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Variational approach to time-dependent fluorescence of a driven qubit
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We employ the Dirac-Frenkel variational principle and the multiple Davydov ansatz to study time-dependent
fluorescence spectra of a driven qubit in the weak to strong qubit-reservoir coupling regimes, where both the
Rabi frequency and the spontaneous decay rate are comparable to the transition frequency of the qubit. Our
method agrees well with the time-local master-equation approach in the weak coupling regime, and offers a
flexible way to compute the spectra from the bosonic dynamics instead of two-time correlation functions. While
the perturbative master equation breaks down in the strong coupling regime, our method actually becomes more
accurate due to the use of bosonic coherent states under certain conditions. We show that the counter-rotating
coupling between the qubit and the reservoir has considerable contributions to the photon number dynamics
and the spectra under strong driving conditions even when the coupling is moderately weak. The time-dependent
spectra are found to be generally asymmetric, a feature that is derived from photon number dynamics. In addition,
it is shown that the spectral profiles can be dramatically different from the Mollow triplet due to strong dissipation
and/or multiphoton processes associated with the strong driving. Our formalism provides a unique perspective
to interpret time-dependent spectra.
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I. INTRODUCTION

Light-matter interactions play a fundamental role in quan-
tum optics and quantum control [1]. In recent years, light-
matter interactions have attracted much attention in the strong
coupling regime where the coupling strength is comparable
with the transition frequencies of the system [2–8]. In gen-
eral, a two-level system strongly coupled to a single har-
monic oscillator, as described by quantum Rabi model, is
widely studied theoretically and explored experimentally in
the context of artificial atoms such as superconducting circuits
[9–12]. It has been demonstrated in the laboratory that strong
coupling between a qubit and an electromagnetic continuum
(i.e., a collection of harmonic oscillators) can also be realized,
whereby the spontaneous decay rate becomes comparable to
or even exceeds the transition frequency of the qubit [13], a
situation that is dramatically different from the case of natural
atoms in the free space. A natural atom interacts with an
electromagnetic field in the vacuum in the weak coupling
regime, leading to spontaneous decay rates far smaller than the
transition frequencies [1]. It is therefore interesting to recon-
sider the elementary processes such as absorption, emission,
and photon scattering in the strong coupling regime.

Of particular interest and importance is the scattering
of photons from a two-level system coherently driven by
a monochromatic laser field, which gives rise to resonance

*yiyingyan@zust.edu.cn
†YZhao@ntu.edu.sg

fluorescence [1]. Several features of this light scattering pro-
cess have been elucidated such as the Mollow triplet [14],
antibunching [15], and squeezing [16]. The Mollow triplet is
referred to as a three-peaked fluorescence spectrum appearing
when the Rabi frequency is much larger than the spontaneous
decay rate [14]. The modification to the Mollow triplet is
illustrated by taking into account of various influences, e.g.,
a squeezed vacuum [17], a phonon bath [18,19], strong har-
monic driving [20,21], etc. In addition, the time evolution
of the fluorescence is also analyzed by considering the time-
dependent spectrum [22,23]. However, all these studies of the
fluorescence spectrum are in the weak light-mater coupling
regime where the spontaneous decay rate is far smaller than
the transition frequency.

Although the fluorescence spectrum is related to the num-
ber of scattered photons, it is typically calculated from a
two-time correlation function of the emitter [24]. One method
is based on the quantum optical master equation and Marko-
vian quantum regression theory [14]. An extended approach
is the non-Markovian quantum regression theory employing
the Nakajima-Zwanzig projection technique [25]. In addition,
there is a resolvent operator formalism for fluorescence spec-
trum calculations [26]. In general, these approaches require
a perturbation expansion in the system-reservoir coupling
strength, and preferred expansions are usually done up to the
second order [25–28]. Consequently, these methods have dif-
ficulties when applied to the strong coupling regime. To over-
come the difficulties with the master-equation approaches,
a flexible way to obtain the spectrum is to directly gauge
the photonic (bosonic) dynamics instead of evaluating the

2469-9926/2020/102(2)/023714(17) 023714-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4396-7265
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023714&domain=pdf&date_stamp=2020-08-21
https://doi.org/10.1103/PhysRevA.102.023714


YAN, CHEN, LUO, AND ZHAO PHYSICAL REVIEW A 102, 023714 (2020)

two-time correlation function for emitter operators. Numerical
simulation of fluorescence spectra based on a bosonic observ-
able has been carried out by means of the time-dependent
density matrix renormalization group, exploring the suppres-
sion of spectral diffusion with optical pulses [29]. More
recently, the reservoir information in open quantum systems
has been studied by the dynamical polaron ansatz [30], the
stochastic c-number Langevin equation [31], and the short
iterative Lanczos method [32]. However, so far there is no
direct evaluation of fluorescence spectrum from the bosonic
degrees of freedom in the strong coupling regime.

In this paper, we combine the Dirac-Frenkel variational
principle [33] with the multiple Davydov ansatz [34,35] to
study the time-dependent fluorescence spectrum of a co-
herently driven qubit in the moderately weak to the strong
coupling regimes. The variational approach has been applied
to explore the reduced dynamics and the bosonic dynamics of
the spin-boson model [34–37]. In contrast with the master-
equation approach, our method retains full information on
the bosonic degrees of freedom in our equations of motion,
thereby providing simultaneous access to not only the re-
duced dynamics but also the photon number dynamics. In
the moderately weak coupling regime, it is found that the
results calculated from the variational approach are consistent
with those of the master-equation approach. In the strong
coupling regime, the variational results are more robust while
those from master-equation approach are invalid because of
the breakdown of the perturbative master equation in the
absence of adequately strong driving. Moreover, the effects of
counter-rotating coupling between the qubit and the reservoir
on the photon number dynamics is illustrated in moderately
weak coupling regimes. It is shown that the time-dependent
fluorescence spectrum is generally asymmetric, which can
be intuitively understood by considering photon number dy-
namics. In addition, we demonstrate that the spectral profiles
can be dramatically distinct from the Mollow triplet in the
presence of strong dissipation and/or multiphoton processes
associated with the strong driving. The present formalism
provides a unique perspective on the time-dependent spectrum
from the bosonic degrees of freedom.

The rest of paper is organized as follows. In Sec. II we
introduce the Dirac-Frenkel time-dependent variational prin-
ciple and the multiple Davydov trial state. We also describe
the time-local master-equation approach, which is used to
evaluate the photon number in the reservoir for both original
and the rotating-wave approximation (RWA) Hamiltonian. In
Sec. III, we discuss the validity of the variational approach by
comparing the qubit dynamics with those from other methods
and by calculating the ansatz deviation. In Sec. IV we present
the main results concerning the reservoir photon number
dynamics calculated from the variational approach and the
master-equation approach. We compare results from the two
approaches and examine the features of time-dependent spec-
tra as we go from the moderately weak to the strong coupling
regime. In Sec. V, the conclusions are drawn.

II. MODEL AND METHODOLOGIES

We consider that a qubit is subjected to harmonic driving
and coupled with a radiative reservoir. The total Hamiltonian

reads (we set h̄ = 1 throughout this paper)

H (t ) = HS(t ) + HR + HSR, (1)

where HS(t ) describes the driven qubit:

HS(t ) = 1
2ω0σz + � cos(ωxt )σx. (2)

ω0 is the transition frequency between the two levels of
the qubit and σz(x,y) are the Pauli matrices. � is the Rabi
frequency and ωx is the driving frequency. HR is the reservoir
Hamiltonian and is given by

HR =
∑

k

ωkb†
kbk (3)

with bk (b†
k ) the annihilation (creation) operator of the kth

bosonic mode. HSR describes the interaction between the qubit
and the reservoir and takes the form

HSR = σx

2

∑
k

λk (bk + b†
k ), (4)

where λk is the coupling strength between the kth mode and
qubit. In this work, we consider that the interaction between
the qubit and the reservoir is characterized by the Ohmic
spectral density

J (ω) =
∑

k

λ2
kδ(ω − ωk ) = 2αω�(ωc − ω), (5)

where α is a dimensionless coupling strength, ωc is the cutoff
frequency, and �(·) is the Heaviside step function. A qubit
ultrastrongly interacting with an Ohmic bath can be physically
realized by a superconducting flux qubit coupled to an open
one-dimensional (1D) transmission line [13]. In addition, the
present method is applicable to the Lorentzian and the sub-
Ohmic spectral density functions as well.

In what follows, we use the Dirac-Frenkel time-dependent
variational principle and the multiple Davydov ansatz to cal-
culate the dynamics of the qubit and the reservoir simultane-
ously. Particularly, we will mainly focus on the reservoir ob-
servable related to the time-dependent fluorescence spectrum.

A. Dirac-Frenkel time-dependent variational principle
and multiple Davydov ansatz

The solutions to the time-dependent Schrödinger equation
associated with the Hamiltonian (1) can be derived from the
Dirac-Frenkel time-dependent variational principle, of which
the action is defined as [33]

S[ψ] =
∫ t2

t1

〈ψ (t )|H (t ) − i∂t |ψ (t )〉dt, (6)

where |ψ (t )〉 are trial states. The optimal solutions are ob-
tained by restricting δS[ψ] = 0, which is equivalent to

〈δψ (t )|H (t ) − i∂t |ψ (t )〉 = 0. (7)

We will use the multiple Davydov D1 trial state, also
known as the multi-D1 ansatz, in our variational approach,
which takes the form [34,35]

|DM
1 (t )〉 =

M∑
n=1

[An(t )|+〉| fn(t )〉 + Bn(t )|−〉|gn(t )〉], (8)
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where |±〉 are the eigenstates of σx, and | fn(t )〉 and
|gn(t )〉 are multimode Bargmann coherent states (which dif-
fer from the Glauber’s coherent states by a normalization
factor) [38]:

| fn(t )〉 = exp

[∑
k

fnk (t )b†
k

]
|{0k}〉, (9)

|gn(t )〉 = exp

[∑
k

gnk (t )b†
k

]
|{0k}〉, (10)

with |{0k}〉 being the vacuum state of the reservoir. M is
the multiplicity of the Davydov trial state. Specifically, when
M = 1, the trial state reduces to the single Davydov state.
In the above ansatz, we have introduced a set of variational
parameters: An(t ), Bn(t ), fnk (t ), and gnk (t ). The physical
significance of these parameters is clear: An(t ) and Bn(t ) are
the probability amplitudes while fnk (t ) and gnk (t ) are the
displacements of the kth mode. For the sake of simplicity,
we shall use the simplified notations An ≡ An(t ), Bn ≡ Bn(t ),
fn ≡ fn(t ), and gn ≡ gn(t ) hereafter. The equations of motion
for the variational parameters are determined by substituting
the ansatz into Eq. (7) and are given as follows:

0 = −i
M∑

n=1

(
Ȧn + An

∑
k

ḟnk f ∗
lk

)
S( f , f )

ln +
M∑

n=1

ω0

2
BnS( f ,g)

ln

+
M∑

n=1

An

[∑
k

ωk f ∗
lk fnk + � cos(ωxt ) +

∑
k

λk

2
( f ∗

lk + fnk )

]
S( f , f )

ln , (11)

0 = −i
M∑

n=1

(
Ḃn + Bn

∑
k

ġnkg∗
lk

)
S(g,g)

ln +
M∑

n=1

ω0

2
AnS(g, f )

ln

+
M∑

n=1

Bn

[∑
k

ωkg∗
lkgnk − � cos(ωxt ) −

∑
k

λk

2
(g∗

lk + gnk )

]
S(g,g)

ln , (12)

0 = −i
M∑

n=1

[
Ȧn fnp + An

∑
k

ḟnk (δp,k + f ∗
lk fnp)

]
S( f , f )

ln +
M∑

n=1

ω0

2
BngnpS( f ,g)

ln

+
M∑

n=1

An

[∑
k

ωk (δp,k + f ∗
lk fnp) fnk + � cos(ωxt ) fnp + λp

2
+
∑

k

λk

2
( f ∗

lk + fnk ) fnp

]
S( f , f )

ln , (13)

0 = −i
M∑

n=1

[
Ḃngnp + Bn

∑
k

ġnk (δp,k + g∗
lkgnp)

]
S(g,g)

ln +
M∑

n=1

ω0

2
An fnpS(g, f )

ln

+
M∑

n=1

Bn

[∑
k

ωk (δp,k + g∗
lkgnp)gnk − � cos(ωxt )gnp − λp

2
−
∑

k

λk

2
(g∗

lk + gnk )gnp

]
S(g,g)

ln , (14)

where

S( f ,g)
ln = 〈 fl (t )|gn(t )〉 = exp

[∑
k

f ∗
lkgnk

]
. (15)

The detailed derivation is presented in Appendix A.
The equations of motion (11)–(14) can be solved numer-

ically via the fourth-order Runge-Kutta method. Note that
the equations of motion are a set of linear equations, which
can be written in a matrix from M�̇y = �b, where M denotes
the coefficient matrix, �̇y denotes the vector composed of the
derivatives of the variational parameters, and �b the inhomo-
geneous term. By solving the linear equations, one obtains
the derivatives of the variational parameters, which are used
to calculate the variational parameters at later times with the
Runge-Kutta method.

To perform numerical simulation, we specify λk and ωk

by using the linear discretization of the spectral density. We

divide the frequency domain [0, ωc] into Nb equal intervals
[xk−1, xk] with xk = kωc/Nb (k = 0, 1, 2, . . . , Nb). The cou-
pling strength and frequency for the kth mode are given as

λ2
k =

∫ xk

xk−1

J (ω)dω, (16)

ωk = λ−2
k

∫ xk

xk−1

ωJ (ω)dω. (17)

In addition, we specify the initial state of the total system.
We assume that the qubit and the reservoir are initially in a
factorized state (this assumption is not necessary), where the
qubit may be in the excited state [An(0) = Bn(0) = δn,1/

√
2]

or the ground state [An(0) = −Bn(0) = δn,1/
√

2] while the
reservoir is in the vacuum state [ fnk (0) = gnk (0) = 0].

On numerically solving the equations of motion, we obtain
An(t ), Bn(t ), fnk (t ), and gnk (t ) and thus can calculate physical
quantities of interest. Particularly, the number of photons in
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the kth mode at time t can be directly obtained:

N (ωk, t ) = 〈DM
1 (t )|b†

kbk|DM
1 (t )〉

=
M∑

n,l=1

[
A∗

l f ∗
lkS( f , f )

ln fnkAn + B∗
l g∗

lkS(g,g)
ln gnkBn

]
,

(18)

Physically, N (ωk, t ) counts the number of photons scattered
into the kth mode of the initially vacuum reservoir. Thus
N (ωk, t ) as a function of ωk and t can be regarded as the
time-dependent fluorescence spectrum. This is an advantage
of our method, which directly retains the info on the degrees
of freedom of the reservoir that are traced out in the master-
equation approaches.

The reduced dynamics of the qubit such as the population
difference of the qubit can also be calculated as

Pz(t ) = 〈DM
1 (t )|σz|DM

1 (t )〉

=
M∑

n,l=1

[
A∗

l S( f ,g)
ln Bn + B∗

l S(g, f )
ln An

]
. (19)

In addition, the norm of the multi-D1 ansatz can be determined
via

N =
√

〈DM
1 (t )|DM

1 (t )〉

=
⎧⎨
⎩

M∑
n,l=1

[
A∗

l S( f , f )
ln An + B∗

l S(g,g)
ln Bn

]⎫⎬⎭
1
2

. (20)

The norm should be equal to 1 within the evolution time
of interest if the numerical solutions are convergent and the
initial state is normalized. Convergence and accuracy of the
variational approach will be discussed in Sec. III.

B. Time-local master-equation approach

1. Reservoir photon number evaluated from a two-time
correlation function

Master equations are widely used to describe the reduced
dynamics of open quantum systems, after tracing out the

degrees of freedom of the reservoir. Nevertheless, the master-
equation approach can also calculate the photon number
N (ωk, t ) in the kth mode at the expense of evaluating a
two-time correlation function. Such a correlation function can
be derived in the Heisenberg picture, where the annihilation
operator becomes time dependent and is given by

bk (t ) = e−iωkt bk (0) − i
λk

2

∫ t

0
σx(t1)e−iωk (t−t1 )dt1, (21)

where σx(t ) = U †(t )σxU (t ) is the Pauli matrix in the Heisen-
berg picture. Here U (t ) is the unitary evolution operator for
the total Hamiltonian. This relation leads to

N (ωk, t ) = Tr[b†
k (t )bk (t )ρ(0)]

= λ2
k

4

∫ t

0

∫ t

0
〈σx(t1)σx(t2)〉e−iωk (t1−t2 )dt1dt2, (22)

where 〈·〉 denotes the average with respect to the initial state
of the qubit and reservoir ρ(0) = ρS(0) ⊗ |{0k}〉〈{0k}|, which
is a direct product of the qubit state ρS(0) and the reservoir
vacuum state |{0k}〉〈{0k}|. The task is now to calculate the
two-time correlation function in the above equation.

The correlation function can be evaluated as

〈σx(t )σx(t ′)〉 = TrS{σxTrR[U (t )U †(t ′)σxρ(t ′)U (t ′)U †(t )]},
(23)

where ρ(t ) is the density matrix for the total sys-
tem. This means that the two-time correlation func-
tion can be obtained as an expectation of σx with re-
spect to the reduced effective density operator, �S(t, t ′) =
TrR[U (t )U †(t ′)σxρ(t ′)U (t ′)U †(t )]. Similarly to the reduced
density matrix, the equation of motion for �S(t, t ′) can be
derived by using the Nakajima-Zwanzig projection approach
or a second-order perturbation calculation [25,27]. Given
Hamiltonian (1) and the zero-temperature condition, we de-
rive the equations of motion for the effective density operator
�S(t, t ′) and the reduced density operator ρS(t ) = TrRρ(t ) as
follows:

d

dt
�S(t, t ′) = −i[HS(t ),�S(t, t ′)] −

∫ t−t ′

0
dτ {C(τ )[σx, σx(t, t − τ )�S(t, t ′)] − C∗(τ )[σx,�S(t, t ′)σx(t, t − τ )]}

−
∫ t

t−t ′
dτ {C(τ )[σx, σx(t, t ′)σx(t, t − τ )ρS(t, t ′)] − C∗(τ )[σx, σx(t, t ′)ρS(t, t ′)σx(t, t − τ )]}, (24)

d

dt
ρS(t ) = −i[HS(t ), ρS(t )] −

∫ t

0
dτ {C(τ )[σx, σx(t, t − τ )ρS(t )] + H.c.}. (25)

where

C(τ ) = 1

4

∫ ∞

0
J (ω)e−iωτ dω, (26)

σx(t, t ′) = US(t )U †
S (t ′)σxUS(t ′)U †

S (t ), (27)

ρS(t, t ′) = US(t )ρS(t ′)U †
S (t ). (28)

Here, US(t ) = T← exp [−i
∫ t

0 HS(τ )dτ ] is the unitary evolu-
tion operator for the driven qubit only. A detailed derivation
of Eqs. (24) and (25) is given in Appendix B. The present
formalism of deriving equations of motion for the effective
density operator is referred to as the nonMarkovian quantum
regression theory [25,27].

Clearly, the equations of motion for �S(t, t ′) and ρS(t )
are accurate up to the second order in the coupling strength

023714-4



VARIATIONAL APPROACH TO TIME-DEPENDENT … PHYSICAL REVIEW A 102, 023714 (2020)

between the qubit and the reservoir (λk). Thus, the master-
equation approach can be expected to give reliable results
in sufficiently weak coupling regimes [39]. Furthermore, by
comparing Eqs. (24) and (25), one finds that the effective
density operator and the reduced density operator satisfy
different equations of motion. There exists an inhomogeneous
term (the second line) in Eq. (24). This is different from the
usual Markovian case, in which the reduced density operator
and the effective density operator satisfy the same differential
equations. To numerically calculate the spectrum, we rewrite
the equations of motion in the Floquet picture, which is
presented in Appendix C, and solve them with the Runge-
Kutta method. On solving Eqs. (24) and (25), we can perform
numerical integration for Eq. (22) and obtain the spectrum.

One notes that the photon number is determined by the cor-
relation function 〈σx(t )σx(t ′)〉 instead of the correlation func-
tion 〈σ+(t )σ−(t ′)〉 with σ± = (σx ± iσy)/2, which is widely
used in the studies of the steady-state or time-dependent
fluorescence spectra [1,14,22,23]. This is because the RWA

is not invoked when deriving N (ωk, t ), i.e., Eq. (22). If the
qubit-reservoir coupling is assumed to take the RWA form,
one finds that the photon number of the reservoir is related to
〈σ+(t )σ−(t ′)〉 [24].

2. Photon number evaluated with the RWA

Using the RWA, i.e., with the counter-rotating coupling
1
2

∑
k λk (bkσ− + b†

kσ+) omitted in the original Hamiltonian,
one finds that [24]

N (ωk, t ) = λ2
k

4

∫ t

0

∫ t

0
〈σ+(t1)σ−(t2)〉e−iωk (t1−t2 )dt1dt2, (29)

where σ±(t ) = U†(t )σ±U (t ) are the operators in the Heisen-
berg picture with U (t ) being the evolution operator for the
RWA Hamiltonian.

Using the same Nakajima-Zwanzig projection approach
[25], the equations of motion for the reduced effective density
matrix �S(t, t ′) = TrR[U (t )U†(t ′)σ−ρ(t ′)U (t ′)U†(t )] and the
reduced density matrix ρS(t ) can be given as follows:

d

dt
�S(t, t ′) = −i[HS(t ), �S(t, t ′)] −

∫ t−t ′

0
dτ {C(τ )[σ+, σ−(t, t − τ )�S(t, t ′)] − C∗(τ )[σ−, �S(t, t ′)σ+(t, t − τ )]}

−
∫ t

t−t ′
dτ {C(τ )[σ+, σ−(t, t ′)σ−(t, t − τ )ρS(t, t ′)] − C∗(τ )[σ−, σ−(t, t ′)ρS(t, t ′)σ+(t, t − τ )]}, (30)

d

dt
ρS(t ) = −i[HS(t ), ρS(t )] −

∫ t

0
dτ {C(τ )[σ+, σ−(t, t − τ )ρS(t )] + H.c.}, (31)

where σ±(t, t ′) = US(t )U †
S (t ′)σ±US(t ′)U †

S (t ). In a similar
way, we solve Eqs. (30) and (31) numerically and their
solutions are used to evaluate the double integral in Eq. (29).

It remains unclear whether the spectra obtained from the
nonRWA and RWA treatments have discrepancy under certain
conditions. This will be discussed in Sec. IV.

III. QUBIT DYNAMICS AND THE VALIDITY
OF VARIATIONAL APPROACH

In this section, we discuss the qubit dynamics and valid-
ity of the variational approach. To begin with, we examine
the convergence of the variational solutions obtained from
Eqs. (11)–(14). The convergence is verified by adjusting
M and Nb. We first check the convergence with respect
to the multiplicity M by fixing Nb and increasing M until
the increase in M leads to only negligible changes in the
qubit dynamics. We then check the convergence with respect
to the number of modes Nb by fixing M and varying Nb

until the increase in Nb causes only negligible changes in
the qubit dynamics. Referred to as the multi-D1 results, the
variational outcomes presented in this work have been thor-
oughly scrutinized for convergence. Master equations (25)
and (31) are referred to as the time-local master equation
(TLME) and RWA-TLME, respectively. Next, we illustrate
the performance of the multi-D1 results. To this end, we make
comparisons between the variational results with those from
the master equations and the hierarchy equations of motion

(HEOM) [40]. Details on HEOM can be found in Appendix
D.

The HEOM results are first taken as a benchmark to
validate the multi-D1 results. In Fig. 1, we display the time-
dependent population difference of the qubit for two values
of α. For α = 0.01, one finds that the multi-D1 results are
consistent with those from both HEOM and TLME. For α =
0.1, as shown in Figs. 1(d) and 1(f), the multi-D1 results have
an acceptable accuracy as compared to the HEOM results and
are more accurate than the TLME results. Figure 1(e) shows
that the mutli-D1 outcome coincides with that of HEOM if t <

15ω−1
0 but deviates from the latter if t > 15ω−1

0 . Interestingly,
the TLME result has a satisfactory accuracy in the presence
of the resonant strong driving even if α = 0.1. Nevertheless,
the multi-D1 ansatz has better performance than the master
equations at short times.

To further illustrate the performance of the multi-D1

ansatz, we proceed to calculate the ansatz deviation defined
by

σ 2(t ) = 〈δ(t )|δ(t )〉/ω2
0, (32)

where

|δ(t )〉 = [i∂t − H (t )]|DM
1 (t )〉 (33)

is the deviation vector. The ansatz deviation σ 2(t ) measures
how faithfully the trial state follows the Schrödinger equation.
Generally, the smaller the deviation σ 2(t ), the more accurate
the variational solutions are, and σ 2(t ) = 0 if and only if the
trial state is an exact solution to the Schrödinger equation.
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FIG. 1. Dynamics of the population difference of the qubit calculated from the variational approach, HEOM, TLME, and RWA-TLME for
two values of α. The solid line represents the multi-D1 results with Nb = 150 and M being specified in the legend.

An explicit expression for σ 2(t ) is derived in Appendix A.
In Fig. 2, we show σ 2(t ) of the multi-D1 results in Fig. 1.
We note that for vanishing driving, the ansatz deviation first
increases and then approaches stable, acceptably small values,
regardless of weak or strong coupling. However, in the pres-
ence of driving, the deviation keeps growing with time. This
may lead to low accuracy of the multi-D1 at long times. In
addition, we have checked that for other driving parameters,
e.g., {ωx = ω0,� = 1.5ω0} and {ωx = 0.56ω0,� = ω0}, the
deviation of the multi-D1 results is similar to curve (e) in
Fig. 2 when α = 0.1. However, the deviation is found to be
acceptably small [σ 2(t ) < 10−2] for α = 0.1 at t = 30ω−1

0
(the qubit already relaxes to its steady state) if the driving is
relatively weak, e.g., � ∼ 0.1ω0.

Some remarks are due on the validity of the variational
approach based on the mutli-D1 trial state as well as that

FIG. 2. Time evolution of the deviation of the multi-D1 results in
Fig. 1.

of the master equations. First of all, our time-dependent
variation is particularly accurate for short time dynamics in all
parameter regimes. Second, in the strong coupling regime, the
variational approach yields numerical convergence to a more
accurate steady state than the master equation in the presence
of vanishing driving, relatively weak driving, and far-off-
resonant driving; while in the presence of resonant strong
driving, such convergence is elusive in the variational ap-
proach. Third, even in the strong coupling regime, the TLME
may have a relatively good performance under the resonant
strong driving condition but is inaccurate in the presence of
vanishing driving, relatively weak driving, or far-off-resonant
driving. The RWA-TLME is generally inconsistent with the
TLME in the presence of strong driving.

Before ending this section, we would like to discuss dy-
namical features in the moderately weak and strong coupling
regimes. Figures 1(a)–1(c) show that the qubit spontaneously
decays in the moderately weak coupling regime and without
driving, while exhibiting damped Rabi oscillations in the pres-
ence of driving. Figure 1(d) shows that in the strong coupling
regime and without driving, the qubit spontaneously decays
into a steady state after a relatively short period of time. The
qubit is not found in its bare ground state at long times,
revealing that the qubit is dressed by photons in the strong
coupling regime [30,41]. It is seen that this effect cannot be
captured by the second-order master equation. Figures 1(e)
and 1(f) show that, with driving, the qubit exhibits oscillatory
behavior at variance with the Rabi oscillation in the presence
of strong qubit-reservoir coupling despite that � = 0.5ω0.
Those results imply that the Rabi oscillation of the qubit can
be modified significantly by a strongly dissipative reservoir.
Therefore, in the strong coupling regime, we may expect
that the fluorescence spectrum deviates substantially from the
typical Mollow triplet.
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FIG. 3. Time evolution of photon numbers at three discrete modes for two values of α. The parameters are ωx = ω0, � = 0.5ω0, and
ω0 = 0.2ωc. The qubit is initially in the ground state. The solid lines are the multi-D1 results with Nb = 150 and M being specified in the
legends.

IV. PHOTON NUMBER DYNAMICS AND
TIME-DEPENDENT FLUORESCENCE SPECTRUM

In this section, using the three aforementioned approaches,
we calculate the time-dependent photon number and the
fluorescence spectrum, in an effort to probe the reservoir
dynamics. Computation of photon number dynamics based
on Eqs. (22), (24), and (25) is referred to as the TLME
approach, and calculation based on Eqs. (29), (30), and (31) is
referred to as the RWA-TLME approach. Discrepancy among
the three approaches, together with computational consistency
and robustness of the results obtained, will be addressed first,
which is followed by discussion of time-dependent spectra.

A. Comparison between variational and
master-equation approaches

In this section, we examine the discrepancy between the
variational and master-equation approaches. Without loss of
generality, we consider the time evolution of photon numbers
in three discrete modes with the frequencies ω = 0.5168ω0,
1.0168ω0, and 1.5167ω0, corresponding to the 16th, 31st, and
46th bosonic modes obtained in a linear discretization of the
reservoir spectral density with a total number of Nb = 150
modes. Figure 3 displays the time-dependent photon number
N (ω, t ) with the three chosen frequencies ω for the case
of ωx = ω0, � = 0.5ω0, and two values of α. The qubit
is initially in its ground state. We first concentrate on the
comparison between the TLME and the multi-D1 results. Fig-
ures 3(a)–3(c) show that when α = 0.01 the multi-D1 curves
perfectly coincide with the TLME curves. Figures 3(d)–3(f)
show that when α = 0.1 perfect agreement between the multi-
D1 and TLME results is only found at short times. Discrep-
ancy between the multi-D1 and the TLME results becomes
apparent at long times, which is attributed to the insufficiently
large multiplicity of the multi-D1 ansatz. Nevertheless, the

two are qualitatively consistent with each other. In Fig. 4,
we show N (ω, t ) as a function of t for a lower driving
frequency and a stronger driving strength while keeping the
other parameters the same as Fig. 3. When comparing the
multi-D1 and the TLME results, one finds a similar situation
where the discrepancy between them is vanishingly small for
α = 0.01 and is of considerable magnitude for α = 0.1.

Apart from the three discrete frequencies considered, it is
easy to verify whether the master-equation and the variational
approaches are consistent for other discrete modes. To this
end, we plot N (ω, t ) as a function of the reservoir frequency ω

at given times, i.e., the time-dependent fluorescence spectrum.
The results from three methods are shown in Figs. 5–7. In
each figure, the coupling strength α ranges from 0.01 to
0.1. The top panels in Figs. 5–7 show that for α = 0.01 the
multi-D1 results are in excellent agreement with the TLME
results, while at α = 0.05 or α = 0.1 the TLME and multi-
D1 results agree well with each other at t = 10ω−1

0 , but the
significant discrepancy between them appears at t = 30ω−1

0 ,
as demonstrated in the middle and bottom panels in Figs. 5–
7. Nevertheless, there is no essential difference between the
profiles of the multi-D1 and the TLME spectra.

We move to compare the RWA-TLME results with the
TLME and the multi-D1 results. It is evident that the RWA-
TLME results are different from their non-RWA counter-
parts. First, Figs. 3 and 4 show that the RWA-TLME curves
are smoother than the non-RWA curves, namely, the fast
oscillatory behavior of photon number is not captured by
the RWA. Second, more importantly, there is a considerable
discrepancy between the RWA and non-RWA photon numbers
at certain frequencies. For example, if α = 0.01, one finds the
significant discrepancy at ω = 0.5168ω0 and ω = 1.5167ω0

but very little disagreement at ω = 1.0168ω0, suggesting that
in the weak coupling regime RWA may be a bad approx-
imation at frequencies far from the qubit frequency ω0 but
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FIG. 4. Time evolution of photon numbers at three discrete modes for two values of α. The parameters are ωx = 0.56ω0, � = ω0, and
ω0 = 0.2ωc. The qubit is initially in the ground state. The solid lines are the multi-D1 results with Nb = 150 and M specified in the legends.

may still yield reasonably accurate phonon number dynamics
at frequencies close to the qubit frequency. For α = 0.1, the
RWA and non-RWA results have significant discrepancies as
shown in the lower panels in Figs. 3 and 4. Although both

TLME and RWA-TLME results are somewhat inaccurate at
long times because they are second-order perturbations, there
is a growing discrepancy between the RWA and non-RWA
results as α increases.

FIG. 5. Time-dependent fluorescence spectrum as a function of ω at fixed times for ωx = ω0, � = 0.5ω0, ω0 = 0.2ωc, and three values of
α. The qubit is initially in the ground state. The scatters represent the multi-D1 results with Nb = 150 and M specified in the legends.
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FIG. 6. Time-dependent fluorescence spectrum as a function of ω at fixed times for ωx = 0.56ω0, � = ω0, ω0 = 0.2ωc, and three values
of α. The qubit is initially in the ground state. The scatters represent the multi-D1 results with Nb = 150 and M specified in the legends.

Figures 5–7 compare the RWA-TLME and nonRWA re-
sults by plotting the photon number N (ω, t ) as a function
of ω at given time t . One finds that from the weak to
strong coupling regimes the RWA-TLME approach predicts
a transient spectrum different from those from the other two
methods. The discrepancy between the RWA-TLME and the
TLME results can be attributed to the effect of the counter-
rotating coupling between the qubit and the reservoir, which
is not taken into account in the RWA-TLME approach. These
findings suggest that under the strong driving condition the
counter-rotating qubit-bath coupling has non-negligible con-
tributions to the photon number dynamics even in the weak
coupling regime.

One may ask whether the RWA-TLME and the TLME
results become indistinguishable under certain conditions. To
answer this question, we have used the RWA-TLME and the
TLME approach to calculate N (ω, t ) for ωx = ω0 and various
values of α ranging from 10−3 to 10−5. We find that, as long
as � is comparable with ω0, the RWA-TLME and the TLME
results are different (the discrepancy is similar to those shown
in Figs. 3 and 4 and thus it is not presented), namely, these two
results are different in the regime of α 
 1 and �/ω0 ∼ 1.
However, when �/ω0 
 1, the two results become indistin-
guishable provided that α 
 1, i.e., the effect of the counter-
rotating coupling is negligible in the weak coupling and the
weak driving limits. This is the often considered regime where
both the spontaneous decay rate and the Rabi frequency are far
smaller than the transition frequency.

B. Spectral features

In this section, we focus on the features of the time-
dependent fluorescence spectra and seek to understand them
in terms of the photon number dynamics. Figures 5–7 show
that regardless of the involvement of the RWA, the time-
dependent fluorescence spectrum is generally asymmetric as
we go from the weak to strong coupling regimes. In gen-
eral, we find that it is nontrivial to obtain symmetric time-
dependent spectrum with the present model when the driving
is strong. This can be intuitively understood by considering
the photon number dynamics. If the time-dependent spectrum
is symmetric about a central frequency, the photon num-
ber dynamics should also have mirror symmetry about the
central frequency. However, this situation cannot be trivially
realized except for some limiting cases. It is clear that the
coupling strength between the qubit and the bosonic mode
varies from mode to mode, as given by the spectral density
J (ω). Consequently, one has no reason to expect that the
photon number dynamics of one mode is exactly the same
as that of another. In fact, the photon number dynamics
varies from mode to mode as illustrated in Figs. 3 and 4.
This explanation for the asymmetry is different from the
previous attempts based on the quantum optical master equa-
tion, which ascribes the asymmetry of the time-dependent
spectrum to the “turn-on” effect of interactions between
the emitter and the laser field [22,23]. In addition, we can
state one limiting case where the symmetric time-dependent
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FIG. 7. Time-dependent fluorescence spectrum as a function of ω at fixed times for ω0 = 0.2ωc, ωx = ω0, � = 1.5ω0, and three values of
α. The qubit is initially in the ground state. The scatters represent the multi-D1 results with Nb = 150 and M specified in the legends.

spectrum may emerge. When � 
 ω0 and α 
 1, the
equations of motion (30) and (31) can be well approximated
by the quantum optical master equation. In such a situation,
the symmetric transient fluorescence spectrum can be ob-
served under certain conditions inferred from early studies
[22,23].

Let us analyze how the spectrum varies with α. Figures 5–7
show that at a given time the intensity of spectrum is much

greater in the strong coupling regime than in the weak cou-
pling regime, which results from the fact that the increase of
coupling strength α leads to the enhancement of spontaneous
decay rate. The last columns of Figs. 5–7 show that the
emission bands are connected and form an integrated whole
in the strong coupling regime; in contrast, the emission bands
are well separated in the weak coupling regime. For instance,
Fig. 5 shows that the increase of α causes the spectrum to

FIG. 8. Time-dependent fluorescence spectrum versus frequency ω and time t from the multi-D1 results for α = 0.1. The parameters and
initial condition used in (a) and (b) are the same as in Figs. 6 and 7, respectively.
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change from a Mollow-triplet-like structure into the structure
that a single peak is integrated with a very broad band at
long times. This means that in the weak coupling regime few
photons can be scattered into the modes at the gaps among
the emission bands. However, in the strong coupling regime
these modes can be considerably populated with photons.
The present results suggest that the spectral profiles can be
significantly modified by the strong dissipation.

Our approach here also allows for studying the fluores-
cence spectrum in the strong-driving regime. Figures 6 and
7 show that the spectral profiles can be dramatically different
from the usual Mollow triplet when the driving strength equals
or exceeds the transition frequency of the emitter. At long
times, the spectrum is found to primarily consist of two
components around nωx (n = 1, 3), which originate in the
single- and three-photon processes. It is seen that the two
components have comparable intensities. This suggests that
the three-photon process plays a role equal to the single-
photon process under strong driving conditions, suggesting
that the multiphoton processes can substantially modify the
spectral profiles when the driving is strong. In Figs. 8(a) and
8(b), we plot the fluorescence spectrum, obtained from our
variational approach, as a function of frequency ω and time
t for α = 0.1 with other parameters being the same as in
Figs. 6 and 7, respectively. These plots reveal the oscillatory
behavior for each mode and detailed spectral evolution. One
notes that high-frequency modes generally oscillate faster
than low-frequency modes. In addition, the modes with fre-
quencies greater than 3ωx are slightly excited even under
strong driving.

V. CONCLUSIONS

To summarize, we have studied time-dependent fluores-
cence spectra in the moderately weak to strong coupling
regimes by using the Dirac-Frenkel variational principle and
the multiple Davydov D1 ansatz. The validity of this method
is shown by the comparison of the reduced dynamics with
that of the HEOM and by the calculation of the ansatz
deviation. In contrast with the master-equation approach, this
method allows us to bypass two-time correlation functions
and directly evaluate the number of scattered photons. We
have compared the variational results with those from two
versions of TLME approach: one is based on RWA and the
other is without RWA. In the moderately weak coupling
regime, the variational approach and the TLME approach
are found to agree with each other. However, in the strong
coupling regime, results from the two methods diverge at long
times. In the case of resonant strong driving, the discrepancy
is caused by the inadequate accuracy of the multi-D1 trial
state. In the cases of vanishing, weak, and far-off-resonant
driving, the discrepancy is attributed to the breakdown of
the second-order perturbation used in the master-equation
approach. By comparing the RWA-TLME results with those
of TLME and multi-D1, we have illustrated that the counter-
rotating coupling between the qubit and the reservoir has
considerable contributions to photon number dynamics and
spectra when driving is comparable to the transition frequency
of qubit. Employing the three methods, we have shown that
time-dependent fluorescence spectra are generally asymmet-

ric. This can be understood from the viewpoint of photon
number dynamics. In addition, we have shown that the strong
dissipation and/or multiphoton processes can cause the spec-
tral profile to be substantially different from the Mollow triplet
when the driving strength is comparable to or exceeds the
transition frequency.

Our variational formalism equipped with the multiple
Davydov D1 ansatz provides a flexible way to compute the
time-dependent spectra, which captures not only the qubit
dynamics but also the field dynamics. The present formalism
is capable of treating relatively complicated models of interest
in quantum optics. For instance, we can extend the ansatz to
study bosonic dynamics when multiple emitters interact with
a common bath [42]. We can also study the bosonic dynamics
when two bosonic baths interact with an emitter. A concrete
example of the latter is semiconductor quantum dots whose
electromagnetic and phonon environments should be taken
into account. In addition, although only harmonic driving is
considered here, the formalism is applicable to studying pulse
or aperiodic driving fields.
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APPENDIX A: EQUATIONS OF MOTION FOR THE
VARIATIONAL PARAMETERS AND THE ANSATZ

DEVIATION

The variation of 〈DM
1 (t )|, which is the adjoint state of

|DM
1 (t )〉, can be obtained as follows:

〈δDM
1 (t )| =

M∑
l=1

{
δA∗

l 〈+|〈 fl | + A∗
l 〈+|〈 fl |

∑
p

bpδ f ∗
l p

+δB∗
l 〈−|〈gl | + B∗

l 〈−|〈gl |
∑

p

bpδg∗
l p

}
. (A1)

One readily derives the derivative of |DM
1 (t )〉 with respect

to t ,

|ḊM
1 (t )〉 =

M∑
n=1

{
Ȧn|+〉| fn〉 + An|+〉

[∑
k

ḟnkb†
k

]
| fn〉

+Ḃn|−〉|gn〉 + Bn|−〉
[∑

k

ġnkb†
k

]
|gn〉

}
. (A2)

The Dirac-Frenkel time-dependent variational principle leads
to the equations of motion:

〈+|〈 fl |i∂t |DM
1 (t )〉 = 〈+|〈 fl |H (t )|DM

1 (t )〉, (A3)

〈−|〈gl |i∂t |DM
1 (t )〉 = 〈−|〈gl |H (t )|DM

1 (t )〉, (A4)

〈+|〈 fl |bpi∂t |DM
1 (t )〉 = 〈+|〈 fl |bpH (t )|DM

1 (t )〉, (A5)

〈−|〈gl |bpi∂t |DM
1 (t )〉 = 〈−|〈gl |bpH (t )|DM

1 (t )〉. (A6)
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By substituting the explicit forms of |DM
1 (t )〉 and H (t ) into

above equations, one simply derives the equations of motion
in the main text.

To quantify how faithfully the variational results follow the
Schrödinger equation, we calculate the deviation defined in
Eq. (32), which is fully determined by the inner product of
the deviation vector and can be derived straightforwardly as

follows:

〈δ(t )|δ(t )〉 = 〈ḊM
1 (t )|ḊM

1 (t )〉 + 〈DM
1 (t )|H (t )2|DM

1 (t )〉
−2 Im〈ḊM

1 (t )|H (t )|DM
1 (t )〉, (A7)

where

〈ḊM
1 (t )|ḊM

1 (t )〉=
∑
l,n

[(
Ȧ∗

l Ȧn+Ȧ∗
l An

∑
k

f ∗
lk ḟnk + A∗

l Ȧn

∑
k

ḟ ∗
lk fnk
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S( f , f )

ln +
(
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l Ḃn + Ḃ∗
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lkgnk
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ln
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⎛
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k
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k,q
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⎞
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⎞
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lq fnq

⎤
⎦S( f , f )

ln

+ω0

2
Ḃ∗
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By calculating the deviation, we are capable to track the
accuracy of the variational results.

APPENDIX B: EQUATION OF MOTION FOR THE
REDUCED EFFECTIVE DENSITY MATRIX

The effective density operator �(t, t ′) =
U (t, t ′)σxρ(t ′)U †(t, t ′) satisfies the Liouville equation

d

dt
�(t, t ′) = −i[H (t ),�(t, t ′)] (B1)

with the initial condition �(t ′, t ′) = σxρ(t ′). The equation
of motion can be transformed into the interaction picture,
yielding

d

dt
�I(t, t ′) = −i[HSR(t ),�I(t, t ′)] ≡ LI(t )�I(t, t ′), (B2)

where

�I(t, t ′) = U †
S (t ) exp(iHRt )�(t, t ′)US(t ) exp(−iHRt ), (B3)

HSR(t ) = U †
S (t ) exp(iHRt )HSRUS(t ) exp(−iHRt )

= σx(t )

2

∑
k

λk (bke−iωkt + b†
keiωkt ), (B4)

are operators in the interaction picture.
Let the projection operator P be defined as

Pρ = TrR(ρ) ⊗ ρR, (B5)

where ρR is a fixed state of the reservoir. Let Q be the
complementary projection operator such that

P + Q = I (B6)

with I the identity matrix. Accordingly, one finds that P2 =
P , Q2 = Q, and PQ = QP = 0. With P and Q, Eq. (B2) can
be partitioned into two parts:

d

dt
P�I(t, t ′) = PLI(t )(P + Q)�I(t, t ′), (B7)

d

dt
Q�I(t, t ′) = QLI(t )(P + Q)�I(t, t ′). (B8)

P�I(t, t ′) and Q�I(t, t ′) are called the relevant part and
irrelevant part, respectively. To proceed, one solves the second
equation and substitutes its solution into the first equation to
derive a differential equation for the relevant part. The second
equation can be formally solved as

Q�I(t, t ′) = G(t, t ′)Q�I(t ′, t ′)

+
∫ t

t ′
dsG(t, s)QLI(s)P�I(s, t ′), (B9)

where

G(t, t ′) = T← exp

[∫ t

t ′
QLI(s)ds

]
(B10)

with T← being the time-ordering operator. The operator
�I(s, t ′) at time s can be related to �I(t, t ′) via

�I(s, t ′) = Gb(t, s)�I(t, t ′), (B11)

with Gb(t, s) = T→ exp [− ∫ t
s LI(τ )dτ ] being the backward

unitary evolution operator. Substituting Eq. (B11) into (B9),

one arrives at

Q�I(t, t ′) = G(t, t ′)Q�I(t ′, t ′) +
∫ t

t ′
dsG(t, s)QLI(s)P

×Gb(t, s)(P + Q)�I(t, t ′). (B12)

Using

�(t, t ′) =
∫ t

t ′
dsG(t, s)QLI(s)PGb(t, s), (B13)

the irrelevant part Q�I(t, t ′) can be expressed as

Q�I(t, t ′) = [1 − �(t, t ′)]−1[G(t, t ′)Q�I(t ′, t ′)

+�(t, t ′)P�I(t, t ′)], (B14)

where we used fact that 1 − �(t, t ′) can be inverted in a weak
coupling regime or at short times in strong coupling regimes
[28]. Substituting Eq. (B14) into (B7), we get the equation of
motion for the relevant part of �(t, t ′):

d

dt
P�I(t, t ′) = PLI(t )P�I(t, t ′) + I (t, t ′)Q�I(t ′, t ′)

+K(t, t ′)P�I(t, t ′), (B15)

where

I (t, t ′) = PLI(t )[1 − �(t, t ′)]−1G(t, t ′)Q, (B16)

K(t, t ′) = PLI(t )[1 − �(t, t ′)]−1�(t, t ′)P . (B17)

The inhomogeneous part I (t, t ′)Q�I(t ′, t ′) can be simplified
by using Q�I(t ′, t ′) = σx(t ′)QρI(t ′) and

QρI(t ) = [1 − �(t, t0)]−1�(t, t0)PρI(t ). (B18)

In deriving Eq. (B18), we used the factorized initial state
ρI(t0) = ρI

S(t0) ⊗ ρR and the fact that QρI(t ) satisfies the
same equation as Q�I(t, t ′). The equation of motion becomes

d

dt
P�I(t, t ′) = PLI(t )P�I(t, t ′) + I ′(t, t0)PρI(t ′)

+K(t, t ′)P�I(t, t ′), (B19)

where

I ′(t, t0) = PLI(t )[1 − �(t, t ′)]−1G(t, t ′)Qσx(t ′)

×[1 − �(t ′, t0)]−1�(t ′, t0). (B20)

To proceed, we use the expansion [1 − �(t, t ′)]−1 =∑∞
n=0 [�(t, t ′)]n and �(t, t ′) = ∑∞

n=1 �n(t, t ′) (n indicates
the order in the coupling strength λk). Up to the second order
in the coupling strength, and using PLI(t )P = 0 (as we are
interested in ρR = |{0k}〉〈{0k}|), the kernels are given as

I ′(t, t0) =
∫ t ′

t0

dsPLI(t )σx(t ′)LI(s)P, (B21)

K(t, t ′) =
∫ t

t ′
dsPLI(t )LI(s)P . (B22)

Finally, we obtain the second-order equation of motion

d

dt
P�I(t, t ′) =

∫ t ′

t0

dsPLI(t )σx(t ′)LI(s)PρI(t ′)

+
∫ t

t ′
dsPLI(t )LI(s)P�I(t, t ′). (B23)
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From Eq. (B23), one readily derives Eq. (24) in the
Schrödinger picture.

Similarly to �S(t, t ′), the reduced density matrix ρS(t ) is
also obtained via the projection method. To arrive at Eq. (25),
we use the factorized initial state ρ(0) = ρS(0) ⊗ |{0k}〉〈{0k}|.

APPENDIX C: EQUATIONS OF MOTION IN THE FLOQUET PICTURE

We numerically solve Eqs. (24) and (25) with the aid of Floquet theory [43,44], which states that the evolution operator of
the driven qubit takes the form

US(t ) =
2∑

γ=1

|uγ (t )〉〈uγ (0)|e−iεγ t , (C1)

where |uγ (t )〉 = |uγ (t + 2π/ωx )〉 is the Floquet state with the real quasienergy εγ . It is straightforward to show that |uγ (t )〉 and
εγ satisfy the following equation:

[HS(t ) − i∂t ]|uγ (t )〉 = εγ |uγ (t )〉. (C2)

By employing the Sambe space, this differential equation can be solved numerically to yield the Floquet states and quasienergies
[43,44]. In terms of the Floquet states, we define the following matrix elements and decay rate:

�μν (t, t ′) = 〈uμ(t )|�S(t, t ′)|uν (t )〉, (C3)

ρμν (t ) = 〈uμ(t )|ρS(t )|uν (t )〉, (C4)

Xμν (t ) = 〈uμ(t )|σx|uν (t )〉, (C5)

Xμν,n = ωx

2π

∫ 2π/ωx

0
Xμν (t )e−inωxt dt, (C6)

�(ω, t, t ′) =
∫ t

t ′
C(τ )e−iωτ dτ. (C7)

With these quantities, we can rewrite the equation of motion for the effective density operator as

d

dt
�μν (t, t ′) = −i�μν�μν (t, t ′) −

∑
γ ,δ

Kμν,γ δ (t − t ′, 0)�γδ (t, t ′) − Iμν (t, t ′), (C8)

where

�μν = εμ − εν, (C9)

Kμν,γ δ (t, t ′) =
∑

n

einωxt

{∑
λ

δν,δXμλ(t )Xλγ ,n�(�λγ ,n, t, t ′) − Xμγ ,nXδν (t )�(�μγ ,n, t, t ′)

+
∑

λ

δμ,γ Xδλ,nXλν (t )�∗(−�δλ,n, t, t ′) − Xμγ (t )Xδν,n�
∗(−�δν,n, t, t ′)

}
, (C10)

and Iμν (t, t ′) = 〈uμ(t )|I (t, t ′)|uν (t )〉 is the element of the following matrix:

I (t, t ′) = [X (t ), σx(t, t ′)F (t, t ′)ρS(t, t ′)] + [σx(t, t ′)ρS(t, t ′)F †(t, t ′), X (t )], (C11)

where

X (t ) =
∑
μ,ν

|uμ(t )〉〈uν (t )|Xμν (t ), (C12)

σx(t, t ′) =
∑
μ,ν

|uμ(t )〉〈uν (t )|Xμν (t ′) exp(−i�μνt ), (C13)

ρS(t, t ′) =
∑
μ,ν

|uμ(t )〉〈uν (t )|ρμν (t ′) exp(−i�μνt ), (C14)

F (t, t ′) =
∑
μ,ν

|uμ(t )〉〈uν (t )|
∑

n

einωxt Xμν,n�(�μν,n, t, t − t ′). (C15)

Similarly, ρμν (t ′) is also calculated in the Floquet picture.
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APPENDIX D: HIERARCHY EQUATIONS OF MOTION

Let us denote the eigenstates for σz as σ ; then the reduced density matrix element for the two-level system is expressed in the
path integral form with the factorized initial condition as [40,45,46]

ρ(σ, σ ′; t ) =
∫

Dσ

∫
Dσ ′ρ(σ0, σ

′
0; t0)eiS[σ ;t]F (σ, σ ′; t )e−iS[σ ′;t]. (D1)

Here, S[σ ; t] is the action of the two-level system, and F (σ, σ ′; t ) is the Feynman-Vernon influence functional, given by

F (σ, σ ′; t ) = exp

{
−
∫ ∞

0
dω J (ω)

∫ t

t0

dτ

∫ τ

t0

dτ ′V ×(τ )

[
V ×(τ ′) coth

(
βω

2

)
cos[ω(τ − τ ′)] − iV ◦(τ ′) sin[ω(τ − τ ′)]

]}
.

(D2)
Here, we have introduced the abbreviations

V = σx

2
, (D3)

V × = V [τ ] − V [τ ′], (D4)

V ◦ = V [τ ] + V [τ ′]. (D5)

The correlation function can be written as

C(t ) =
∫ ∞

0
dωJ (ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
, (D6)

where β is the inverse of the temperature. For the zero-temperature case considered in this work, we have

C(t ) = 2α

[
cos(ωct ) − 1

t2
+ ωc sin(ωct )

t

]
− 2iα

[
sin(ωct )

t2
− ωc cos(ωct )

t

]
≡ CR(t ) + iCI (t ). (D7)

where CR(t ) and CI (t ) are real and imaginary parts of the correlation function, respectively. We apply an incomplete set of
oscillatory exponentially decaying functions (OEDFs) for an approximate decomposition [47],

Cfit
X (t ) =

NX∑
n=1

aX ;2n−1 cos(ωX ;nt )e−γX ;nt + aX ;2n sin(ωX ;nt )e−γX ;nt . (D8)

The fitting parameters, {aX ;n, ωX ;n, γX ;n}, are allowed to be uncorrelated for the real (X = R) and imaginary (X = I) parts.
We can thus express the correlation function (D7) as

C(t ) ≈
2NR∑
n=1

aR;nϕR;n(t ) + i
2NI∑
m=1

aI;mϕI;m(t ). (D9)

The basis functions are OEDFs, given by

{ϕX ;n(t )} = {cos(ωX ;nt )e−γX ;nt , sin(ωX ;nt )e−γX ;nt , n = 1, . . . , NX }, (D10)

with X = R and I . For the two separated basis functions, {ϕR;n(t )} and {ϕI;m(t )}, we have relations, ∂tϕR;n(t ) = ∑
n′ ηR;n,n′ϕR;n′ (t )

and ∂tϕI;m(t ) = ∑
m′ ηI;m,m′ϕI;m′ (t ), where

ηX,n,n′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γX ;1 −ωX ;1 0 0 · · · 0 0
ωX ;1 −γX ;1 0 0 · · · 0 0

0 0 −γX ;2 −ωX ;2 · · · 0 0
0 0 ωX ;2 −γX ;2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −γX ;NX −ωX ;NX

0 0 0 0 · · · ωX ;NX −ωX ;NX

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D11)

The influence functional equation can be expressed as

F (σ, σ ′; t ) =
2NR∏
n=1

exp

(
−
∫ t

t0

dτ

∫ τ

t0

dτ ′V ×(τ )V ×(τ ′)aR;nϕR;n(τ − τ ′)
)

×
2NI∏

m=1

exp

(
−
∫ t

t0

dτ

∫ τ

t0

dτ ′V ×(τ )V ◦(τ ′)iaI;mϕI;m(τ − τ ′)
)

. (D12)
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Taking the derivative of Eq. (D1), we have

∂

∂t
ρ(σ, σ ′; t ) = −iLρ(σ, σ ′; t ) − V ×(t )

∫
Dσ

∫
Dσ ′ρ(σ0, σ

′
0; t0)

×
[∫ t

t0

dτV ×(τ )
2NR∑
n=1

aR;nϕR;n(t − τ ) +
∫ t

t0

dτV ◦(τ )
2NI∑

m=1

iaI;mϕI;m(t − τ )

]
eiS[σ,t]F (σ, σ ′; t )e−iS[σ ′;t], (D13)

where L is the Liouville superoperator describing the unitary evolution governed by HS(t ). In order to derive the equation of
motion, we introduce the auxiliary operator ρ j1,..., j2NR ;k1,...,k2NI

by its matrix element as

ρ j1,..., j2NR ;k1,...,k2NI
(σ, σ ′; t ) =

∫
Dσ

∫
Dσ ′ρ(σ0, σ

′
0; t0)

2NR∏
n=1

(∫ t

t0

dτV ×(τ )ϕR;n(t − τ )

) jn

×
2NI∏

m=1

(∫ t

t0

dτV ◦(τ )ϕI;m(t − τ )

)km

eiS[σ,t]F (σ, σ ′; t )e−iS[σ ′;t] (D14)

for non-negative integers j1, . . . , j2NR ; k1, . . . , k2NI . It should be noted that ρ0,...,0(t ) = ρ(t ) denote the true reduced density
matrix, while other auxiliary density matrices are introduced to take into account all orders of system-bath couplings.
Differentiating ρ j1,..., j2NR ;k1,...,k2NI

(σ, σ ′; t ) with respect to t , we obtain the following hierarchy of equations in operator form:

∂tρ j1,..., j2NR ;k1,...,k2NI
(σ, σ ′; t ) = −iLρ j1,..., j2NR ;k1,...,k2NI

(σ, σ ′; t )

+V ×(t )
2NR∑
n=1

jnϕR;n(0)ρ j1,..., jn−1,..., j2NR ;k1,...,k2NI
(σ, σ ′; t )

+V ◦(t )
2NI∑

m=1

kmϕI;m(0)ρ j1,..., j2NR ;k1,...,km−1,...,k2NI
(σ, σ ′; t )

+
2NR∑
n=1

2NR∑
n′=1

jnηR;n,n′ρ j1,..., jn−1,..., jn′ +1,..., j2NR ;k1,...,k2NI
(σ, σ ′; t )

+
2NI∑
m=1

2NI∑
m′=1

kmηI;m,m′ρ j1,..., j2NR ;k1,...,km−1,...,km′+1,...,k2NI
(σ, σ ′; t )

−V ×(t )
2NR∑
n=1

aR;nρ j1,..., jn+1,..., j2NR ;k1,...,k2NI
(σ, σ ′; t )

−V ×(t )
2NI∑

m=1

iaI;mρ j1,..., j2NR ;k1,...,km+1,...,k2NI
(σ, σ ′; t ). (D15)

The HEOM consists of an infinite number of equations, which must be truncated for practical simulations. For this purpose,
the integers j1, . . . , j2NR ; k1, . . . , k2NI should satisfy

∑2NR
n=1 jn + ∑2NI

m=1 km � Ntrun, where Ntrun is the depth of the hierarchy.
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