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Quantum interactions with pulses of radiation
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This paper presents a general master equation formalism for the interaction between traveling pulses of
quantum radiation and localized quantum systems. Traveling fields populate a continuum of free-space radiation
modes and the Jaynes-Cummings model, valid for a discrete eigenmode of a cavity, does not apply. We develop a
complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation
and the quantum state of the field emitted into any desired outgoing temporal mode. Our theory is applicable to
the transformation and interaction of pulses of radiation by their coupling to a wide class of material quantum
systems. We discuss the most essential differences between quantum interactions with pulses and with discrete
radiative eigenmodes and present examples relevant to quantum information protocols with optical, microwave,
and acoustic waves.
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I. INTRODUCTION

Many quantum technologies rely on the preparation and
interaction of pulses of radiation with matter. In particular,
in the field of quantum information processing and commu-
nication [1,2], quantum-state transfer between stationary and
traveling physical components are gaining importance, see,
e.g., Refs. [1,3–9]. While a host of experimental and theo-
retical results on the basic quantum interactions between light
and matter is now textbook material, researchers have only
recently undertaken efforts to properly describe the interaction
of quantum systems with propagating wave packets of light
and other forms of radiation.

Standard quantum optics textbooks discuss nonclassical
properties of light through the introduction of quantum states
such as Fock (number), coherent, and squeezed states, and
introduce quantized light-matter interactions by the seminal
Jaynes-Cummings model,

ĤJC = g(âσ̂+ + â†σ̂−), (1)

where â(†) and σ̂(+)− are the (creation) annihilation operators
of the photon field and the excitation of a two-level quantum
system and g is the coupling strength. Figure 1(a) illustrates
the realization of this model by a two-level system passing
through the field confined in a cavity (the coupling g(t ) is then
time dependent as the atom traverses regions with different
strengths of the electromagnetic-field mode).

Cavity systems and their equivalents in circuit QED sup-
port discrete modes which may justify the restriction of
quantum interactions to only a single resonant mode as in
Eq. (1). But traveling fields explore a continuum of modes
which simultaneously incorporate Maxwell’s equations of
wave propagation and the (second quantization) concept of
creation and annihilation operators. In linear media, traveling
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Maxwell wave packets merely propagate their quantum-state
contents, and one might expect that light in an incoming wave
packet u(t ), see Fig. 1(b), would interact with a two-level
system in the same way as a moving atom interacts with
a stationary eigenmode of light. However, when the light
interacts with a nonlinear medium such as a two-level system,
the photon-number contents and the wave-packet shape may
change in a correlated manner and thus explore the full mul-
timode character of the quantized field. This does not happen
in the cavity if a large frequency gap suppresses coupling to
other eigenmodes.

A quantum system, such as a two-level atom coupled to
a continuum of radiation modes in the vacuum state, can
be effectively described as an open quantum system and the
corresponding reduced master equation can be solved for the
system density matrix. That equation permits inclusion of
driving by a classical pulse as a time-dependent term in the
system Hamiltonian. The field emitted by the system can be
characterized by the time-dependent amplitude and intensity
whose mean values are governed by the atomic coherence
and excited state population, see Fig. 1(b). This method,
however, does not permit description of the excitation of
the system by a light pulse prepared in a nonclassical state.
Moreover, the mean field and intensity neither provide the
full Schrödinger picture quantum state of the emitted field
nor the quantum-state contents of any subset of propagating
field modes.

The problem is the vastly complex expansion of the pos-
sibly entangled multiphoton quantum state on a large number
of modes. The interaction with such states forms a computa-
tionally hard many-body problem with formal Dyson series
or diagrammatic solutions for which complete evaluation is
typically not feasible. See, however, the recent numerical
progress with matrix product states [10,11] and with multi-
photon scattering theory in temporal mode bases [12]. The
complexity of the problem is reduced if one may restrict the
system to only one or two excitations, for which the state
vector of the field can be expanded on corresponding one- or

2469-9926/2020/102(2)/023717(14) 023717-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023717&domain=pdf&date_stamp=2020-08-26
https://doi.org/10.1103/PhysRevA.102.023717


KIILERICH AND MØLMER PHYSICAL REVIEW A 102, 023717 (2020)

FIG. 1. (a) Interaction between a flying two-level system and the
quantum field in a cavity; (b) between a stationary two-level atom
and an incident pulse, resulting in atomic excitation and scattering;
(c) between a two-level atom and an incident pulse, with an apprecia-
ble fraction of the outgoing energy occupying a single output pulse;
and (d) a setup where multiple input pulses excite a quantum system
and cause reflection and transmission into multiple output pulses.

two-dimensional continua of Fock states,
∫

dωφ1(ω)|1ω〉,∫
dωdω′φ2(ω,ω′)|1ω, 1ω′ 〉 [13–24].
In the present paper, we assume an alternative simplifi-

cation of the problem, namely, that the quantum system is
irradiated by a pulse which is described as a single time-
dependent mode. By the restriction to a single mode, our
effective density matrix theory [25] is capable of dealing with
pure and mixed states with relatively high photon numbers.
A theoretical description, the so-called Fock state master
equation approach by Baragiola et. al. [26], and alternative
formulations [27–29] offer a similar capability but, as shown
in Ref. [25], our theory readily lends itself to also evaluate
the quantum state of the field occupying any time-dependent
output wave packet after the interaction with the system.

We emphasize that our theory provides the full quantum
state only for specified input and output modes [see Figs. 1(c)
and 1(d)]. This is the relevant information in quantum infor-
mation protocols where wave packets are applied to transport
states of discrete quantum systems or to act as flying qubits
which are processed by their interaction with linear and
nonlinear media. While our focus is on few-mode quantum
states, mean values and correlation functions of the radiation
components outside these modes, indicated by the shaded
wave fronts in Fig. 1(c), are also directly available in our
formalism.

The aim of the present paper is to develop several aspects
of the theory beyond Ref. [25] and to highlight some of the
main physical differences between quantum interactions with
a stationary mode and a traveling pulse of quantum radiation.
In Sec. II, we present the basic theory and we offer examples
of its application to describe decoherence of a quantum pulse
and production of pulses of nonclassical radiation. In Sec. III,
we present a generalization to multimode pulses, illustrated
by emission of quantum pulses that are entangled with the
final state of the emitter. In Sec. IV, we apply our theory to

a paradigmatic photon blockade proposal by a cavity with a
single atom and we identify a fundamental time-bandwidth
restriction on nonlinear quantum optical schemes with pulses
of radiation. In Sec. V, we describe how to model pulses
propagating through a waveguide in a thermally excited state.
In Sec. VI, we conclude and discuss future prospects of the
method.

II. THEORY

Consider a quantum system described, in the Born-Markov
approximation, by a Hamiltonian Ĥs and a set of n dissipation
operators {L̂i}n

i=1 such that the evolution of its quantum state
ρs is governed by the Lindblad master equation (h̄ = 1),

dρ

dt
= −i[Ĥ , ρ] +

n∑
i=1

D[L̂i]ρ, (2)

with Ĥ = Ĥs and D[L̂i]ρ = L̂iρL̂†
i − 1

2 (L̂†
i L̂iρ + ρL̂†

i L̂i ). In
addition, the system interacts with the quantized field via V =
i
√

γ (b̂†
inĉ − b̂inĉ†), where ĉ annihilates an excitation in the

system and b̂in(t ) is the annihilation operator of the multimode
bosonic input field which obeys the commutation relations
[b̂in(t ), b̂†

in(t ′)] = δ(t − t ′), such that 〈b̂†
in(t )b̂in(t )〉 is the rate

of photons incident on the local quantum system at time t .
The conventional input-output theory of quantum op-

tics [30,31] provides an operator expression connecting the
asymptotic incoming and outgoing field components that spa-
tially overlap with the scatterer system at time t (the Fourier
transform of the frequency eigenmode field operators [30]):

b̂out (t ) = b̂in(t ) + √
γ ĉ. (3)

In our problem, the incident field is prepared in a particu-
lar state occupying a particular wave-packet mode while all
orthogonal modes are assumed to be in the vacuum state.
While the operator expression Eq. (3) is general and applies
irrespective of the state of the field, it shall be used to derive
our master equation which will explicitly depend on the pulse
shapes and its solutions will depend on the quantum state of
the radiation incident on the quantum system. If the system
Hamiltonian Ĥs is at most quadratic and the damping is linear
in bosonic annihilation and creation operators, the Heisenberg
equations of motion for the system operator ĉ can be solved
and b̂out (t ) expressed in terms of the input fields. This is,
however, not the case for scattering on few-level, anharmonic,
or nonlinear systems.

Our theory combines the input-output theory with the
concept of cascaded quantum systems [32], which describes
how the output from one system can serve as an input to
another system while formally eliminating the propagating
quantum field modes from the theory. To describe an incident
wave packet u(t ), we transform our initial problem of a
quantum system interacting with a multimode bosonic input
field into that of one upstream virtual leaking cavity whose
output drives the local quantum system. To be consistent, this
approach requires that the output of the upstream cavity drives
the quantum system in the same way as the incoming wave
packet of the multimode bosonic input field. Similarly, the
quantum state of any specific outgoing wave packet due to
the output field of the quantum system can be modeled as the
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state transferred into a single downstream virtual cavity [25].
By this method, we obtain an effective master equation for the
density matrix of the discrete quantum system and the input
and output pulses described by two (pseudocavity) modes.

We restrict the formal theory to one-dimensional wave
propagation, i.e., we assume a waveguide or a collimated
beam, with only a single transverse mode. We also assume
a chiral coupling of the components: The radiation propagates
toward and away from the scatterer along distinct input and
output directions [along the arrows in Figs. 1(b) and 1(c)]. Re-
flection and transmission may, however, be treated as separate
output channels [Fig. 1(d)].

A. Driving with a quantum pulse

We shall now describe how the time-dependent coupling
gu(t ) of the upstream cavity to the local quantum system is
designed such that the interaction with an incoming wave
packet u(t ) is consistently modeled.

If a single mode cavity is coupled to an input field
with a time-dependent coupling strength V = i[g∗(t )b̂†

in(t )â −
g(t )b̂in(t )â†], the quantum Langevin equation for the field
operator â reads [31]

˙̂a = −|g(t )|2
2

â − g(t )b̂in(t ), (4)

where we assume a rotating frame around the carrier fre-
quency of the field mode. Note that we have assumed that g(t )
varies slowly compared to the spectral range of the continuum
field, so the Born-Markov approximation applies and yields
the time-dependent cavity decay rate |g(t )|2. The general
solution for the intracavity field reads

â(t ) = e− 1
2

∫ t
0 dt ′ |g(t ′ )|2 â(0)

−
∫ t

0
dt ′ g(t ′)e− 1

2

∫ t
t ′ dt ′′ |g(t ′′ )|2 b̂in(t ′). (5)

The input-output relation (3) yields b̂†
out (t ) = b̂†

in(t ) +
g(t )â†(t ), and to represent the incoming pulse u(t ), we can
define the creation operator

b̂†
u =

∫
dt u(t )b̂†

out (t ) (6)

for the temporal output mode of the upstream cavity
with envelope u(t ) = g∗

u(t )e− 1
2

∫ t
0 dt ′ |gu(t ′ )|2 , normalized as∫

dt |u(t )|2 = 1. Upon inverting this expression, one finds
[33] the time-dependent coupling

gu(t ) = u∗(t )√
1 − ∫ t

0 dt ′ |u(t ′)|2
, (7)

required for the cavity field to be emitted in the wave packet
u(t ).

For a quantum system, it is equivalent to be driven by
a traveling pulse and by the output field of a cavity, and
according to the theory of cascaded quantum systems, the
joint state ρus of the cavity with field annihilation operator âu

and the quantum system is described by a master equation of

Lindblad form (2) with a Hamiltonian given by

Ĥus(t ) = Ĥs(t ) + i
√

γ

2
(gu(t )â†

uĉ − g∗
u(t )âuĉ†). (8)

In addition to the Lindblad terms acting only on the quantum
system in Eq. (2), the system and the input cavity mode are
subject to a time-dependent Lindblad term D[L̂(us)

0 (t )] with
operator

L̂(us)
0 (t ) = g∗

u(t )âu + √
γ ĉ. (9)

Equation (9) is of the same form as the input-output relation
(3) and indeed represents the output field from the quantum
system, composed of interfering contributions from the input
field and the emission by the system itself.

Combining the Hamiltonian and Lindblad terms in the
master equation, we obtain the master equation:

ρ̇us = −i[Ĥs, ρ] +
n∑

i=1

D[L̂i]ρ

+ √
γ [g∗

u(t )(âuρusĉ
† − âuĉ†ρus)

+ gu(t )(ĉρusâ
†
u − ρusâ

†
uĉ)]

+ D[
√

γ ĉ]ρus + D[g∗
u(t )âu]ρus. (10)

This equation deals explicitly with a density matrix which
spans the tensor product Hilbert space of the quantum system
and the input pulse cavity mode and has the same dimension
and numerical complexity as the Fock space master equation
by Baragiola et al. [26].

Note that in Eq. (10), the Hamiltonian and the D[L̂(us)
0 (t )]

damping terms conspire such that ρus is only operated upon
from the left (right) by âu(â†

u): Quanta are only annihilated
from the incoming pulse and never created in it, signifying
the cascaded nature of the scattering process.

The formal structure of Eq. (10) implies that if the input
mode is initially prepared in a coherent state |α〉 with âu |α〉 =
α |α〉, it remains in a coherent state with a time-dependent
amplitude α(t ), damped according to α̇(t ) = −|gu(t )|2

2 α(t ).
The quantum state then factorizes and we get a reduced master
equation for the discrete system with the time-dependent
Hamiltonian,

Ĥ = Ĥs + i
√

γ [u∗(t )α∗(0)ĉ − u(t )α(0)ĉ†], (11)

describing the interaction with a classical, time-dependent
field, the dissipation terms of Eq. (2), and spontaneous decay
into the propagating field governed by a single Lindblad
operator:

L̂(s)
0 (t ) = √

γ ĉ (12)

(see also Ref. [34]). This dynamics, in fact, becomes even
simpler than the interaction with a single mode cavity field
in a coherent state, for which the Jaynes-Cummings model
(1), yields complex dynamics with collapses and revivals of
Rabi oscillation due to the different coupling amplitudes g

√
n

of the transitions involving different photon number compo-
nents, |g, n〉 ↔ |e, n − 1〉. For input quantum states other than
coherent states, however, we have recourse to Eq. (10) to make
predictions for the time evolution of the interacting systems.

023717-3



KIILERICH AND MØLMER PHYSICAL REVIEW A 102, 023717 (2020)

B. Output field mean values and correlation functions

Our formalism determines the state of a quantum system
subject to an input pulse, but the field component of ρus even-
tually converges to the vacuum state and does not describe the
state of the output field. We can obtain mean values and higher
moments of the scattered field via the input-output relation
(3). In particular, the time-dependent intensity is given by

Iout (t ) = 〈[
L̂(us)

0 (t )
]†

L̂(us)
0 (t )

〉
, (13)

while the autocorrelation function of the output field
g(1)(t, t ′) = 〈(L̂(us)

0 (t ))†L̂(us)
0 (t ′)〉 and, thus, its spectrum is

given by the quantum regression theorem [31,35] as

g(1)(t, t ′) = Tr
{[

L̂(us)
0 (t )

]†
	(t, t ′)

[
L̂(us)

0 (t )	(t ′, 0)ρus(0)
]}

.

(14)

Here ρus(0) is the joint state of the incoming mode and the
quantum system and {	(t, t ′)}t�0 represents the linear time
evolution map of the master equation (10). Finally, we note
that the eigenmode decomposition,

g(1)(t, t ′) =
∑

i

niv
∗
i (t )vi(t

′), (15)

of the autocorrelation function determines the most occupied
set of orthogonal modes vi(t ) in the output field with ni quanta
of excitation.

In the simple example of scattering of a pulse u(t ) on an
empty cavity with resonance frequency ωc (the local quantum
system), the quantum state of the pulse is unchanged but the
output populates a modified mode related to the input pulse
by the frequency domain expressions, v(ω) = [i(ω − ωc) +
γ /2]/[i(ω − ωc) − γ /2]u(ω). If, however, the cavity expe-
riences phase noise, as described by an additional Lindblad
term L̂1 = √

γpĉ†ĉ in the master equation (2) for the cavity
mode, the output field occupies several orthogonal modes. We
have calculated g(1)(t1, t2) (see inset in Fig. 2) and identified
the four output modes with the largest populations in Fig. 2
for γp = 1.5γ and an input pulse of Gaussian shape,

uGauss(t ) = 1√
τπ1/4

e
−(t−tp )2

2τ2 , (16)

with τ = γ −1. The modes are orthogonal and have
completely different characteristics and the output
field is distributed over many more modes, cf.
the populations in the first nine modes: {ni}9

i=1 =
{0.54, 0.26, 0.13, 0.072, 0.047, 0.033, 0.025, 0.019, 0.015}.

C. Scattering into a quantum pulse

For a growing number of applications, it is pertinent to ob-
tain the quantum state rather than mean values of the scattered
field and mean occupation of the dominant eigenmodes. Often
we are interested in the quantum state of a single or a few
dominant output pulse mode functions, which may, for exam-
ple, be chosen among the most populated orthogonal modes,
identified by Eq. (15). Our cascaded system master equation
may readily provide full information about the quantum-state
contents of any outgoing wave packet mode (or few modes)
while treating the emission into other modes as losses.

FIG. 2. Scattering on an empty cavity with phase noise. The four
dominating orthogonal modes v1(t ), v2(t ), v3(t ), and v4(t ) in the
output field found from the autocorrelation function g(1)(t1, t2) for
the field emitted by the cavity (shown in the inset). The respective
fractions, n1, n2, n3, and n4 of the input photon number are given in
the legend. Results are shown for a Gaussian input mode (16) of du-
ration τ = γ −1, arriving at tp = 4γ −1 and a cavity phase fluctuation
rate of γp = 1.5γ .

To obtain a full quantum-state description of a chosen
output mode v(t ), we introduce another downstream virtual
cavity with a time-dependent coupling gv (t ). Assuming a
complete asymptotic decay of the initial amplitude in this cav-
ity, i.e., that the first term in Eq. (5) vanishes, the integral over
the input field in the second term for t → ∞ has the temporal
weight factor v(t ) = −g∗

v (t )e− 1
2

∫ ∞
t dt ′ |gv (t ′ )|2 ). To fully capture

the desired pulse, we require [36]

gv (t ) = − v∗(t )√∫ t
0 dt ′ |v(t ′)|2

. (17)

The virtual output cavity is cascaded after the localized
quantum system such that the full quantum state ρ ≡ ρusv

now represents three components; the cavity releasing the
incoming pulse, the quantum system exposed to the field, and
the cavity capturing the outgoing pulse.

If we denote the annihilation operator of the output mode
âv , the master equation (2) would apply to the full system with
the Hamiltonian:

Ĥ (t ) = Ĥs(t ) + i

2
(
√

γ gu(t )â†
uĉ

+ √
γ g∗

v (t )ĉ†âv + gu(t )g∗
v (t )â†

uâv − H.c.). (18)

The system damping terms in (2) are now supplemented by
D[L̂0(t )] with

L̂0(t ) = √
γ ĉ + g∗

u(t )âu + g∗
v (t )âv. (19)

If the scattered field is fully accommodated by the mode
v(t ), the cascaded network evolves along a dark state of the
dissipator L̂0, while mismatch of the mode v(t ) with the output
field results in loss with a rate Iout (t ) = 〈L̂†

0 (t )L̂0(t )〉. The
emission of quanta into other modes from time t1 to t2 may
thus be found by evaluating

∫ t2
t1

dt Iout (t ).
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D. Production and release of a nonclassical pulse of radiation

Interesting quantum states of light can be produced by the
classical driving of nonlinear quantum systems, i.e., without
the need of an incident quantum pulse. In many cases, how-
ever, these states have only been characterized by low-order
correlation functions or rather complicated reconstruction of
the quantum state has been accomplished via a hierarchy
of operator moments [37] or simulated tomography [38]. To
obtain the quantum states of the output field in such situations
with our more straightforward method, we omit the degrees of
freedom of the input cavity in Eqs. (18) and (19), and study
only the emitter quantum system and the cavity extracting the
output mode of interest.

As an example, we consider the on-demand generation of a
traveling Schrödinger cat state by a Kerr-nonlinear parametric
oscillator (KPO) driven by a classical pump field as described
by the Hamiltonian [37]:

Hs(t ) = p(t )

2
[(â†)2 + â2] − K

2
(â†)2a2 + �â†â. (20)

Here � is the pump detuning which we set to zero, p(t ) is the
time-dependent pump amplitude, and K is the magnitude of
the Kerr coefficient which is assumed negative in Ref. [37].

If the KPO is a closed system, a cat state of the cavity field,
|cat〉 = 1√

2
(|α0〉 + |−α0〉) is adiabatically generated from the

vacuum state by gradually increasing p(t ) from zero to p0 =
Kα0. When the KPO is coupled to the output field at a
rate γ with an associated jump operator ĉ = â, however, the
field leaks out during the generation of the state. References
[39–41] analyze the production of cat states in a single mode
cavity by the Kerr effect in the presence of parametric driving
and damping, but it is not clear if the emitted field will be
restricted to a single mode cat state if the driving is done by
a short pulse. Reference [37] suggests that this will be the
case if the cat is prepared much faster than the cavity decay
(assuming K is much larger than the cavity decay rate γ ) and
the pump is gradually switched off as p(t ) = p0e−γ (t−t0 ) after
the time t0 where the KPO cavity mode has ideally reached
a cat state. By a multi-time-correlation-function analysis,
Ref. [37], indeed, demonstrates that a traveling pulse cat state
is prepared under these conditions.

The production of a traveling cat state by the KPO provides
an ideal test for our theory. Following Ref. [37], we set
K = 5γ and let the pump originate from a fourth-order low
pass filter (LPF) with vanishing input for t � 0 and pin(t ) =
KApe−γ t for t > 0. (The output of a LPF with bandwidth B
is given by pout (t ) = ∫ t

0 dt ′ Be−B(t−t ′ ) pin(t ′), and an nth-order
filter is defined by feeding the output into a new filter n − 1
times. We set B = 2.5γ and Ap � 4.45 to fix the photon
number |α|2 to a value around 4 in the cat state produced.)
Following our description above, we first solve the master
equation of the driven and damped KPO to determine the most
populated output mode v(t ) from the cavity field autocorrela-
tion function g(1)(t, t ′),

For the parameters used here, the dominating mode v(t )
acquires 4.03 photons while less than 0.05 photons appear in
other propagating modes.

After identifying the most populated mode, we solve the
cascaded system master equation for the KPO and the cor-

FIG. 3. Travelling Schrödinger cat state generated by a classi-
cally driven KPO. (a) Red solid curve (left axis): Fidelity of the cat
state (21) in the output mode v(t ). Blue dotted curve (right axis):
Excitation in the KPO during the operation. Shaded area: The shape
of the most occupied output mode v(t ). (b) Wigner function of the
field captured by the output cavity [ultimately, the contents of the
output mode v(t )] at different times, annotated above each panel.
Results are shown for K = 5γ , B = 2.5γ , and Ap = 4.45.

responding âv cavity. The results are shown in Fig. 3, where
panel (a) shows the excitation in the KPO cavity, the shape of
the most occupied output mode v(t ), and the cat state fidelity
as functions of time. The fidelity of the cat state (red line)
is defined as the overlap Tr(|catβ〉 〈catβ | ρ(t )) between the
quantum state of the âv cavity and the cat state

|catβ〉 = 1√
2

(|β〉 + |−β〉), (21)

where the complex amplitude β = 2.0e−0.31iπ is determined
by numerical optimization of the final state overlap. The
fidelity saturates to Tr(|catβ〉 〈catβ | ρ(t )) � 0.98 and the cat
state indeed contains

nβ = |β|2 1 − e−2|β|2

1 + e−2|β2| = |β|2 tanh
(|β|2) = 4.03 (22)
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FIG. 4. Decaying 	 system in a cavity. (a) Real part of the autocorrelation function g(1)(t1, t2) for the field emitted by the cavity. (b) The
two orthogonal eigenmodes v1(t ) and v2(t ) (real parts shown) of g(1)(t1, t2) span the full Hilbert space of the emitted field with respective final
mean populations n1 = 0.67 and n2 = 0.33. (c) Mean excitation in the cavity mode (ncavity), the atom [P(|e〉)] and the two output pseudocavity
detector modes (n1, n2) as functions of time during the two-channel decay process. (d) Hinton diagram illustrating the collective state of the
atom, mode v1(t ), and mode v2(t ) at the end of the decay process (at time t = 150κ−1). Results are displayed in a |ψatom, ψv1 , ψv2 〉 eigenstate
basis where the state amplitudes are real.

photons. The emergence of the traveling cat state is further-
more illustrated by the characteristic Wigner function of the
âv-cavity-mode content, shown at different points in time in
Fig. 3(b). In Ref. [37], the performance is further improved by
employing a shortcut to adiabaticity which we shall not pursue
here. Notice that with our formalism, we can easily study
larger cats without exhausting our computational resources.
We emphasize that while the g(1)(t, t ′) analysis assigns im-
portance to a mode vi(t ) according to its population ni, one
can envisage applications with other attributes of interest. For
instance, larger Wigner function negativity and stronger quan-
tum correlations and entanglement between subsystems may
appear in modes ṽ(t ) which do not necessarily hold the largest
number of quanta. Such optimal modes may be identified by
optimization of the desired property within subspaces of the
complete set eigenmodes of g(1)(t, t ′).

III. GENERALIZATION TO MULTIPLE INPUT AND
OUTPUT MODES

A. Cascaded master equation with multiple virtual cavities

In the Appendix, we show how classical wave theory
readily provides a model where multiple wave packets can
be either emitted or absorbed by cascaded arrays of suitably
switched cavities. Our theory employs these cavity modes
to solve the corresponding cascaded master equation for
the combined system of the input oscillator pulse modes
{ui(t )}n

i=1, the localized quantum system(s), and the output
oscillator pulse modes {vi(t )}m

i=1. The multimode extension
of our theory thus incorporates n + m virtual cavities and,
in the Appendix, we describe how the corresponding time-
dependent coupling strengths gui (t ) and gvi (t ) are found from
classical wave theory applicable to the linear coupling of
bosonic fields. The coupling strengths are evaluated prior
to the solution of the quantum master equation (2) with a
Hamiltonian of the form [42]

Ĥ (t ) = Ĥs(t ) + i

2

⎡
⎣ n∑

i=1

gui (t )â†
ui

⎛
⎝√

γ ĉ +
i−1∑
j=1

g∗
u j

(t )âu j +
m∑

j=1

g∗
v j

(t )âv j

⎞
⎠ +

m∑
i=1

⎛
⎝√

γ ĉ† +
i−1∑
j=1

gv j (t )â†
v j

⎞
⎠g∗

vi
(t )âvi − H.c

⎤
⎦.

(23)

and a loss term D[L̂0]ρ with Lindblad operator

L̂0 = √
γ ĉ +

n∑
i=1

g∗
ui

(t )âui +
m∑

i=1

g∗
vi

(t )âvi (24)

along with the damping and decoherence terms
∑n

i=1 D[L̂i]ρ.

B. Photon number and mode entanglement with a quantum
emitter

As an example of a situation with a finite number of
relevant output modes, we consider a 	-type system with
two ground states |g1〉 and |g2〉 and one excited state |e〉. The
transitions |g1〉 ↔ |e〉 and |g2〉 ↔ |e〉 both couple to the same
cavity mode â with the strength g = 0.1γ but the |g2〉 ↔ |e〉

transition is detuned by ω12 = 0.5γ from the cavity reso-
nance. We initialize the 	 system in its excited state |e〉 and
observe the decay through the cavity mode with constant
outcoupling-rate γ and an associate jump operator ĉ = â.

The results are displayed in Fig. 4. The color plot in
(a) shows the g(1)(t1, t2)-autocorrelation function of the field
emitted by the cavity. An eigendecomposition of g(1)(t1, t2)
reveals that only the two modes v1(t ) and v2(t ) in (b) are
populated at the final time. Their populations are given by the
corresponding eigenvalues, n1 = 0.67 and n2 = 0.33. Upon
identifying these modes, the formalism in Sec. III allows us
to perform a full quantum simulation of the atomic decay and
emission of light into the modes.

Figure 4(c) shows that while the excitation Pe of the 	

system decreases, a small excitation builds up in the cavity
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field and couples to form the final populations n1(t → ∞) =
0.67 and n2(t → ∞) = 0.33.

While the 	 system features two transitions, it is not
obvious that they correspond directly to the two eigenmodes
of the output field correlation function. During the emission,
which lasts about γ /g2 � 50γ −1 in our example, however, a
frequency difference of 0.5γ is discernible in the signal, and
the two orthogonal eigenmodes are closely associated with
emission by the separate atomic transitions. This is confirmed
by the correlation between the occupation of the atomic final
states and modes shown in the Hinton diagram in Fig. 4(d).
The final state is approximately

|ψ (t → ∞)〉 = cg110 |g1〉 |1v1〉 |0v2〉 + cg101 |g2〉 |0v1〉 |1v2〉 ,

(25)

where |cg110|2 = 0.645 and |cg101|2 = 0.317. The discrepancy
between these numbers and n1 and n2, and the small compo-
nents in |g1〉 |1v1〉 |0v2〉 and |g2〉 |0v1〉 |1v2〉 seen in the Hinton
diagram reflect the small overlap between the actual pulses
emitted on the two transitions. For a smaller detuning between
the transitions, this overlap becomes larger and a single eigen-
mode would be predominantly populated and correlated with
a superposition of the atomic states in the Hinton diagram.

IV. PHOTON BLOCKADE

As another application of our theory, we consider the
proposal to use an atom in a cavity as a nonlinear quantum
filter that transmits single photon number states and reflects
pulses with higher photon numbers. Many theoretical propos-
als for such operations exist and continuous wave experiments
have confirmed the anticipated photon antibunching after

transmission of a coherent, continuous wave beam through
the proposed devices [43–46]. We are now able to present a
theoretical treatment of the modification of quantum pulses of
radiation by such filters.

A. Theoretical model

We consider a quantum pulse prepared in a state |ψu〉
incident on a symmetric, two-sided cavity resonantly coupled
to a qubit system with two states |g〉 and |e〉. In a frame
rotating at the cavity frequency, the system is described by the
Jaynes-Cummmings Hamiltonian Eq. (1). In the experiment
of Ref. [43], a field, detuned by ω = g from the cavity reso-
nance, is injected into the cavity so a single incident photon is
resonant with the one-excitation dressed state of the system,
while, e.g., an n-photon state is detuned from the n-excitation
dressed state by (n − √

n)g. For large g, this should lead to
off-resonant reflection of the two- and higher photon number
components, while the one-photon component experiences a
resonant cavity and is fully transmitted. We study the situation
where the incoming field is described by a Gaussian pulse
(16) with temporal width 2τ , arriving at a time tp, with a
frequency modulation factor e−igt to account for its detuning
g. We assume equal transmission rates κ of the two cavity
mirrors.

A simple extension of our theory is necessary to accommo-
date the reflection and transmission channels. To represent the
transmitted wave packet w(t ) [see schematic in Fig. 1(d)], we
thus supplement the âv cavity (reflection) with a cavity mode
in the transmission channel with annihilation operator âw and
coupling strength gw(t ).

In the SLH formalism [42], we find that the combined
network evolves according to the Hamiltonian

Ĥ (t ) = Ĥs(t ) + i

2
[
√

κ (gu(t )â†
uĉ + g∗

v (t )ĉ†âv ) + √
κg∗

w(t )ĉ†âw + gu(t )g∗
v (t )â†

uâv − H.c.], (26)

and that the damping terms in Eq. (2) must include two
Lindblad operators:

L̂r (t ) = √
κ ĉ + g∗

u(t )âu + g∗
v (t )âv, (27)

L̂t (t ) = √
κ ĉ + g∗

w(t )âw. (28)

The former, L̂r (t ) accounts for the part of the radiation from
the cavity system interfering with the reflected input signal
and appearing in modes orthogonal to the âv detector mode,
and L̂t (t ) accounts for the part of the transmitted signal
appearing in modes orthogonal to the âw detector mode.

B. Transmission of a single photon

If the incoming pulse is prepared in a one-photon state,
|ψu〉 = |1〉, the linearity of the resulting equations of motion in
the single excitation subspace allows for an exact solution of
the scattering problem [47]. The frequency-dependent trans-
mission coefficient is

T (ω) = iω

(g2 − ω2) − iκω
(29)

and the reflection coefficient R(ω) = 1 + T (ω), such that
after the scattering process, the incoming one-photon pulse is
split into a transmitted mode w(t ) with population 〈â†

wâw〉 =∫
dω |T (ω)u(ω)|2 and a reflected mode v(t ) with population

〈â†
v âv〉 = ∫

dω |R(ω)u(ω)|2, where u(ω) is the Fourier trans-
form of the incoming mode (16), multiplied by the time-
dependent phase factor e−igt to represent a carrier detuning
of g.

Figure 5 shows these populations for different values of
the pulse duration τ and the coupling g. The resonance
condition is only valid for the one-photon component when
the incident pulse carrier frequency is tuned exactly g away
from the cavity resonance. For τ < 1/κ , however, the pulse
is spectrally broader than the cavity linewidth and frequency
components outside ∼κ are reflected. At very small τ , this
effect is dominating and we see a nearly complete reflection.
For τ > 1/κ , on the other hand, the incident pulse is spectrally
narrow and the desired resonant transmission occurs. The
transition between the long and short pulse regimes depends
on the value of g, as the half width of the transmitted in-
tensity [cf. Eq. (29)] changes from κ for small g to κ/2 for
large g.
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FIG. 5. Reflection and transmission of an incoming one-photon
state |ψu〉 = |1〉, with a carrier frequency resonant with the first
excited Jaynes-Cummings eigenstate. A state |1〉 populates a super-
position of the reflected and transmitted wave packets, v(t ) and w(t ),
depending on the value of τ and g. Notice that to explore the κτ < 1
regime, the τ scale in the figure is not linear.

C. Transmission of higher photon number states

Beyond the one-photon subspace, the problem requires a
numerical solution which we shall now perform to study the
scattering of an incoming two-photon pulse |ψu〉 = |2〉. For
each value of τ and g, we first determine the output correlation
function as in Sec. II B to identify the two dominant output
modes v(t ) and w(t ) in the reflection and transmission chan-
nels, respectively. While for g = 0, the scattering is linear and
occurs in a superposition of a reflected and a transmitted wave
packet mode, the nonlinearity for g > 0 causes scattering into
additional, orthogonal modes as signified by the decrease in
〈â†

v âv + â†
wâw〉 /2 shown by the grey scale plot in the upper

panel of Fig. 6. The retained excitation varies between 77%
and 100% as a function of of g and τ .

The four lower panels of Fig. 6 show the occupation of the
Fock states in the reflected and transmitted pulses for different
values of τ and g. For g � 0, the linear scattering yields a
transformation in the basis of the incoming: the reflected and
the transmitted wave packet modes |ψu, ψv, ψw〉,
(â†

u)2 |0, 0, 0〉 → (cv â†
v + cwâ†

w )2 |0, 0, 0〉
=

√
2c2

v |0, 2, 0〉 +
√

2c2
w |0, 0, 2〉 + 2cvcw |0, 1, 1〉 ,

(30)

FIG. 6. Photon blockaded transmission for an incoming
two-photon state |ψu〉 = |2〉. Upper panel: Relative excitation
〈â†

v âv + â†
w âw〉 /2 in the most populated reflected v(t ) and

transmitted w(t ) modes as a function of τ and g. Four lower panels:
One- (|1〉) and two- (|2〉) photon final state populations in the
reflected and transmitted pulses v(t ) and w(t ) for different values of
τ and g. In the κτ < 1 regime, the τ scale in the figures is not linear.
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where the coefficients cv and cw depend on the value of κτ .
For a short incident pulse τ < 1/κ , the bulk of the pulse
frequency contents is beyond the cavity line width and both
photons are reflected (cv � 1, cw � 0). As τ approaches 1/κ ,
the excitation is distributed on the output channels with always
equal population of the |1〉 output components, cf. Eq. (30).

For large g, we observe three different regimes: For small
τ < 1/κ , the incoming |2〉 state is fully reflected. For τ �
1/κ , the linear beam splitter relation (30) no longer applies
and the |1〉 reflected and transmitted components have dif-
ferent probabilities. For τ > 1/κ , the two-photon pulse is
predominately transmitted.

The transmission of the two-photon pulse may seem con-
trary to the aim of the proposal and the anti-bunching results
reported in Ref. [43], which suggest that the |2〉 state should be
reflected by the off-resonant qubit-dressed cavity. Our result,
however, illustrates the difference between interactions with
stationary and traveling photons. The expected dependence
on the photon number stems from the nonequidistant spec-
trum of the Jaynes-Cummings Hamiltonian and thus assumes
that all excitations are simultaneously present in the cavity.
However, for large τ the two-photon state is dominated by
field components where the excitations are separated in time
by more than 1/κ and may thus pass the cavity sequentially.
Only simultaneous presence within the photon lifetime inside
the cavity is suppressed and this explains the observed anti-
bunching in continuous wave experiments. For small τ � κ−1,
we return to the problem of a pulse that is spectrally broader
than the cavity linewidth which therefore reflects the photon
irrespective of the photon number.

This example emphasizes a fundamental time-bandwidth
dilemma that may easily be overlooked in intuitive arguments
for the manipulation of quantum states of light. With the
theory presented here, we no longer have recourse to intuitive
analogies with Jaynes-Cummings dynamics, and we may
develop better and more precise insights in the nonlinear
dynamics of pulses of quantum radiation.

V. A SNOW BALL IN A THERMAL CHANNEL

Our theoretical description has so far assumed that the
quantum input and output pulses propagate and the local
scatterer is situated in a vacuum environment. In realistic
settings, however, the waveguide and the discrete components
may be kept at a finite temperature T > 0. For microwaves
and acoustic waves, the radiation frequency may be so low
that we cannot ignore thermal quanta, and it is interesting to
study the transmission of quantum states on the background of
such thermal quanta [7,48], see Fig. 7(a) for an illustration. We
can model a thermal flux of photons by cascading yet another
virtual cavity before the other components of the system.
The internal mode âin of this cavity is coupled to a thermal
environment with a rate κ ′ and to an output line with a rate
κ to form an equilibrium thermal (exponential) distribution of
photons (or phonons). The output field thus mimics a thermal
state over a frequency range � κ + κ ′, which is supposed to
cover the spectrum of the other systems and cavities. The
cascaded quantum system composed of the thermal source,
an input pulse cavity, a scattering quantum system and a final
output pulse cavity obey the master equation Eq. (2) with the

FIG. 7. Pure state |ψ〉 pulse propagation in a thermal channel,
illustrated in (a). A Gaussian mode u(t ) of width τ = 0.5κ−1 is
transferred through a channel with an incoherent flux of 3κ thermal
photons to be collected by a mode v(t ) of the same shape. The
input mode is prepared in a vacuum state |ψ〉 = |0〉 in (b) and in
a superposition state |ψ〉 = (|0〉 + |1〉)/

√
2 in (c). Populations in the

four lowest Fock states as functions of time are displayed for u(t ) in
the upper panels and for v(t ) in the lower panels.

additional Hamiltonian,

Ĥth = i

2
[
√

κg∗
u(t )â†

inâu + √
κγ â†

inĉ + √
κg∗

v (t )â†
inâv − H.c.],

(31)
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and Lindblad operators

L̂0(t ) = √
γ ĉ + g∗

u(t )âu + g∗
v (t )âv + √

κ âin, (32)

L̂+ =
√

Ñκ ′â†
in, (33)

L̂− =
√

(Ñ + 1)κ ′âin. (34)

The mean photon number in the input thermal cavity is N =
Ñ/(1 + κ/κ ′), and the flux of thermal photons incident on the
subsequent systems is κN .

It was recently shown theoretically that it is possible to
transmit quantum states between cavities through a thermally
excited channel [7,48]. We shall now apply our formalism
to investigate the same setup and we note that we may
readily proceed to other physical systems, such as qubits
and nonlinear devices. We now deal with modeling of real
cavities coupled to the waveguide with the aim to transfer
a quantum state |ψ〉. Perfect transmission is ensured if the
coupling coefficients gu(t ) and gv (t ) match the same traveling
pulse shape u(t ) = v(t ), and while there may be thermal
quanta propagating alongside the pulse, they occupy orthogo-
nal modes and are hence not captured by the receiving cavity.
To be precise, all spectrally relevant modes are thermally
excited in the waveguide, but the coupling that releases a
quantum state from the âu cavity into a traveling wave packet
causes the initial thermal content of that same wave packet in
the waveguide to enter and occupy the âu cavity, i.e., the initial
quantum state of the cavity and the thermal state of the pulse
are swapped.

In Fig. 7, we show the results for a Gaussian mode (16)
of width τ = 0.5κ−1 propagating in a waveguide illuminated
by an incoherent photon flux of Nκ = 3κ from a thermally
excited cavity. Panel (b) shows what we may colloquially
call a snowball in hell: a pulse prepared in the vacuum state
|ψu〉 = |0〉 is sent through a much warmer channel. As this
state replaces the initial thermal state of the âv cavity, it
effectively cools that system. Figure 7(b) shows that the state
of v(t ) is replaced by the vacuum state at the final time and,
hence, the traveling wave packet (the snowball) is not heated
during the propagation. Figure 7(c) illustrates how a pulse
prepared in a superposition state |ψu〉 = (|1〉 + |2〉)/

√
2 may

similarly be transferred through a thermal channel without
loss of fidelity. The transient spikes in the populations in
the âv cavity are artifacts due to the abrupt and hence broad
bandwidth coupling to vacuum frequency components outside
the finite (κ + κ ′) bandwidth of our “thermal” bath.

We imagine that transmission of snow ball vacuum states,
prepared, e.g., in a heralded manner [49], may be employed to
cool a finite number of quantum degrees of freedom in a more
economical manner than present days’ cooling of entire bulk
system. Thus, a finite number of super conducting oscillator
and qubit degrees of freedom used in quantum computing
may be kept at few mK temperatures by a supply of snow
balls, while the surrounding apparatus may be kept at few K
to ensure superconductivity.

VI. DISCUSSION

In this paper, we have developed a quantum theory of
pulses of radiation that can be adopted and generalized to
accommodate a number of scenarios in quantum optics and
quantum information applications. Our examples emphasize
important differences between stationary modes and traveling
pulses and raise awareness against too-direct applications
of single- and few-mode formalisms and intuition for the
propagation and manipulation of traveling states. Our density-
matrix formalism presents numerous options to discard the
emitted field components, determine their mean properties, or
calculate their full quantum state by a cascaded master equa-
tion. We may thus recover and extend results of established
theories as well as address new problems within one and the
same theoretical framework.

While examples with light and microwave pulses may
come to mind first, the theory applies equally to acoustic
waves coupled, e.g., by piezoelectric interactions to circuit
QED components [50,51] and we also imagine applications
with other wave phenomena such as Bogoliubov excitations
in cold gases, spin waves, etc.

We have far from exhausted the potential of the theory,
and we expect that further development of the formalism may
spur progress in a number of directions. Although we have de-
rived an exact theory (assuming validity of the Born-Markov
approximation) that permits numerical solution of a master
equation for the density matrix of a few modes, approximate
methods such as perturbation theory, adiabatic elimination,
and semiclassical phase-space methods may readily be em-
ployed to address more complex situations in a systematic
manner.

Our theory describes radiation propagating along one spa-
tial dimension, such as guided fields occupying only a single
transverse mode. If the interaction causes scattering into other
transverse modes, this may be naturally incorporated as loss
channels, and if we care for the quantum-state contents of a
few chosen transverse modes, these may be treated as further
reflected and transmitted modes with corresponding time-
dependent coupling strengths. The same theory can be applied
if we are concerned with pulses that permit the paraxial
approximation in three spatial dimensions while, e.g., very
wide angle spatio-temporal scattering by a compact quantum
system may be difficult to model by a time-dependent cavity
system. The same way as lenses and curved mirrors may
convert, e.g., dipolar emission patterns into almost plane
waves in experiments [52,53], such optical components can
be employed as virtual interfaces to model the interactions
between quantum systems and pulses with a range of angular
distributions. More complex spatiotemporal radiation modes
may, however, be difficult to model by a time dependent optics
setup.

Another challenging domain of research is one-
dimensional pulses propagating in extended, nonlinear
media. This situation may be investigated by representing
the suitably discretized medium by a matrix product state
[54–56], and it fits perfectly to our theory, by merely
associating matrices to our upstream and downstream cavity
modes. We may thus perform accurate calculations of
nonlinear, photon-number-dependent dispersion effects and,

023717-10



QUANTUM INTERACTIONS WITH PULSES OF RADIATION PHYSICAL REVIEW A 102, 023717 (2020)

FIG. 8. Illustration of the extension of our formalism to include
(for instance) n = 3 incoming modes, u1(t ), u2(t ), and u3(t ), and
m = 3 outgoing modes v1(t ), v2(t ), and v3(t ). The quantum-state
content of incoming (outgoing) mode i is represented by a mode
âu(v)i in a virtual cavity with coupling gu(v)i (t ). During the reflections,
the modes are reshaped, and, e.g., input cavity three must emit the
mode u(2)

3 (t ), which is transformed into u(1)
3 (t ) and subsequently into

the desired u3(t ) pulse incident on the scatterer (see main text for
details).

e.g., pursue splitting of incoming pulses according to their
Fock state components.

A further natural direction of research is dynamics where
nonclassical pulses interact with a quantum system and are
subsequently detected [12,29,57–59]. Advanced detection
schemes, employing incident squeezed, Fock, or Schrödinger
cat states for precision metrology, may thus be treated in an
exact manner by our method.
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APPENDIX

In Sec. III, we explain how our formalism may be extended
to accommodate several output and input modes. Here we
describe in detail how this is accomplished and derive the
time-dependent coupling strengths gui (t ) and gvi (t ), appearing
in Eqs. (23) and (24).

To extend our formalism to include m orthogonal output
modes {vi(t )}m

i=1, we assume that after the first virtual cav-
ity, which perfectly absorbs mode v1(t ), the field is serially
reflected on a sequence of virtual cavities. They each have
their own coupling strength gvi (t ), designed such that the
quantum-state content of the mode vi(t ) is precisely captured
by the internal field âvi . This idea is illustrated in Fig. 8 for
three output modes.

To model the scattering of n orthogonal incoming modes
{ui(t )}n

i=1, we consider likewise a sequence of cascaded virtual
input cavities with coupling strengths gui (t ) and internal fields

âui . The final of these directly ejects the first mode u1(t )
toward the scatterer, while previous ones eject modes which
are serially reflected on every cavity until the scatterer is
reached. This is illustrated in Fig. 8 for the case of three input
modes.

To determine the correct time-dependent cavity coupling
strengths gvi (t ) and gui (t ) of the n + m virtual cavities corre-
sponding to the desired modes, we must take into account the
distortion of each pulse shape by reflections on the subsequent
sequence of cavities. Due to the linearity of the virtual cavity
systems, this can be accomplished by the evolution of classical
mode amplitudes. We present the detailed derivation of the
cavity couplings in the following and we emphasize that
this calculation is performed prior to and independent of the
solution of the ensuing cascaded quantum master equation.

1. Coupling strengths for multiple outputs

In the scheme outlined above and illustrated in Fig. 8, we
must take into account that the output modes are reshaped
by each reflection. That is, after the jth (virtual) cavity, the
remaining modes are transformed as vi(t ) → v

( j)
i (t ), where,

since the reflection is a unitary process, the orthogonality
between modes is preserved.

Let us consider the output mode v2(t ). During the reflection
of this mode on the first virtual cavity, the contribution α(1)

v2
to

the cavity field amplitude due to this particular pulse solves a
differential equation,

α̇(1)
v2

= −gv1v2 − |gv1 |2
2

α(1)
v2

, (A1)

from an initial value α(1)
v2

(0) = 0. In Eq. (A1) and below, we
omit the explicit time dependence of the rates and modes
for simplicity of notation. The corresponding reflected mode
amplitude is given by

v
(1)
2 = v2 + g∗

v1
α(1)

v2
. (A2)

To associate the internal mode âv2 of the second cavity with
mode v2(t ), scattered from the quantum system, we should
hence define the coupling rate of the second virtual cavity as
[Eq. (3) of the main text]

gv2 (t ) = −
[
v

(1)
2 (t )

]∗√∫ t
0 dt ′ |v(1)

2 (t ′)|2
. (A3)

Likewise, a third mode v3(t ) contributes an amplitude in
the first cavity given by

α̇(1)
v3

= −gv1v3 − |gv1 |2
2

α(1)
v3

, (A4)

and is rescattered to the second cavity as

v
(1)
3 = v3 + g∗

v1
α(1)

v3
. (A5)

In the second cavity, a corresponding amplitude α(2)
v3

(t ) then
builds up according to

α̇(2)
v3

= −gv2v
(1)
3 − |gv2 |2

2
α(2)

v3

= −gv2

(
v3 + g∗

v1
α(1)

v3

) − |gv2 |2
2

α(2)
v3

, (A6)
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where we applied Eq. (A5) in the final equation. The reshaped
mode, arriving at the third cavity, is v

(2)
3 = v

(1)
3 + g∗

v2
α(2)

v3
=

v3 + g∗
v1

α(1)
v3

+ g∗
v2

α(2)
v3

, which defines the coupling strength

gv3 (t ) = −[v(2)
3 (t )]∗/

√∫ t
0 dt ′ |v(2)

3 (t ′)|2 to the associated cav-
ity mode âv3 .

By now, the generalization to m modes should be clear. For
mode 1 < i � m, we should solve i − 1 coupled differential
equations,

α̇( j)
vi

= −gv j

(
vi +

j−1∑
k=1

g∗
vk

α(k)
vi

)
− |gv j |2

2
α( j)

vi
, (A7)

for the associated amplitudes α
( j)
vi (t ) with j = 1, 2, ..., i − 1

in each virtual cavity prior to the ith cavity.
Then the mode in cavity âvi captures precisely the quantum

state of the original mode vi(t ) if

gvi (t ) = − [v(i−1)
i (t )]∗√∫ t

0 dt ′ |v(i−1)
i (t ′)|2

(A8)

with

v
(i−1)
i = vi +

i−1∑
k=1

g∗
vk

α(k)
vi

. (A9)

We note that with m modes, one needs to solve
∑m

i=1(i −
1) = m(m − 1)/2 differential equations for the needed ampli-
tudes α

( j)
vi (t ). Due to the increased Hilbert space dimension

of the density matrix, we do not imagine that the present
formalism will find applications for more than a few input and
output modes.

2. Coupling strengths for multiple inputs

As illustrated in Fig. 8, the input modes similarly experi-
ence reflections which cause unitary transformations before
they reach their final destination at the scatterer. By u( j)

i (t ),
we denote the shape of mode ui(t ) just before it is reflected on
cavity j (counting the cavities from the scatterer and out). To
associate field âui in each cavity with a mode ui(t ) arriving
at the scatterer, the coupling strength gui (t ) must thus be
designed such that mode u(i−1)

i (t ), actually ejected from the ith
toward the (i − 1)th virtual cavity, correctly transforms into
ui(t ). That is [Eq. (2) of the main text]

gui (t ) =
[
u(i−1)

i (t )
]∗√

1 − ∫ t
0 dt ′ ∣∣u(i−1)

i (t ′)
∣∣2

. (A10)

The u(i−1)
i (t ) are determined by propagating backward

from the scatterer. For instance, a second mode u2(t ) is
ejected from the second virtual cavity as u(1)

2 (t ) and during

reflection on the first cavity, the cavity amplitude, α(1)
u2

solves
the equation

α̇(1)
u2

= −gu1 u(1)
2 − |gu1 |2

2
α(1)

u2
. (A11)

The reflected mode is required to produce the desired shape,
u2 = u(1)

2 + g∗
u1

α(1)
u2

. The amplitude equation may thus be
rewritten

α̇(1)
u2

= −gu1 u2 + |gu1 |2
2

α(1)
u2

(A12)

and solved. The emitted pulse is given by u(1)
2 = u2 − g∗

u1
α(1)

u2

and the coupling strength follows from (A10).
For a third input mode u3(t ), the corresponding mode

u(2)
3 (t ), ejected from the third virtual cavity, is reflected on the

second and first virtual cavities before reaching the scatterer.
During these reflections, amplitude contributions α(2)

u3
and α(1)

u3

build up inside those cavities according to the equations

α̇(1)
u3

= −gu1 u(1)
3 − |gu1 |2

2
α(1)

u3
,

α̇(2)
u3

= −gu2 u(2)
3 − |gu2 |2

2
α(2)

u3
.

(A13)

The output from the first virtual cavity is given by u(1)
3 +

g∗
u1

α(1)
u3

, and we require this to yield the desired mode, u3 =
u(1)

3 + g∗
u1

α(1)
u3

. At the same time, the input to the first cavity

from the second cavity is given by u(1)
3 (t ) = u(2)

3 + g∗
u2

α(2)
u3

.
These relations allow us to rewrite Eqs. (A13) in terms of the
mode u3(t ):

α̇(1)
u3

= −gu1 u3 + |gu1 |2
2

α(1)
u3

,

α̇(2)
u3

= −gu2 (u3 − g∗
u1

α(1)
u3

) + |gu2 |2
2

α(2)
u3

.

(A14)

Upon solving the coupled differential equations (A14), we
obtain the emitted pulse, u(2)

3 = u3 − g∗
u1

α(1)
u3

− g∗
u2

α(2)
u3

, and
the coupling strength of the third cavity, gu3 (t ) follows from
Eq. (A10).

Extending this line of thought reveals that n input modes
may be incorporated by solving n(n − 1)/2 differential equa-
tions,

α̇( j)
ui

= −guj

(
ui −

j−1∑
k=1

g∗
ui
αu(k)

i

)
− |gui |2

2
α( j)

ui
, (A15)

yielding the temporal mode shapes

u(i−1)
i = ui −

i−1∑
k=1

g∗
uk

α(k)
ui

, (A16)

which define the coupling strengths in Eq. (A10).
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