
PHYSICAL REVIEW A 102, 023715 (2020)

Performance of superadiabatic stimulated Raman adiabatic passage in the presence of
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In this paper we evaluate the performance of two superadiabatic stimulated Raman adiabatic passage
(STIRAP) protocols derived from Gaussian and sin-cos pulses, under dissipation and Ornstein-Uhlenbeck noise
in the energy levels. We find that, for small amplitudes of Stokes and pump pulses, the population transfer
is mainly achieved directly through the counterdiabatic pulse, while for large amplitudes the conventional
STIRAP path dominates. This kind of “hedging” leads to a remarkable robustness against dissipation in the
lossy intermediate state. For small pulse amplitudes and increasing noise correlation time the performance is
decreased, since the dominant counterdiabatic pulse is affected more, while for large pulse amplitudes, where
the STIRAP path dominates, the efficiency is degraded more for intermediate correlation times (compared to
the pulse duration). For the Gaussian superadiabatic STIRAP protocol we also investigate the effect of delay
between pump and Stokes pulses and find that under the presence of noise the performance is improved for
increasing delay. We conclude that the Gaussian protocol with suitably chosen delay and the sin-cos protocol
perform quite well even under severe noise conditions. The present work is expected to have a broad spectrum
of applications, since STIRAP has a crucial role in modern quantum technology.
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I. INTRODUCTION

One of the most successful quantum control methods for
population transfer between the levels of a quantum system
is stimulated Raman adiabatic passage (STIRAP) [1–5]. The
prototype STIRAP system consists of three energy levels in
the � configuration. In order to transfer population from state
|1〉 to state |3〉, passing through the intermediate level |2〉,
two laser pulses are applied in counterintuitive order: the
Stokes pulse coupling states |2〉 − |3〉 and the pump pulse
coupling states |1〉 − |2〉. A coherent superposition is formed
by states |1〉 and |3〉, which adiabatically evolves from state
|1〉 initially to state |3〉 finally, while the lossy intermediate
state |2〉 is barely populated. STIRAP finds a wide range of
applications in modern quantum science, from optical wave-
quides [6] and matter waves [7] to nitrogen-vacancy centers
in diamond [8] and superconducting quantum circuits [9]; for
more details see the recently published road map [5]. The
most important advantage of STIRAP is its robustness against
moderate variations of experimental parameters. Its major
drawback is that adiabatic transfer requires long times, leading
to reduced efficiency when undesirable interactions with the
environment, for example, decoherence and dissipation, are
present.

During the past decade, a series of methods characterized
as shortcuts to adiabaticity have been developed with the aim
to improve the performance of quantum adiabatic evolution
by reducing the required duration [10–18]. The common basic
idea of these techniques is to drive faster the quantum system
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at the same final state as the slow adiabatic evolution. This
goal is achieved either bypassing the intermediate adiabatic
states, or by introducing an extra term in the Hamiltonian
to suppress the diabatic transitions and evolve the system
along the adiabatic path of the original Hamiltonian. The
latter approach is called superadiabatic, assisted adiabatic
passage or transitionless tracking algorithm. Both methods
are widely exploited in modern quantum technologies, as is
thoroughly discussed in the recently published review in [10],
and have also been used to increase STIRAP efficiency; see,
for example, Refs. [19–23] and [12,24–31] for the first and
second method, respectively.

The influence of noise on the efficiency of STIRAP has
been the subject of several works. The effect of dephasing
caused by classical Ornstein-Ulhenbeck noise [32] in the
level energies was studied in Ref. [33], while the dephasing
due to quantum baths was evaluated in Refs. [34–36]. In
the context of superconducting artificial atoms, the influence
of broadband colored noise on population transfer was con-
sidered in Refs. [37,38]. Along with these studies which
focus on conventional STIRAP, there are also works which
examine the performance of STIRAP shortcuts in the presence
of noise. For the case where no additional counterdiabatic
field is used, i.e., the classical STIRAP framework is pre-
served, there are some recent works in the physical context
of nitrogen-vacancy centers in diamond [22,39]. Specifically,
in Ref. [22] the efficiency of STIRAP shortcuts developed in
Refs. [19,20,40] was investigated in the presence of dissipa-
tion and spectral diffusion, while in Ref. [39] the performance
of a Floquet-engineered shortcut under colored noise was
evaluated. In our recent work [41] we studied the efficiency
of the shortcuts derived in [19,40], in the presence of classical
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Ornstein-Ulhenbeck noise in the energy levels, as in Ref. [33].
There are also a few works [29,42] which study the influence
of noise on superadiabatic STIRAP (SA-STIRAP, in the spirit
of Giannelli and Arimondo [26]), where an extra counter-
diabatic term is exploited in the Hamiltonian. Specifically,
the authors of Ref. [29] consider the effect of non-Gaussian
distribution of energy fluctuations, while those of Ref. [42]
study the effect of ground-state dephasing.

In this article we evaluate the performance, in the presence
of noise and dissipation, of two SA-STIRAP protocols derived
from Gaussian and sin-cos pulses [26,43,44]. We use classical
Ornstein-Ulhenbeck noise processes with exponential corre-
lation functions [32] in the energy levels, as in Refs. [33,41].
This type of noise provides a relatively simple means to study
the effect of colored noise, with nonzero correlation time. It
has been used to model the fluctuations in the energy levels for
molecules in a liquid [33]. It may also be present in the phases
of the applied laser fields, appearing in the rotating wave
approximation as a corresponding noise term in the energy
levels [24]. Also note that the sensitivity of shortcuts to adia-
baticity to Ornstein-Ulhenbeck noise has also been studied in
the context of fast shuttling of an atom using a moving optical
lattice [45]. From numerical simulations, we find that for
small amplitudes of Stokes and pump pulses the population
transfer is mainly achieved directly from level |1〉 to level |3〉
through the counterdiabatic pulse, while for large amplitudes
the STIRAP path |1〉 → |2〉 → |3〉 dominates. The presence
of two alternative paths leading to the target state results
in a remarkable robustness against dissipation in the lossy
intermediate level. For small pulse amplitudes and increasing
noise correlation time the performance is decreased, since the
dominant counterdiabatic pulse is affected more. For large
pulse amplitudes the efficiency is degraded more for inter-
mediate correlation times (compared to the pulse duration),
while it is better for small or large noise correlation times.
This behavior is similar to that observed for conventional
STIRAP [33], something expected since for large amplitudes
STIRAP is the dominant mechanism for population transfer.
For Gaussian SA-STIRAP we also investigate the effect of
delay between pump and Stokes pulses and find that under the
presence of noise the performance is improved as the delay
increases (at least up to the considered values). We conclude
that the Gaussian SA-STIRAP protocol with suitably chosen
delay and the sin-cos SA-STIRAP protocol perform quite well
even under severe noise conditions.

The structure of the article is as follows. In the next section
we derive for completeness the Gaussian and sin-cos SA-
STIRAP protocols in the absence of noise. In Sec. III we study
their performance when dissipation and noise are present.
Section IV concludes this paper.

II. SA-STIRAP IN THE ABSENCE OF DISSIPATION
AND DEPHASING

The reference Hamiltonian for STIRAP in both one-photon
and two-photon resonance is

H0(t ) = h̄

2

⎛
⎝ 0 �p(t ) 0

�p(t ) −i� �s(t )
0 �s(t ) 0

⎞
⎠, (1)

where �p(t ),�s(t ) are the Rabi frequencies for the pump and
Stokes lasers, respectively, and � is the dissipation rate from
level |2〉. In this section we derive SA-STIRAP for the ideal
case � = 0, while in the next section we study the effect of
nonzero dissipation and dephasing.

If we define the time-dependent amplitude �(t ) and mixing
angle θ (t ) through the relations

�(t ) =
√

�2
p(t ) + �2

s (t ), tan θ (t ) = �p(t )

�s(t )
, (2)

then the instantaneous eigenstates of H0(t ) are

|φ0(t )〉 =
⎛
⎝ cos θ

0
− sin θ

⎞
⎠, |φ±(t )〉 = 1√

2

⎛
⎝sin θ

±1
cos θ

⎞
⎠, (3)

with corresponding eigenvalues

E0(t ) = 0, E±(t ) = ±h̄
�(t )

2
. (4)

In conventional STIRAP the angle θ changes slowly (adia-
batically) from the initial value θ (ti ) = 0 at t = ti to the final
value θ (t f ) = π/2 at t = t f , while the the system follows the
dark adiabatic state |φ0(t )〉 = cos θ (t )|1〉 − sin θ (t )|3〉, from
the initial state |1〉 to the final state |3〉.

The adiabatic approximation fails for fast variations of
angle θ , in which case some population remains in levels |1〉
and |2〉 at the final time. A method to accomplish the desired
population transfer to level |3〉 in arbitrarily short times is to
add in Hamiltonian H0 an extra counterdiabatic Hamiltonian
Hcd , which cancels the diabatic terms arising when H0 is
transformed to the time-dependent adiabatic basis,

Hcd (t )

= ih̄
∑

n=0,±
[|φ̇n(t )〉〈φn(t )| − 〈φn(t )|φ̇n(t )〉|φn(t )〉〈φn(t )|].

Using Eq. (3) we find for the STIRAP system

Hcd (t ) = h̄

2

⎛
⎝ 0 0 i�d

0 0 0
−i�d 0 0

⎞
⎠, (5)

where

�d (t ) = 2θ̇ (t ) (6)

is a π pulse connecting directly states |1〉 and |3〉, since∫ t f

ti
�d (t )dt = ∫ t f

ti
2θ̇ (t )dt = π . Under the total Hamiltonian

H = H0 + Hcd the system can track with perfect fidelity and
for arbitrarily short times the dark state |φ0(t )〉 of the reference
Hamiltonian H0, and for this reason the method is called
transitionless tracking algorithm.

Note that usually the direct transition between levels
|1〉 and |3〉 is electric dipole forbidden. One physical sys-
tem where such a transition is possible is described in
Refs. [11,26]. It is a � system between J = 1 Zeeman sub-
levels and an excited J = 0 state. The coupling between the
|1〉 and |3〉 states may be accomplished by a magnetic dipole
interaction between the atomic or molecular angular mo-
mentum J and an external magnetic field. Another example,
also discussed in Ref. [26], contains a ladder system which
includes both single-photon transitions for the two electric
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dipole allowed transitions and a two-photon transition for the
electric dipole forbidden transition. Different systems where
all transitions in the three-level system are electric dipole
allowed exist in asymmetric quantum systems with broken
inversion symmetry, e.g., asymmetric molecules [3,46]. We
note that the applicability of the method is not restricted to
atoms or molecules, but can also be exploited for population
transfer in artificial atoms, like superconducting quantum
structures and semiconductor nanostructures [30,47,48]. For
example, in the recent experiment in [30], SA-STIRAP was
used in the first three states of a superconducting transmon
circuit, to transfer population between the ground state and
the second excited state, by combining two single-photon
transitions and a two-photon transition. The advantage of the
SA-STIRAP method, compared to a direct π pulse between
states |1〉 and |3〉 or classical STIRAP with only pump and
Stokes fields, is its increased fidelity and robustness, since
it combines the useful characteristics of both methods. The
increased fidelity and robustness is particularly significant for
quantum technology applications.

In the next section we will evaluate the performance of two
SA-STIRAP protocols under noise. For the first protocol the
pump and Stokes pulses are Gaussian [26]

�p(t ) = �0e−
(

t−τ
T

)2

, �s(t ) = �0e−
(

t+τ
T

)2

, (7)

with corresponding counterdiabatic pulse

�d (t ) = 4τ

T 2
sech

(
4τ t

T 2

)
. (8)

Note that 2τ is the delay between the Gaussian pulses and T is
the pulse width. For the second protocol the pump and Stokes
pulses have the sin-cos shape [26,43,44]

�p(t ) = �0 sin

(
πt

2T

)
, �s(t ) = �0 cos

(
πt

2T

)
, (9)

while the corresponding counterdiabatic pulse is constant,

�d (t ) = π

T
. (10)

III. PERFORMANCE OF SA-STIRAP PROTOCOLS UNDER
DISSIPATION AND ORNSTEIN-UHLENBECK DEPHASING

We study the effect of noise by adding to the total Hamil-
tonian a noise term,

H (t ) = H0(t ) + Hcd (t ) + Hε (t ), (11)

where

Hε (t ) = h̄

2

⎛
⎝ε1(t ) 0 0

0 ε2(t ) 0
0 0 ε3(t )

⎞
⎠ (12)

and εi(t ), i = 1, 2, 3, are independent Ornstein-Uhlenbeck
noise processes. The latter are defined by the stochastic dif-
ferential equations [32]

ε̇i = − 1

τc
εi + 1

τc
gi, (13)

where gi(t ), i = 1, 2, 3, are independent Gaussian white
noises with zero mean and correlations

〈gi(t )g j (t + τ )〉 = 2σ 2τcδi jδ(τ ). (14)

The stochastic processes εi are also Gaussian with zero mean,
correlations

Ri j (τ ) = 〈εi(t )ε j (t + τ )〉 = σ 2δi je
−|τ |/τc , (15)

and steady-state probability distributions

Pi(ε) = 1√
2πσ 2

e− ε2

2σ2 , (16)

where we note that parameter τc corresponds to the noise
correlation time. The power spectral density of each Ornstein-
Uhlenbeck process is

Sii(ω) =
∫ ∞

−∞
Rii(τ )e−iωτ dτ = 2σ 2τc

1 + (ωτc)2
(17)

and the expectation value of the total power is

〈ε2
i (t )〉 = Rii(0) = 1

2π

∫ ∞

−∞
Sii(ω)dω = σ 2. (18)

We implement the Ornstein-Uhlenbeck processes using
the algorithm described in Ref. [32], with specific standard
deviation σ = 5/T , corresponding to fixed noise power, and
three correlation times τc/T = 0.008, 0.08, 0.8. More details
about the numerical implementation can be found in the
Appendix. In the following Figs. 1–5 we present simula-
tion results for both STIRAP and SA-STIRAP using various
pulses. In all these figures we plot the transfer fidelity F
(average final population of level |3〉 over 200 stochastic runs)
versus the peak amplitude �0 of pump and Stokes pulses, for
various values of delay τ and dissipation �. We start with
Fig. 1, where we use Gaussian pulses with delay parameter
τ/T = 1/4. In Figs. 1(a), 1(c), 1(e), and 1(g) we display
results for the conventional STIRAP and four dissipation
values, � = 0, 1/T, 4/T, 10/T , respectively. The solid blue
line corresponds to the case where there is no dephasing
noise, while the other three lines correspond to different noise
correlation times: τc/T = 0.008 (orange dashed line), τc/T =
0.08 (green dotted line), and τc/T = 0.8 (red dashed-dotted
line). For the cases where dephasing noise is present, we
also show the 98% confidence interval, i.e., the range of
values where lies the fidelity of 98% of the stochastic runs. In
Figs. 1(b), 1(d), 1(f), and 1(h) we display similar results but
for the corresponding SA-STIRAP protocol (with the addi-
tional counterdiabatic pulse), also for � = 0, 1/T, 4/T, 10/T ,
respectively. In Figs. 2, 3, and 4 we show analogous re-
sults for Gaussian protocols with delay parameters τ/T =
1/3, 1/2, 3/4, respectively, while in Fig. 5 for the sin-cos
protocol.

Several interesting observations can be made from these
figures. First note that in the absence of noise or for small
noise correlation time the STIRAP fidelity shows an os-
cillatory behavior for smaller delay values τ/T , Figs. 1(a)
and 2(a), which disappears as τ/T increases, Figs. 3(a)
and 4(a). As discussed in Ref. [26], these fidelity maxima
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FIG. 1. Fidelity versus �0 for Gaussian STIRAP and SA-STIRAP with delay τ/T = 1/4 between Stokes and pump pulses, for
various values of the dephasing noise correlation time τc/T , shown in the inset, and dissipation rates �: (a),(c),(e),(g) STIRAP with
� = 0, 1/T, 4/T, 10/T , respectively; (b),(d),(f),(h) SA-STIRAP with � = 0, 1/T, 4/T, 10/T , respectively.
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FIG. 2. Fidelity versus �0 for Gaussian STIRAP and SA-STIRAP with delay τ/T = 1/3 between Stokes and pump pulses, for
various values of the dephasing noise correlation time τc/T , shown in the inset, and dissipation rates �: (a),(c),(e),(g) STIRAP with
� = 0, 1/T, 4/T, 10/T , respectively; (b),(d),(f),(h) SA-STIRAP with � = 0, 1/T, 4/T, 10/T , respectively.
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FIG. 3. Fidelity versus �0 for Gaussian STIRAP and SA-STIRAP with delay τ/T = 1/2 between Stokes and pump pulses, for
various values of the dephasing noise correlation time τc/T , shown in the inset, and dissipation rates �: (a),(c),(e),(g) STIRAP with
� = 0, 1/T, 4/T, 10/T , respectively; (b),(d),(f),(h) SA-STIRAP with � = 0, 1/T, 4/T, 10/T , respectively.
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FIG. 4. Fidelity versus �0 for Gaussian STIRAP and SA-STIRAP with delay τ/T = 3/4 between Stokes and pump pulses, for
various values of the dephasing noise correlation time τc/T , shown in the inset, and dissipation rates �: (a),(c),(e),(g) STIRAP with
� = 0, 1/T, 4/T, 10/T , respectively; (b),(d),(f),(h) SA-STIRAP with � = 0, 1/T, 4/T, 10/T , respectively.
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FIG. 5. Fidelity versus �0 for sin-cos STIRAP and SA-STIRAP, for various values of the dephasing noise correlation time τc/T , shown
in the inset, and dissipation rates �: (a),(c),(e),(g) STIRAP with � = 0, 1/T, 4/T, 10/T , respectively; (b),(d),(f),(h) SA-STIRAP with � =
0, 1/T, 4/T, 10/T , respectively.
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FIG. 6. Final total population of all three levels versus �0, for
Gaussian SA-STIRAP with delay τ/T = 1/2 and dissipation rate
� = 4/T , for different values of the dephasing noise correlation time,
shown in the inset.

occur when the Rabi oscillations between the levels are
synchronized with the interaction time. Also observe that,
although the first maximum in Figs. 1(a) and 2(a) appears at
values �0 lower than those needed in Figs. 3(a) and 4(a), high
levels of fidelity are maintained only for a narrow window
around this maximum. An oscillatory fidelity is also observed
for STIRAP with sin-cos pulses in the absence of dephasing
noise or for noise with small τc; see Fig. 5(a). The STIRAP
efficiency is reduced in the presence of dephasing noise, as
well as for nonzero dissipation, requiring larger values of �0;
see the first column of Figs. 1–5.

We now move to discuss the performance of SA-STIRAP
protocols. The most important observation when comparing
the first (STIRAP) and second (SA-STIRAP) columns of
Figs. 1 to 5 is that the presence of the counterdiabatic pulse
leads to nozero fidelity even for small values of �0. In the
absence of dephasing noise a perfect transfer is achieved
for every value of �0, while the efficiency is reduced when
noise is present. From these plots it becomes obvious that
for SA-STIRAP and in the case of small �0 the population
is mainly transferred directly from state |1〉 to |3〉 using
the counterdiabatic pulse, while for larger �0 dominates
the STIRAP path passing through the intermediate state |2〉.
This is also demonstrated in Fig. 6, where the final total
population P in all three levels is plotted versus �0, for
Gaussian SA-STIRAP with delay τ/T = 1/2 and dissipation
rate � = 4/T . Observe that, as �0 increases, there appear
population losses (P < 1), indicating that part of the popu-
lation passes through the lossy level |2〉. For lower �0 the
transfer to level |3〉 cannot be completed and most of the
population in the intermediate state |2〉 is dissipated. As �0

increases the STIRAP path is established and the transfer to
state |3〉 is completed, as indicated by the convergence of
total population P to the fidelity F when comparing Figs. 6
and 3(f).

We emphasize that SA-STIRAP is different than the short-
cut method used in our recent work [41] since, in addition
to the pump and Stokes pulses, it exploits the extra field �d

connecting directly states |1〉 and |3〉. The advantage of using
the additional field in the presence of dissipation is demon-
strated in Fig. 7, where note that for simplicity we ignore

FIG. 7. (a) Pump (green dashed-dotted line) and Stokes (blue
dashed line) pulses for the shortcut method of Ref. [41]. (b) Cor-
responding time evolution of level |3〉 population for different val-
ues of dissipation rate, � = 0, 1/T, 4/T, 10/T from top to bottom.
(c) Pump, Stokes, and counterdiabatic (red solid line) pulses for
Gaussian SA-STIRAP with �0 = 5/T and τ/T = 3/4. (d) Cor-
responding time evolution of level |3〉 population for the same
dissipation rates as before (the slight dependence can be hardly
distinguished and appears as a thicker line).

dephasing noise. In Fig. 7(a) we display the shortcut pump and
Stokes pulses, derived from Gaussian profiles, that we used in
Ref. [41] (see Fig. 2 there), while in Fig. 7(b) we plot the
corresponding time evolution of the third level population p3,
for different values of dissipation rate � = 0, 1/T, 4/T, 10/T
(from top to bottom). Observe that, as the dissipation in-
creases, the transfer fidelity at the final time drops consider-
ably. The reason is that the transfer is accomplished through
the lossy intermediate state |2〉. In Fig. 7(c) we plot the Gaus-
sian SA-STIRAP pump and Stokes pulses, as well as the coun-
terdiabatic pulse �d (red solid line), for �0 = 5/T and τ/T =
3/4, while in Fig. 7(d) the corresponding time evolution of
population p3, for the same dissipation values as before,
� = 0, 1/T, 4/T, 10/T . We observe that now the effect of
dissipation can be hardly distinguished. The reason is that the
transfer is mostly accomplished directly from |1〉 to |3〉 by the
extra field �d . For comparison we mention that the common
area of SA-STIRAP pump and Stokes pulses is 8.8558 units,
while those of the shortcut pulses are 10.3563 and 12.3597
units. By inspecting the second columns of Figs. 1–5, it
becomes evident that SA-STIRAP shows a remarkable robust-
ness against dissipation �, even in the presence of dephasing
noise.

Another interesting observation in the case of Gaussian
SA-STIRAP is that, for fixed delay τ between the Stokes and
pump pulses, the fidelity for small �0 drops with increasing
noise correlation time τc, as is evident in the second columns
of Figs. 1–4. This behavior can be explained as follows. Recall
that in the range of small �0 the desired transfer is achieved
through the counterdiabatic pulse given in Eq. (8) which,
for fixed delay τ , is specified. The Fourier transform of this
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FIG. 8. Red solid lines correspond to the dephasing noise power
spectral density for different correlation times τc, and blue dashed
lines to the Fourier transform of the sech counterdiabatic pulse
for various delays τ . (a) For increasing correlation time τc/T =
0.008, 0.08, 0.8 (red solid lines from bottom to top) and fixed delay
τ/T = 0.5, the noise power is concentrated in lower frequencies and
the counterdiabatic pulse experiences higher noise levels. (b) For in-
creasing delay τ/T = 1/4, 1/3, 1/2, 3/4 (blue dashed lines from left
to right) and fixed τc/T = 0.08, the spectrum of the counterdiabatic
pulse broadens and the higher-frequency components experience
lower noise levels.

pulse is

Fd (ω) =
∫ ∞

−∞
�d (t )e−iωt dt = π sech

(
πT 2

8τ
ω

)
, (19)

from which it is obvious that the pulse spectrum is mainly
concentrated between 0 and 8τ/(πT 2). Now observe from
Eq. (17) that, as the correlation time τc increases, the noise
power is concentrated in lower frequencies around zero, af-
fecting thus more the baseband counterdiabatic pulse. This
is also demonstrated in Fig. 8(a). The sin-cos protocol also
exhibits a similar behavior for increasing τc; see the sec-
ond column of Fig. 5. A closely related observation is that,
for fixed τc, �, and increasing τ , i.e., when examining the
same type of curve in subfigures belonging to the same row
of the second column across Figs. 1 to 4 e.g., green dotted
curve corresponding to τc/T = 0.08 across Figs. 1(b) to 4(b),
where � = 0, the fidelity for small �0 increases. The expla-
nation is that, as the delay τ increases, the spectrum of the
counterdiabatic pulse broadens and thus is less affected by the
baseband noise, as shown in Fig. 8(b).

For large �0 it is evident from Figs. 1–5 that the fidelity
for dephasing noise with large correlation time τc/T = 0.8
(red dashed-dotted line) is similar or in most cases better
than that for noise with intermediate correlation time τc/T =
0.08 (green dotted line). This behavior has been observed
for STIRAP in Ref. [33] and is confirmed here also for
SA-STIRAP since, as we pointed out above, for large �0

the STIRAP path dominates. We next try to understand this
behavior using Fig. 9, where we employ Gaussian STIRAP
with delay τ/T = 1/2, dissipation � = 0, and no dephasing
noise; thus the reference for fidelity is Fig. 3(a). In Fig. 9(a)
we plot the time evolution of level |2〉 population p2 and
in Fig. 9(b) the trajectory on the Bloch sphere, for large
�0 = 60/T . The oscillations of p2, most of which occur with
a period of about 0.2T , correspond to the revolution of Bloch
vector (red line) around the instantaneous total field which,
as the pump and Stokes pulses evolve, rotates from the north
pole to the equator (on the plane of the meridian shown).

FIG. 9. Time evolution of level |2〉 population and trajectory on
the Bloch sphere for Gaussian STIRAP with delay τ/T = 1/2, � =
0 and no dephasing noise. (a),(b) �0 = 60/T ; (c),(d) �0 = 15/T .

Dephasing noise with small correlation time τc/T = 0.008
is averaged during an oscillation period and its net effect is
small, as pointed out in [33]. For large τc/T = 0.8, the noise
remains constant for large parts of the evolution, and its influ-
ence is reduced since �0 = 60/T > σ = 5/T . It is the noise
with intermediate correlation time τc/T = 0.08, comparable
with the period of oscillations, which affects the most the
desired transfer, and this is clearly demonstrated in Fig. 3(a)
for �0 = 60/T . In Figs. 9(c) and 9(d), we plot the population
p2 and the trajectory on the Bloch sphere, respectively, for
lower �0 = 15/T . Observe that here the period of oscillations
is comparable to τc/T = 0.8; consequently the noise with this
correlation time is now more effective, as depicted in Fig. 3(a)
for �0 = 15/T .

Closing, we would like to emphasize that, by inspecting
fidelity in Figs. 1 to 5, we conclude that the best performance
under severe noise conditions is observed for Gaussian SA-
STIRAP with delay τ/T = 3/4 and the sin-cos SA-STIRAP
protocol.

IV. CONCLUSION

We investigated the performance of two SA-STIRAP
schemes obtained from Gaussian and sin-cos pulses, in the
presence of dissipation and dephasing by exponentially cor-
related noise. For small amplitudes of Stokes and pump
pulses we found that the population transfer is mainly ac-
complished directly by the counterdiabatic pulse, while for
large amplitudes conventional STIRAP dominates. This kind
of “hedging” leads to a remarkable robustness against dissi-
pation in the lossy intermediate level. For small pulse am-
plitudes and increasing noise correlation time we found a
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decreasing performance, since the dominant counterdiabatic
pulse is affected more, while for large pulse amplitudes,
where the STIRAP path dominates, the efficiency is degraded
more for intermediate correlation times (compared to the
pulse duration). We also studied for the Gaussian SA-STIRAP
the effect of delay between pump and Stokes pulses and found
that in the presence of noise the performance is improved
for increasing delay. Our conclusion is that the Gaussian SA-
STIRAP protocol with suitably chosen delay and the sin-cos
SA-STIRAP protocol perform quite well even under severe
noise conditions. The current work is expected to find applica-
tion in the implementation of emerging quantum technologies,
since STIRAP is a widely used method in this research
area.
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APPENDIX: NOTES ON NUMERICAL METHOD

The simplest type of colored noise is that with exponential
correlation function. It requires only one more parameter than
white noise while being a more realistic noise source in the
context of laser noise. In general, a stochastic differential
equation with an exponentially correlated colored noise term
can be modeled as

ẋi = f (xi ) + εi, (A1)

ε̇i = − 1
τc

εi + 1
τc

gi, (A2)

where gi is simple zero-mean Gaussian white noise.
To integrate this stochastic system an explicit fixed time

step method is preferable to control the stochastic dynamics.
We use an explicit fourth-order Runge-Kutta method to inte-
grate the first, deterministic part of the system [Eq. (A1)] cou-
pled with the algorithm by Fox et al. [32] to integrate for the
noise [Eq. (A2)]. A sufficiently small time step must be used
to ensure both that the noise terms are properly integrated and
the deterministic part of the system is accurately simulated. In
general, we have used a time step 
t that is at most 1/10 the
value of correlation time τc.

Algorithm 1 shows the steps of the integration of Eq. (A2).
First, an initial noise value εi|t=0 is generated and the
intensity-related parameter E is calculated for the integration
interval 
t and correlation time τc. At each time step of
the integration, a new εi value is calculated, based on the
previous value of εi and a Gaussian parameter h of mean
zero and standard deviation σ ; then, εi are a series of values
that realize a zero-mean Ornstein-Uhlenbeck process with
correlation time τc and standard deviation σ , obeying the

correlation relation 〈εi(t )εi(t + τ )〉 = σ 2e− |τ |
τc , as discussed in

the previous sections.

Algorithm 1: Generating exponentially correlated colored
noise [32].

Result: An array [εi] of noise values for each time step.

n, m = random number ∈ [0, 1];

E = e− 
t
tc ;

ε|t=0 = √−2σ 2 log10 m cos(2πn);

while t < tfinal do

a, b = random number ∈ [0, 1];

h = √−2σ 2(1 − E 2) log10 a cos(2πb);

ε|t+
t = εE + h;

t → t + 
t ;

In Figs. 10(a) and 10(b) we compare the numerical results
to the theoretically desired properties of the noise. The nu-
merical data are averaged over 10 iterations of the integration

FIG. 10. (a) Histogram of noise strength for τc/T = 0.08, σ =
5/T . Theoretical curve of 1√

2πσ
e− ε2

i
2σ2 and numerical simulation

results averaged over 10 iterations. (b) Numerical results and theo-
retical curve for 〈εi(t )εi(t + τ )〉 vs τ for τc/T = 0.08 and σ = 5/T .
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procedure. Figure 10(a) shows the relative frequency of the
generated εi values. Figure 10(b) shows the mean correlation

vs the lag-time τ . It is obvious that the numerical results are in
excellent agreement with the theoretically desired properties.
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