyne measurements were per-
formed first. The advantages of the latter approach in ruling
out hidden-variable theories will be discussed in Sec. VI.

The origin of these effects can be understood as being due
to nonlocal quantum interference between two different prob-
ability amplitudes for obtaining quadrature measurements
centered about x1M and x2M . This will be described in more
detail in the discussion of Sec. VII after we have calculated
the properties of the system.

III. ENTANGLED STATE AFTER THE BEAM SPLITTER

The effect of a balanced beam splitter can be described as
usual by the unitary transformation

â†
1 → â†

1 + iâ†
2√

2
(1)

and

â†
2 → â†

2 + iâ†
1√

2
. (2)

Here â†
1 and â†

2 are the photon creation operators in the two
input/output modes and we have used the common convention
that the reflected component undergoes a phase shift of π/2.

The initial state |ψ〉 incident on the beam splitter is given
by

|ψ〉 = |N, 0〉, (3)

where |i, j〉 will denote a state with i photons in one mode and
j photons in the other mode. We will make use of the fact that
a number state can be written as a superposition of coherent
states [15]:

|N〉 =
∫ 2π

0
dφ fϕ|Reiφ〉. (4)

Here fϕ is defined by

fφ ≡ eR2/2e−iNφ
√

N!

2πRN
, (5)

and |Reiφ〉 denotes a coherent state with amplitude R and
phase φ. R is an arbitrary constant, but it will be convenient to
choose the value R = √

N.

Equation (4) can be used to rewrite the initial state of the
system before the beam splitter as

|ψ〉 =
∫ 2π

0
dφ fφ|Reiφ, 0〉. (6)

Here |Reiφ, 0〉 denotes a coherent state with amplitude Reiφ in
one input to the beam splitter and a coherent state with zero
amplitude in the other input port.

It is well known that a coherent state incident on a beam
splitter will produce a coherent state in the two output modes
with amplitudes equal to the corresponding classical fields. As
a result, the beam splitter transforms the state of the system in
Eq. (6) into

|ψ〉 =
∫ 2π

0
dφ fφ

∣∣∣∣ R√
2

eiφ,
R√
2

eiφ

〉
. (7)
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Here we have applied a phase shift of −π/2 in path 2 after the
beam splitter to compensate for the factor of i on reflection
that appears in Eq. (1). (This phase shift is not shown in
Fig. 1.)

The phase entanglement of the two beams is apparent in
Eq. (7), which is qualitatively consistent with the results of
Ref. [14] as well. All of the subsequent results can also be
derived without using Eq. (4) by making use of the properties
of the Hermite polynomials, as is described in the Appendix.

IV. NONLOCAL INTERFERENCE

In this section, we will calculate the effects of the single-
photon interferometers and show that there are two different
probability amplitudes for obtaining homodyne measurement
results of x1M and x2M . Quantum interference between these
two probability amplitudes can violate Bell’s inequality. For
the time being, we will only consider the situation in which
single photons are detected in D2 and D4, which shows the
nonlocal dependence on the phase shifts σ1 and σ2 in a
straightforward way. In the following section, we will gener-
alize the results to include photons detected in any of the four
detectors D1 through D4, which can then be used to violate
Bell’s inequality in the usual way.

The single-photon interferometers inserted into paths 1 and
2 will be labeled by A and B, respectively. The state |i, j〉A will
denote the case in which there are i photons in the left path
of interferometer A with j photons in the right path, while
|i, j〉B will denote the corresponding state in interferometer B.
Including the single photons, the complete state of the system
before the photons have entered the interferometers is given
by

|ψ〉 =
∫ 2π

0
dφ fφ

∣∣∣∣ R√
2

eiφ,
R√
2

eiφ

〉
|10〉A|10〉B. (8)

After the single photons have entered their respective interfer-
ometers and passed through the first beam splitter, the state of
the system becomes

|ψ〉 =
∫ 2π

0
dφ fφ

∣∣∣∣ R√
2

eiφ,
R√
2

eiφ

〉

×
( |10〉A + i|01〉A√

2

)( |10〉B + i|01〉B√
2

)
. (9)

The presence of a single photon in the path with the Kerr
media will produce a nonlinear phase shift and we assume that
a constant phase shift is also applied so that the net phase shift
is ±θ . As a result, the state of the system after the Kerr media
can be written in the form

|ψ〉 =
∫ 2π

0
dφ

fφ
2

× (|++〉φ|1010〉 + i|+−〉φ|1001〉
+ i|−+〉φ|0110〉 + i2|−−〉φ|0101〉). (10)

Here we have introduced the notation

|+−〉φ ≡
∣∣∣∣ R√

2
ei(φ+θ ),

R√
2

ei(φ−θ )

〉
, (11)

with analogous definitions for |−+〉φ , |++〉φ , and |−−〉φ .
We have also used the more compact notation |1010〉 ≡
|10〉A|10〉B,and so forth.

The single photons encounter the variable phase shifts σ1

and σ2 depending on which path they traverse as shown in
Fig. 1. This transforms the state of Eq. (11) into

|ψ〉 =
∫ 2π

0
dφ

fφ
2

× (ei(σ1+σ2 )|++〉φ|1010〉 + ieiσ1 |+−〉φ|1001〉
+ ieiσ2 |−+〉φ|0110〉 + i2|−−〉φ|0101〉). (12)

Finally, the single photons exit the interferometers through
another set of beam splitters which gives the state

|ψ〉 =
∫ 2π

0
dφ

fφ
4

(ei(σ1+σ2 )|++〉φ (|1010〉

+ i|1001〉 + i|0110〉 + i2|0101〉)

+ ieiσ1 |+−〉φ (i|1010〉 + |1001〉 + i2|0110〉 + i|0101〉)

+ ieiσ2 |−+〉φ (i|1010〉 + i2|1001〉 + |0110〉 + i|0101〉)

+ i2|−−〉φ (i2|1010〉 + i|1001〉 + i|0110〉 + |0101〉)).

(13)

The case in which single photons are detected in D2 and D4

corresponds to the state |0101〉. Postselecting on that outcome
gives the following unnormalized final state:

|ψ〉 = i2
∫ 2π

0
dφ

fφ
4

(ei(σ1+σ2 )|++〉φ
+ eiσ1 |+−〉φ+eiσ2 |−+〉φ + |−−〉φ ). (14)

The four terms in Eq. (14) correspond to the possible phase
shifts in the two beams before they enter the homodyne
detectors.

A single mode of the electromagnetic field is mathemat-
ically equivalent to a harmonic oscillator, and a homodyne
measurement of the x quadrature can be represented by the
operator x̂ = (â + â†)/

√
2 with a suitable choice of units. As

a result, it is convenient to use the position representation,
where the usual wave function ψ (x) is given by

ψ (x) = 〈x | ψ〉. (15)

It can be shown [24] that the wave function ψc(x) for a
coherent state |α0eiφ〉 of the field corresponds to a Gaussian
wave packet of the form

ψc(x) = 1

π1/4
eip0xe−(x−x0 )2/2e−ix0 p0/2. (16)

Here x0 ≡ √
2α0 cos(ϕ) and p0 ≡ √

2α0 sin(ϕ). The overall
phase factor of e−ix0 p0/2 is sometimes ignored, but it plays an
important role [25] in superposition states such as in Eq. (9).

In the coordinate representation, Eq. (14) gives

ψ (x1, x2) = 〈x1, x2|ψ〉 = ψ++(x1, x2) + ψ−−(x1, x2)

+ψ+−(x1, x2) + ψ−−(x1, x2), (17)

where ψ±±(x1, x2) correspond to the four terms in Eq. (14). It
will be convenient to choose the phase shift θ so that Nθ =
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m(2π ), where m is an integer. In that case, Eqs. (13) and (16)
can be used to show that

ψ++(x1, x2) = − 1

4
√

π
ei(σ1+σ2 )

∫ 2π

0
dφ fφeiR sin(φ+θ )x1

× eiR sin(φ+θ )x2 e−[x1−R cos(φ+θ )]2/2

× e−[x2−R cos(φ+θ )]2/2(e−i[R sin(φ+θ )R cos(φ+θ )]/2)2.

(18)

With Nθ = m(2π ), ψ−− = ψ++ aside from the phase
shift of ei(σ1+σ2 ). The cross terms are given by

ψ+−(x1, x2) = − 1

4
√

π
eiσ1

∫ 2π

0
dφ fφeiR sin(φ+θ )x1 eiR sin(φ−θ )x2

×e−[x1−R cos(φ+θ )]2/2e−[x2−R cos(φ−θ )]2/2

× e−i[R sin(φ+θ )R cos(φ+θ )]/2

× e−i[R sin(φ−θ )R cos(φ−θ )]/2, (19)

with a similar expression for ψ−+.
The probability P(x1M , x2M ) of obtaining quadrature mea-

surements that lie within a small interval �x about x1 = x1M

and x2 = x2M is given by P(x1M , x2M ) = |ψ (x1M, x2M )|2�x2.
(It is necessary to integrate over x1 and x2 for large values of
�x, as will be done in the following section.) It is possible
to choose values of x1M and x2M such that ψ+−(x1M, x2M )
and ψ−+(x1M , x2M ) are negligible. In that case, Eq. (18) and
the corresponding equation for ψ−−(x1M , x2M ) can be used to
show that

P(x1M , x2M ) = |(ei(σ1+σ2 ) ) + 1|2 |ψ++(x1M , x2M )|2�x2

= γ cos2[(σ1 + σ2)/2]. (20)

Here γ is a constant that depends on the choice of x1M ,
x2M , and �x. The success rate for the postselection process
(coincidence counting rate) depends on the value of γ as will
be discussed in the following section.

Equation (20) shows that the coincidence measurements
depend nonlocally on the sum of the phase shifts σ1 + σ2,
which is characteristic of nonlocal interferometers such as that
of Ref. [13]. A nonlocal interference pattern proportional to
cos2[(σ1 + σ2)/2] with a sufficiently high visibility indicates
that Bell’s inequality can be violated. This is shown to be the
case in more detail in the following section.

V. VIOLATIONS OF BELL’S INEQUALITY

The simple form of Eq. (20) depends on the assumption
that the cross terms ψ+−(x1M, x2M ) and ψ−+(x1M , x2M ) can
be neglected. In order to investigate this possibility, the value
of |ψ++(x1, x2)|2 = |ψ−−(x1, x2)|2 is plotted as a function of
x1 and x2 in Fig. 2(a). These results correspond to N = 24 and
θ = π/4, which satisfy the condition that Nθ = m(2π ). It can
be seen that the phases of the two fields are highly correlated
as expected. The magnitude squared of the wave function also
shows an oscillatory behavior extending towards to the origin,
which is due to the rapidly varying phase factor of e−iNφ in
the definition of fφ .

For comparison, Fig. 2(b) shows the magnitude squared of
the cross terms |ψ+−(x1, x2)|2 = |ψ−+(x1, x2)|2 as a function

FIG. 2. Plots of the magnitude squared of the wave function
in the coordinate representation as a function of x1 and x2.. (a)
Plot of |ψ++(x1, x2)|2 = |ψ−−(x1, x2)|2. (b) Plot of the cross terms
|ψ+−(x1, x2)|2 = |ψ−+(x1, x2)|2. These results correspond to N =
24, and θ = π/4, which satisfies the condition that Nθ = m(2π )
where m is an integer. (Dimensionless units.)

of x1 and x2. A phase shift of θ = π/4 causes the phases
of the two beams to become uncorrelated. In addition, the
wave function is only appreciable inside a ring with a rel-
atively narrow width. It can be seen that there are many
choices of x1M and x2M where the cross terms would be
negligible compared to |ψ++(x1, x2)|2, which would give
high-visibility nonlocal interference as described by Eq. (20).
There are also regions where |ψ++(x1, x2)|2 is negligible
compared to |ψ+−(x1, x2)|2, which would also allow high-
visibility quantum interference between the ψ+−(x1M , x2M )
and ψ−+(x1M, x2M ) terms.

The normalized probability P(x1M , x2M ) is shown in Fig. 3
as a function of the phase shift σ1 in interferometer A for
several values of the phase shift σ2 in interferometer B.
Here the postselected quadratures x1M and x2M were cho-
sen to be x1M = x2M = √

N , for which ψ+−(x1M , x2M ) and
ψ−+(x1M, x2M ) are negligibly small. Bell’s inequality [3] can
be violated if the visibility of a nonlocal interference pattern
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FIG. 3. The normalized probability P/Pmax of a postselected
event for x1M = x2M = √

N , plotted as a function of the phase shift
σ1 in interferometer A. (a) Phase shift σ2 = 0 in interferometer B. (b)
Phase shift σ2 = π in interferometer B. These nonlocal interference
effects correspond to the same parameters as in Fig. 2 and they
indicate that a violation of Bell’s inequality should be possible.

of this kind is greater than 1/
√

2 [26], which is the case for
the results shown in Fig. 3.

There can be a significant contribution from the
ψ+−(x1M , x2M ) and ψ−+(x1M, x2M ) terms for smaller values
of N or θ . In that case, the interference pattern is no longer de-
scribed by Eq. (20) and we must make use of the CHSH form
of Bell’s inequality introduced by Clauser, Horne, Shimony,
and Holt [3]. We also need to generalize the results of the
previous section to include the detection of single photons in
any of the four detectors D1 through D4. The effects of photon
loss will be neglected initially but then included later in this
section.

The CHSH inequality requires two sets of measurement
settings, which will be denoted by σ1 = σA or σ ′

A in interfer-
ometer A and σ2 = σB or σ ′

B in interferometer B. The result a
of the measurement obtained using σ1 = σA in interferometer
A will be assigned the value a = 1 if a photon is detected in
detector D1, while it will be assigned the value a = −1 if a
photon is detected in detector D2. [3]. The results obtained
in interferometer A using σ ′

A will be denoted a′ = ±1 in a
similar way, while the results obtained in interferometer B
will be denoted b = ±1 or b′ = ±1, depending on the choice
of σ2. The values of ψ±±(x1, x2) corresponding to the various
single-photon detector outcomes can be calculated in the same
way as in the previous section with the addition of a factor of
i when a single photon is reflected by a beam splitter.

The parameter S in the CHSH form of the inequality is then
defined as

S ≡ 〈ab〉 + 〈a′b〉 + 〈ab′〉 − 〈a′b′〉. (21)

Here 〈ab〉 denotes the average product of the measurement
results a and b, with a similar notation for the other three
terms. The inequality |S| � 2 holds for all local hidden-
variable theories.

In the example of interest here, the results are postselected
on having obtained quadrature measurements of x1 and x2

within a range �x of x1M and x2M . For small values of �x, the
properly normalized expectation values are therefore given by
[3]

〈ab〉 = |ψa=+1,b=+1|2 − |ψa=+1,b=−1|2 − |ψa=−1,b=+1|2 + |ψa=−1,b=−1|2
|ψa=+1,b=+1|2 + |ψa=+1,b=−1|2 + |ψa=−1,b=+1|2 + |ψa=−1,b=−1|2

, (22)

with analogous results for the other expectation val-
ues. Here we have used the notation ψa=+1,b=+1 ≡
(〈x1, x2| ⊗ A〈10| ⊗ B〈10|)|ψ〉 with a similar definition for the
other three terms. The constant γ and the factors of �x2

cancel out of these results.
We will first consider the case in which the range �x of

accepted homodyne measurements is negligibly small. Figure
4 shows a plot of |S| as a function of σ ′

A and σ ′
B, where the

other measurement settings were held fixed at σA = 0 and
σB = π . These results correspond to a relatively large photon
number of N = 24 and θ = π/4, as was used in Figs. 2 and 3.
It can be seen that there are regions of the plot where |S| > 2
and Bell’s inequality is violated, as would be expected from
Fig. 3.

Figure 5 shows a similar plot of |S| for a more realistic
value of N = 4. Although the interference pattern would no
longer have the simple form shown in Eq. (20), it can be seen
that there are still values of σ ′

A and σ ′
B where Bell’s inequality

can be violated.
In order to obtain an acceptable counting rate in an exper-

iment, it would be necessary to choose �x to be a significant
fraction of the overall range of the homodyne measurement
results, such as �x = 0.10

√
N . This choice of �x can be

shown to give a probability of success for the postselection

FIG. 4. A plot of the absolute value of the CHSH parameter S
as a function of the measurement settings σ ′

A and σ ′
B. The other

measurement settings σA and σB were held fixed at values of 0 and
π , respectively, while N = 24, θ = π/4, and x1M = x2M = √

N . The
red contour lines correspond to S = 2, and it can be seen that there
are large regions of the parameter space where the CHSH form of
Bell’s inequality is violated.

023719-5



S. U. SHRINGARPURE AND J. D. FRANSON PHYSICAL REVIEW A 102, 023719 (2020)

FIG. 5. Another plot of the absolute value of the CHSH parame-
ter S as a function of the measurement settings σ ′

A and σ ′
B, where the

number of photons corresponds to N = 4. All of the other parameters
are the same as in Fig. 4. It can be seen that there are still regions of
the parameter space where |S| > 2 and the CHSH form of Bell’s
inequality is violated.

process of 0.27% per pulse for N = 4, for example. With σA =
0, σ ′

A = 0.9, σB = π , and σ ′
B = −2.2, this value of �x gives a

violation of Bell’s inequality with |S| = 2.3. More generally,
the maximum value of S is plotted in Fig. 6 as a function of N
for several values of �x. Here σA, σ ′

A, σB, and σ ′
B were varied

to optimize S. These results were obtained by integrating the
magnitude squared of the wave functions in Eq. (22) over the
relevant range of x1 and x2.

It can be seen from Fig. 6 that Bell’s inequality can be
violated for all values of N , including N = 1. The value of
S is just above the hidden-variable limit of S = 2 for N = 1,
and it gradually increases for larger values of N up to the
maximum value allowed by quantum mechanics of 2

√
2 (the

Tsirelson bound). It can also be seen that Bell’s inequality
can be violated for relatively large values of �x, which would
result in reasonable values for the probability of success.

FIG. 6. Plots of the maximum value of the CHSH parameter S
as a function of the initial number N of photons incident on the first
beam splitter. The results are shown for several different values of the
range �x of the homodyne measurement results that are accepted in
the postselection process. These results neglect photon loss.

FIG. 7. Maximum value of the CHSH parameter S as a function
of the mean photon loss n̄ for several values of the initial number N
of photons. These results assume that �x is negligibly small.

The results shown above neglect the effects of photon loss.
Schrödinger cat states are very sensitive to photon loss, and
the loss of even a single photon will typically produce a
substantial amount of decoherence. The effects of photon loss
during transmission were evaluated by including an additional
beam splitter in both paths after the initial beam splitter of
Fig. 1. The reflected components of the two beams provide
which-path information regarding their phases, which reduces
the amount of quantum interference [27]. The maximum value
of the CHSH parameter S is plotted in Fig. 7 as a function of
the mean photon loss n̄ for several values of N . It can be seen
that Bell’s inequality can no longer be violated for n̄ greater
than ∼0.1 photons for N = 1 and ∼0.2 for N = 4, while
larger values of N allow a mean loss of ∼0.3 photons. For
a given channel loss, the value of n̄ will be proportional to N ,
which favors the use of small values of N in an experimental
test.

Although the violation of Bell’s inequality is sensitive to
photon loss, Micuda et al. [16] have shown that an arbitrary
quantum state can be transmitted through a lossy channel with
negligible decoherence due to photon loss if the signal is
noiselessly attenuated [16,28] before transmission, followed
by noiseless amplification [29] after transmission. Roughly
speaking, the noiseless attenuation can be used to reduce the
intensity of the field to the point that the mean number of
photons lost is much less than 1 and no significant which-
path information is left in the environment. In principle, the
phase-entangled states of interest here could violate Bell’s
inequality even after transmission through a lossy channel
using techniques of that kind. Noiseless attenuation and am-
plification are both probabilistic, however, which results in an
exponential reduction in the probability of success.

Another difficulty in an experimental test of Bell’s in-
equality using this approach is the need to implement a
Kerr phase shift at the single-photon level. Single-photon
nonlinear phase shifts as large as π/2 have been demonstrated
experimentally [30–37] but experiments of that kind remain
challenging. Further improvements in those techniques would
probably be required for the kind of experiments proposed
here. Alternatively, a controlled phase shift (Kerr effect) can
be implemented at the single-photon level using linear optics
techniques [38,39], and we are currently investigating more
efficient ways of doing that.
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FIG. 8. Modification of the apparatus shown in Fig. 1 to avoid
the need for the fair sampling assumption as a result of postselection.
By extending the length of the interferometer arms, the homodyne
measurement used for the postselection process can be completed
before the phase settings σ1 and σ2 are chosen at random. Under
those conditions, a local hidden-variable theory cannot bias the
statistics from detectors D1

′ and D2
′. The combined system inside the

dashed blue line can be viewed as a compound source that generates
(heralds) the entangled states that are to be measured.

VI. FAIR SAMPLING ASSUMPTION

The postselection process based on the results of the ho-
modyne measurements is required in order to violate Bell’s
inequality. As a result, one might suspect that the fair sam-
pling assumption [40,41] may be needed. It will be shown in
this section that the fair sampling assumption is not required
provided that the homodyne measurements are completed
before the phase shifts σ1 and σ2 are chosen at random.
In that case, there is no opportunity for a hidden-variable
model to bias the statistics as a result of the postselection
process.

We have assumed up to now that the single-photon detec-
tion measurements in D1 through D4 were completed before
the homodyne measurements in Fig. 1. That produces two
possible phase shifts on beams 1 and 2 which give quantum
interference effects in the subsequent homodyne measure-
ments. But the results would be the same if the homodyne
measurements were completed first, since the homodyne and
single-photon detection measurements correspond to com-
muting operators. This can be accomplished by extending the
length of the single-photon interferometers as illustrated in
Fig. 8, which allows the settings of σ1 and σ2 to be cho-
sen at random after the homodyne measurements have been
completed.

Figure 9 compares the approach described here with a
more conventional test of Bell’s inequality using a pair of
single-photon detectors with limited detection efficiency. Fig-
ure 9(a) illustrates a conventional Bell’s inequality experiment
based on a pair of particles, such as two photons with en-
tangled polarizations. In a local realistic theory, each photon

2θ1θ S

( )a

2 'D1 'D

2θ1θ S

( )b

2aD

2aD

2bD

2bD

1bD

1bD

1aD

1aD

FIG. 9. Comparison of a conventional test of Bell’s inequality
with the approach described in the text. (a) A conventional Bell in-
equality experiment in which a pair of entangled particles are created
by a source S and propagate to two distant detectors with settings θ1

and θ2. The outcome of the measurements are recorded by detectors
D1a„D1b„D2a, and D2b with limited detection efficiencies. Given that
a photon enters one of the detectors, the detection probability could
depend on θ1 and θ2 in a hidden-variable theory, which would bias
the statistics and require the use of the fair sampling assumption. (b)
The experiment of interest here, where the results are postselected
based on the measurement outcomes in detectors D1

′ and D2
′. The

outcome of those measurements cannot depend on the choice of θ1

and θ2 if those measurements are completed before θ1 and θ2 are
chosen at random. The fair sampling assumption would be required
as usual if the detectors D1a, D1b, D2a, and D2b have sufficiently low
efficiencies.

is assumed to carry a set of hidden variables {λi} that are
used to locally determine the outcome of two measurement
devices with randomly chosen settings θ1 and θ2, such as
the orientation of two polarization analyzers. The two possi-
ble outcomes a = ±1 and b = ±1 of each measurement are
then determined by single-photon detectors D1a, D1b, D2a,
and D2b as previously described. The measurement outcomes
a(θ1, {λi}) and b(θ2, {λi}) are functions of θ1, θ2, and {λi} in a
hidden-variable theory. Bell’s inequality can be derived in the
usual way if the detectors have 100% detection efficiency. But
for limited detection efficiencies, a photon entering a detector
could have a probability of being detected that depends on
the settings θ1 and θ2. That would bias the statistical results
and allow a hidden-variable theory to violate Bell’s inequality
[40,41]. That possibility can be ruled out by using the fair
sampling assumption or by using detectors with sufficiently
high detection efficiencies.

For comparison, the approach of interest here is illus-
trated in Fig. 9(b). The optical pulses leaving the source
contain an indeterminate number of photons along with a
set of hidden variables {λi} that are used to locally deter-
mine the outcome of any measurements in a local hidden-
variable model. A beam splitter separates part of the signal
in each path and sends it to homodyne detectors D1

′ and
D2

′, whose outcome will form the basis for the postselection
process. The outcome of the postselection process would be
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determined by the hidden variables {λi} in a local hidden-
variable theory.

After the homodyne measurements D′
1 and D′

2 have been
completed, the settings θ1 and θ2 in the two measurement
devices are chosen at random. In our example, θ1 and θ2

correspond to the phase shifts σ1 and σ2 in the extended-
length single-photon interferometers shown in Fig. 8. In
a local hidden-variable theory, the measurement outcomes
a(θ1, {λi

′}) and b(θ2, {λi
′}) are determined by a new set of hid-

den variables {λi
′} that are consistent with the outcome from

the first set of measurements in D1
′ and D2

′. The probability
distribution of these measurement outcomes can be viewed
as conditional probabilities given the results obtained in D1

′
and D2

′. In any event, the new hidden variables {λi
′} must

determine the outcome of the subsequent measurements as
recorded by detectors D1a, D1b, D2a, and D2b, in complete
analogy with the role of the hidden variables {λi} in the
conventional Bell’s inequality test of Fig. 9(a).

Bell’s inequality can then be proven as usual, based on
the fact that the {λi

′} must determine the outcome of the
subsequent measurements. The usual proof relies only on
the requirement that the probability distributions associated
with the {λi

′} must be normalized to unity (i.e., the hidden-
variable theory must always produce an outcome) with all
probabilities in the range of 0 to 1 (no negative probabilities
allowed).

The fair sampling assumption is not required for the posts-
election process because the detection probabilities in D1

′ and
D2

′ cannot depend on the subsequent choice of the settings
σ1 and σ2. As a result, a hidden-variable model cannot take
advantage of the limited detection efficiency of D1

′ and D2
′

to bias the statistics. That is not the case for the subsequent
Bell-inequality measurement outcomes recorded by detectors
D1a, D1b, D2a, and D2b, and the fair sampling assumption
would still be required as usual if those detection efficiencies
are sufficiently low.

The combined system consisting of the source S and ho-
modyne detectors D1

′ and D2
′ can be viewed as an effective

source that prepares an entangled state for a subsequent Bell
inequality test. This is illustrated by the dashed-line box in
Fig. 8. A compound source of this kind uses postselection
to herald when an entangled state is ready to be measured,
after which the hidden-variables {λi

′} must determine the
outcomes of the measurements. From a conceptual point of
view, this can be viewed as either a state preparation process
or a preselection of quantum states, rather than postselection
based on the results of the actual Bell-inequality test.

It can be seen from Eq. (7) that the postselection process
does not create the entanglement between the phases in the
two beams, which already exists before any measurements are
made. The postselection provides a way to observe quantum
interference between the probability amplitudes for states
with different phases, which is required for a violation of
Bell’s inequality.

As a practical matter, the fair sampling assumption will
be required in most experiments due to the limited detection
efficiencies in D1a, D1b, D2a, and D2b. In that case, there
is no need for the homodyne measurements to be spacelike
separated from the choice of σ1 and σ2, and the experimental
apparatus of Fig. 1 would probably be easier to implement

Beam 1 Beam 2

x x

p p

FIG. 10. Interpretation of the phase-entangled state in Eq. (7) in
phase space, where x and p represent the position and momentum
in the Wigner distribution. There is an equal probability amplitude
for all possible phases at a distance of R = √

N from the origin.
The small circles represent the uncertainty in the quadratures of the
coherent states. A phase measurement in beam 1 will collapse the
states in the two beams to approximate coherent states with equal
phases [14]. Two possible results are illustrated by the two sets of
arrows. (Dimensionless units.)

than the one in Fig. 8. The two experimental arrangements are
equivalent according to quantum mechanics.

VII. DISCUSSION

The quantum interference responsible for the violation of
Bell’s inequality can be understood in an intuitive way if N 

1. In that case, Eq. (7) describes a superposition of coherent
states in each beam that is centered about a ring of radius
R = √

N in phase space as illustrated in Fig. 10. The phases
of the coherent states in the two beams are the same but totally
uncertain, as illustrated by the red and blue circles.

A homodyne measurement on beam 1 will give a value of
x1 that corresponds to two possible values of the phase. For
example, Fig. 11 illustrates the case where the measured value

X Xθθ

p

x

FIG. 11. Nonlocal quantum interference produced by applying
a phase shift of ±θ to the two output beams from the initial
beam splitter shown in Fig. 1. This can be done using two single-
photon interferometers containing a Kerr medium in one path. In
this example, the results are postselected on obtaining a homodyne
measurement of x = 0 in both beams, which corresponds to a final
phase of ±π/2. (For simplicity, only the π/2 phase is shown.) One
probability amplitude for this process to occur corresponds to an
initial phase of π/2 + θ in both beams, followed by a phase shift
of −θ from the single-photon interferometers. A second probability
amplitude corresponds to an initial phase of π/2 − θ in both beams,
followed by a phase shift of θ from the single-photon interferometers.
Quantum interference between these two probability amplitudes can
produce a violation of Bell’s inequality. (Dimensionless units.)
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of x1 is zero, which corresponds to a phase of ±π/2. For
simplicity, only the π/2 case is shown in the figure, where
it is represented by a light blue circle. There are two ways
of achieving a final phase of π/2. Both beams may have
initially had a phase of π/2 − θ followed by a phase shift of
θ from the single-photon interferometers, which corresponds
to the ψ++ amplitude. Or both beams may have initially
had a phase of π/2 + θ followed by a phase shift of −θ

from the single-photon interferometers, which corresponds
to the ψ−− amplitude. If the ψ+− or ψ−+. amplitudes can
be eliminated by the postselection process, then the total
amplitude for this process to occur is ei(σ1+σ2 )ψ++ + ψ−−,

Quantum interference between these two terms is responsible
for the form of Eq. (20).

The ψ+− or ψ−+. amplitudes correspond to the case where
one beam undergoes a phase shift of θ while the other beam
undergoes a phase shift of −θ . For N 
 1, those amplitudes
do not overlap and they can be eliminated using postselection
as illustrated by the dashed open circles in Fig. 11. But for
small values of N , the radius R will be reduced to the point
that the uncertainty circles in Fig. 11 will overlap and the
postselection process is ineffective. This is responsible for the
reduction in the value of S that can be seen in Fig. 6 for small
values of N .

This interpretation is only approximately correct because
of the uncertainty in the quadrates of a coherent state as well
as the rapid variation in the factor of exp[−iNϕ] in the integral
of Eq. (7). Nevertheless, it does provide some insight into the
origin of these effects and it was the initial motivation for our
interest in the system shown in Fig. 1.

VIII. SUMMARY AND CONCLUSIONS

A photon number state is one of the most basic examples
of a nonclassical state of light. A number state incident on
a balanced beam splitter will produce two output beams that
correspond to a superposition of identical coherent states
in each beam. The phase of the coherent states is totally
uncertain but the same in both beams. An entangled state of
this kind can be viewed as a generalized form of a Schrödinger
cat state with an equal probability amplitude for all phases.

Bell’s inequality can be violated using this entangled state
and two distant measurement devices. Each measurement
device consists of a single-photon interferometer with a Kerr
medium in one path, a set of single-photon detectors, and
postselection based on a homodyne measurement. The Kerr
media produce a phase shift that depends on the path taken
by the single photons through the interferometers. This gives
two different probability amplitudes for obtaining the postse-
lected value of the quadrature in the homodyne measurements.
Nonlocal quantum interference between these probability am-
plitudes is responsible for the violation of Bell’s inequality,
which can occur for any number N � 1 of photons incident
on the initial beam splitter.

Like other Schrodinger cat states, these states are highly
sensitive to photon loss. A violation of Bell’s inequality re-
quires that either the photon loss is inherently small or that its
effects are minimized using linear optics techniques based on
postselection [16]. The decrease in the CHSH parameter S due

to photon loss can be understood as being due to which-path
phase information that is left in the environment.

The use of postselection suggests that the fair sampling
assumption may be required for a violation of Bell’s inequal-
ity. We have shown that the fair sampling assumption is not
required if the homodyne measurements are performed before
the parameters σ1 and σ2 in the Bell-inequality measurements
are chosen at random. Quantum mechanics predicts the same
results regardless of the order of the measurements.

Somewhat similar violations of Bell’s inequality have
previously been proposed using entangled Schrödinger cat
states [23,27]. The main difference is that most entangled
Schrodinger cat states only contain a superposition of two
possible phases, whereas the entangled state produced by
a number state and a beam splitter contains a continuous
range of possible phases. This approach provides a relatively
straightforward way to produce entangled cat states, espe-
cially for small values of N .

In principle, this technique could be used to distribute
entangled pairs of photons in the output of the single-photon
interferometers, provided that the photon loss is sufficiently
small. More importantly, a number state is one of the simplest
forms of a nonclassical state and the fact that it can be used in
this way to violate Bell’s inequality is of fundamental interest.
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APPENDIX

The results in the main text were derived using Eq. (4),
which expresses a photon number state as a superposition of
coherent states with all possible phases. In this Appendix, we
give an alternative derivation based on the properties of the
Hermite polynomials. Although the results are equivalent to
those in the text, they can be used to derive an analytic form
for ψ++ or ψ−−.

This initial state of the system with N photons incident on
the first beam splitter can be written in terms of the photon
creation operators as

|ψ〉 = (â†
1)

N

√
N!

|0, 0〉. (A1)

Here the notation is the same as in the text. After passing
through the beam splitter, Eq. (A1) can be used to write the
transformed state as

|ψ〉 = (â†
1 + iâ†

2)
N

√
N!2N

|0, 0〉. (A2)

This can be rewritten using the binomial expansion as

|ψ〉 =
N∑

n=0

in

√
NCn

2N
|N − n, n〉, (A3)

where NCn are the binomial coefficients.
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We can then simplify each of the terms in Eq. (14) by
integrating over the phase φ. The results are that

|ψk〉 = −pk
1

4

N∑
n=0

qn
k

√
NCn

2N
|N − n, n〉, (A4)

where p1 = ei(σ1+σ2+Nθ ), p2 = ei(σ1−Nθ ), p3 = ei(σ2+Nθ ), p4 =
e−Nθ , q1 = q4 = 1, and q2 = q∗

3 = ei2θ . The index k corre-
sponds to each of the four terms in Eq. (17).

The dimensionless position-basis representation of the fi-
nal state is given by the inner product 〈x1, x2 |ψ〉 = ψ (x1, x2).
We can use the position-basis representation of the number
states,

〈x | n〉 =
√

e−x2

n!2n
√

π
Hn(x), (A5)

to obtain

ψk (x1, x2) = −pk
e−(x2

1+x2
2 )/2

4
√

πN!

N∑
n=0

qn
k

NCn

2N
H(N−n)(x1)Hn(x2).

(A6)

Here Hn(x) is the nth Hermite polynomial.
We can further simplify Eq. (A6) for k = 1 and k = 4 to

the analytical form

ψk (x1, x2) = −pk
e−(x2

1+x2
2 )/2

4
√

2NπN!
HN

(
x1 + x2√

2

)
. (A7)

When the cross terms corresponding to k = 2 and k = 3
are negligible, Eq. (A7) gives an interference pattern that is
equivalent to Eq. (20) in the text, but without any complicated
integrals over φ.
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