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Quantum photonics with active feedback loops
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We develop a unified theoretical framework for the efficient description of multiphoton states generated and
propagating in loop-based optical networks which contain nonlinear elements. These active optical components
are modeled as nonlinear media, resembling a two-mode squeezer. First, such nonlinear components can be
seeded to manipulate quantum states of light, as such enabling photon addition protocols. And, second, they can
function as an amplifying medium for quantum light. To prove the practical importance of our approach, the
impact of multiple round trips is analyzed for states propagating in experimentally relevant loop configurations
of networks, such as time-multiplexed driven quantum walks and iterative photon-number state generation
protocols. Our method not only enables us to model such complex systems but also allows us to propose
alternative setups that overcome previous limitations. To characterize the systems under study, we provide
exact expressions for fidelities with target states, success probabilities of heralding-type measurements, and
correlations between optical modes, including many realistic imperfections. Moreover, we provide an easily
implementable numerical approach by devising a vector-type representation of photonic states, measurement
operators, and passive and active processes.
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I. INTRODUCTION

In classical communication technologies, nonlinear ele-
ments play a crucial role when it comes to routing, amplifying,
and, in general, manipulating light traveling in optical fibers
over long distances. Similarly, feedback loops allow for active
and dynamical responses of a network’s node to incident light
and control signals for carrying out processing tasks. Beyond
classical applications, quantum communication protocols are
on the verge of becoming a practical means of sending and
receiving sensitive information [1–3], e.g., via quantum key
distribution [4,5]. However, certain quantum laws, such as the
no-cloning theorem [6,7], set fundamental limitations on the
operation of quantum communication nodes. Likewise, the
uncertainty principle provides a lower bound to the excess
noise that is unavoidable when amplifying quantum signals
[8,9]. Thus, a rigorous analysis in the quantum domain is
paramount for an advantageous utilization of active elements
and feedback loops in future applications. Also, the robustness
of quantum characteristics of light under realistic conditions
needs to be studied for making reliable predictions and before
setting up costly experiments.

One way to manipulate a quantum system on demand is
feedback control, being a well-established tool in classical
systems. Its extension into the quantum domain shows equally
exciting promises for efficient alterations of quantum systems
that are central for future quantum information technologies;
see, e.g., Refs. [10,11] for thorough overviews. In general, the
combination of techniques from classical photonics and quan-
tum optics defines the field of quantum photonics [12–14].
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Controlling a quantum system using feedback is, in general,
classified into two categories, measurement based [15] and
quantum coherent feedback control [16], addressing feedback
procedures for measurements and states, respectively. Such
studies also concern the control of quantum systems through
nonlinear optical interaction using feedback. For example,
time-delayed coherent quantum feedback can be used for
establishing sophisticated control mechanisms [17].

In quantum physics in general, and in quantum optics
in particular, the three components which are essential for
a full quantum model are the preparation, propagation, and
detection of light. Each of these instances comes with its own
challenges and benefits when compared with a classical de-
scription of light; see Refs. [18–20] for detailed introductions.
In turn, a sweet spot for the joint operation of all elements
in a setup has to be determined to maximize the potential
gain through the sensible usage of quantum resources. This
demands a well-adjusted formalism to apply the underlying
theory.

The first key component of a quantum-optical system are
sources of quantum light which mainly rely on nonlinear
interactions of light and matter. Since the photon carries and
distributes quantum information, the generation of single- and
multiphoton states has attracted a considerable amount of
attention [21,22]. For instance, quantum dots offer a high-
quality source of single photons [23–26]. Another prominent
way to produce photons is the heralded, i.e., nondeterministic,
generation of photons from a parametric down-conversion
(PDC) process [27–29]. Remarkably, these technologies can
produce quantum states of light which are compatible with
existing optical telecommunication networks [22], thus in-
herently combining quantum properties with an existing
infrastructure. However, a nonunit purity of the heralded
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photon states can severely diminish quantum characteristics
[30], thus affecting their usefulness for quantum tasks.

Second, the detection of photonic states of light, including
the assessment of their quantum features, is contingent on the
capability to resolve individual photons [21,31,32]. However,
true photon-number resolution can only be approximated
with currently available technologies [33,34]. For instance,
state-of-the-art transition-edge sensors can only discern a few
photons [35], require well-controlled conditions [36], and
exhibit a nonlinear response to the number of photons [37].
A more practicable approach employs multiplexed detection
schemes [38] in which an incident signal is split into multiple
signals with reduced intensity, and each output signal is then
measured with single on-off detector. A resource-efficient im-
plementation of such a scheme are fiber-loop detection layouts
[39]. Like for transition-edge sensors, saturation effects are an
example of imperfections which cap the performance of such
detection devices.

Finally, and maybe most importantly, the manipulation of
light enables us to distribute quantum properties of photons
over multiple parties; see, e.g., Refs. [40,41]. For example,
passive optical networks, consisting of beam splitters and
phase shifters, render it possible to convert single-mode non-
classicality into two- or multimode entanglement [42–45], a
key resource for many quantum protocols [46–48]. A funda-
mental application of passive optical networks are multipho-
ton interference experiments [49–52], generalizing the Hong-
Ou-Mandel two-photon quantum phenomenon [53]. Modern
applications also lie in the field of certifying quantum en-
hancements, e.g., through boson sampling [54]. Nevertheless,
both mentioned and highly relevant examples employ only
static optical networks.

Consequently, controlled quantum state manipulations via
nonlinear optical elements can be expected to enlarge the
family of potential quantum applications even further [55,56].
Typically, those processes are driven by a pump, thus offering
an active control. For instance, boson sampling can be gen-
eralized to driven boson sampling by using optical squeezers
as a second-order nonlinear component [57]. Also, photon-
addition protocols can be used to build up non-Gaussian
quantum states, again relying on second-order nonlinearities
as well as conditional measurements [58–60]. Note that non-
linear (specifically, non-Gaussian) processes are required for
universal quantum information processing [61]. As mentioned
before, nonlinear processes also impose fundamental limita-
tions [8,9] (e.g., introducing excess noise to a state), hindering
an unrestricted usage of active elements to improve quantum
technologies. Therefore, a toolbox is required that is able to
unveil benefits of experiments, even under realistic conditions,
to truly exploit the potential of nonlinear optics and feedback
architectures in a quantum setting.

In this article, we develop such a sought-after framework
that enables us to theoretically model and devise loop-based
setups which contain active elements. This approach not only
combines nonlinear elements, actively controlled by a pump
field, with feedback networks but also allows us to study
different imperfections either separately or jointly, such as
losses, noise, saturation effects, etc. Our method further en-
ables us to comprehensively analyze the evolution of quantum
features in such scenarios. It also leads to a closed description

of a broad and practically relevant class of quantum states,
quantum measurements, and quantum processes. Moreover,
by applying our technique to state-of-the-art implementations,
we are additionally able to propose schemes which favorably
alter the function of existing experiments. To demonstrate
this, we consider a sequential heralding of multiphoton states,
which is achieved through a feedback mechanism, and the
quantum amplification of quantum correlated light which is
attenuated as it propagates in a lossy interferometer loop. In
both cases, we show that our careful characterization results
in a usage of nonlinear elements and loop configurations
which can indeed improve quantum-optical properties. This
demonstrates the unique capabilities of our approach to ac-
curately model and further advance quantum photonics in
sophisticated setups under realistic conditions.

The paper is structured as follows: In Sec. II, we rein-
troduce an apparently simple operator that, however, defines
the fundamental building block for our general treatment. A
second-order nonlinear process is exactly analyzed in Sec. III,
using an exponential-operator-based algebra, and including
quantum seeds to this process and additional conditional
measurements. In Sec. IV, the method is generalized to a uni-
fied vector-type decomposition for photonic quantum states,
measurements, and passive and active processes, including
many imperfections, which is readily accessible as a numer-
ical toolbox for our operator algebra. As examples of our
general treatment, this methodology is then applied to setups
to produce higher-order photon states, Sec. V, and to amplify
quantum correlations that are attenuated by loss, Sec. VI.
Finally, we conclude and discuss our findings in Sec. VII.

II. PRELIMINARIES

For the purpose of our following studies, we consider a
family of operators which are rather useful when formulating
our general methodology. This essential element is an expo-
nential of the photon-number operator n̂ = â†â, where â is the
annihilation operator of the quantized radiation mode under
study. This operator takes the form

Ê (x) = xn̂ = : exp ([x − 1]n̂):, (1)

where “: • :” denotes the normal-ordering prescription [19].
For x = 1, x = 0, and x = −1, we get the identity Ê (1) = 1̂,
the vacuum projector Ê (0) = |0〉〈0|, and the parity operator
Ê (−1) = (−1)n̂, respectively. Here, it is sufficient to restrict
ourselves to values 0 � x � 1.

Photon-number states |n〉, where n ∈ N, can be conve-
niently represented through this operator via derivatives,

|n〉〈n| = :
n̂n

n!
e−n̂: = 1

n!
∂n

x Ê (x)
∣∣
x=0, (2)

which, as we would like to remark, is related to the method
of generating functions. Likewise, the above relation can be
expressed in terms of the photon-number expansion

Ê (x) =
∑
n∈N

xn|n〉〈n|. (3)

The above relations can be interpreted as follows: Ê (x), as
a function of x, carries the information about all photon-
number states simultaneously. It is additionally convenient
to formulate two simple rules for a calculus that involves
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the exponential operators of the form (1). Namely, the trace
over Ê (x) reads tr[Ê (x)] = (1 − x)−1, and the product of two
exponential operators obeys Ê (x)Ê (y) = Ê (xy).

Examples in which the operator Ê (x) is of great interest—
beyond the method introduced later in this work—are the
description of thermal states and on-off detectors; see, e.g.,
Ref. [60] for a comprehensive analysis. Specifically, the oper-
ator in Eq. (1) is related to thermal states via

ρ̂th = :
e−n̂/(n̄+1)

n̄ + 1
: = 1

n̄ + 1
Ê

(
n̄

n̄ + 1

)
, (4)

for a mean thermal photon number n̄. In addition, the positive
operator-valued measure of an on-off detector reads

�̂off = :e−(ηn̂+δ): = e−δÊ (1 − η) and �̂on = 1̂ − �̂off , (5)

where η is the quantum efficiency (likewise, 1 − η defines the
loss) and δ is the dark count contribution.

In the following, we develop a technique which extensively
employs operators of the form (1). In fact, every component of
our treatment, including states, processes, and measurements,
can be expressed via linear combinations and mappings of the
simple operator Ê (x).

III. SINGLE-PASS NONLINEAR PROCESS

As another key ingredient of our treatment to analyze
complex experimental settings, we describe the action of an
active medium when a quantum state passes it once. The
specific process under study resembles a second-order two-
mode nonlinear optical process, controlled by a pump field
[62,63].

A. Two-mode squeezing transformations

The nonlinear medium in our setting is described by a
unitary two-mode squeezing operation [19],

Ŝ = exp(ζ ∗â ⊗ â − ζ â† ⊗ â†)

= 1

μ
e−νâ†⊗â†/μ

(
1

μ

)n̂

⊗
(

1

μ

)n̂

eν∗â⊗â/μ, (6)

with the complex squeezing parameter ζ , and the abbrevi-
ations μ = cosh |ζ | and ν = ei arg ζ sinh |ζ |, satisfying μ2 −
|ν|2 = 1. Note that ζ relates to the coherent amplitude of the
optical pump—as well as coupling parameters and interaction
time—for this process. The two involved modes are described
through annihilation operators written as â ⊗ 1̂ and 1̂ ⊗ â,
similarly extending to the respective photon-number operators
n̂ ⊗ 1̂ and 1̂ ⊗ n̂.

The unitary Ŝ leads to the following transformations [19]:

Ŝ(|0〉 ⊗ |0〉) = |λ〉 =
√

1 − |λ|2
∞∑

n=0

λn|n〉 ⊗ |n〉, (7a)

Ŝ(â ⊗ 1̂)Ŝ† = μâ ⊗ 1̂ + ν1̂ ⊗ â†, (7b)

Ŝ(1̂ ⊗ â)Ŝ† = μ1̂ ⊗ â + νâ† ⊗ 1̂, (7c)

where λ = −ν/μ = −ei arg ζ tanh |ζ |. The quantum state |λ〉
in Eq. (7a) is typically referred to as a two-mode squeezed
vacuum state. Furthermore, Eqs. (7b) and (7c) show that a
signal in one mode is amplified by μ > 1 (for |ζ | > 0), and

a seeding in the other mode is added coherently. Both effects
are explored in more detail later (Secs. V and VI). In addition,
an intensity gain factor γ can be defined as

γ = μ2 = cosh2 |ζ | = 1

1 − |λ|2 � 1. (8)

B. Seeded amplification and conditional measurements

Beyond this standard approach to squeezing operators, we
can apply this nonlinear process to our exponential opera-
tors and partial traces. Using relations rigorously derived in
Appendix A, we can analytically describe how Ŝ acts on our
exponential operators,

Ŝ[Ê (x) ⊗ Ê (y)]Ŝ†

= 1 − |λ|2
1 − |λ|2xy

exp

(
λ[1 − xy]

1 − |λ|2xy
â† ⊗ â†

)
Ê

(
x[1 − |λ|2]

1 − |λ|2xy

)

⊗ Ê

(
y[1 − |λ|2]

1 − |λ|2xy

)
exp

(
λ∗[1 − xy]

1 − |λ|2xy
â ⊗ â

)
. (9)

Note that the above expression can be understood as a sce-
nario in which two thermal states [cf. Eq. (4)] impinge on
a two-mode squeezer, which corresponds to a second-order
nonlinear interferometer. Furthermore, it is worth mentioning
that coherence between the two modes is described via the
terms exp(λ∗[1 − xy]â ⊗ â/[1 − |λ|2xy]) and its Hermitian
conjugate. Again, we emphasize that derivatives with respect
to x and y [cf. Eq. (2)] enable us to describe photon states as
inputs to the nonlinear interferometer.

In addition to this general finding, we consider a mea-
surement of Ê (z) in the second mode, e.g., for describing
conditional measurements and heralding scenarios with an
on-off detector. For this purpose, we perform a trace operation
in the second mode while leaving the first mode untouched,

id ⊗ tr({Ŝ[Ê (x) ⊗ Ê (y)]Ŝ†}[1̂ ⊗ Ê (z)])

= 1 − |λ|2
1 − y(|λ|2x + [1 − |λ|2]z)

Ê (ξ ), (10)

where “id” denotes the identity and using the abbreviation

ξ = x(1−|λ|2xy)(1−|λ|2) − xzy(1−|λ|2)2 + z(1−xy)2|λ|2
(1 − |λ|2xy)[1 − |λ|2xy − (1 − |λ|2)zy]

.

(11)

See Appendix A for technical details on the derivation of this
exact formula of the partial trace.

C. Special case

In Fig. 1, we consider a special case of the previously
derived expression in which we set y = 0—meaning that
Ê (y) = |0〉〈0| denotes the vacuum state. In this scenario,
Eq. (10) simplifies to

F̂ (x, z) = id ⊗ tr({Ŝ[Ê (x) ⊗ |0〉〈0|]Ŝ†}[1̂ ⊗ Ê (z)])

= 1

γ
Ê

(
x

γ
+ [γ−1]z

γ

)
, (12)

using the gain factor defined in Eq. (8). The operator F̂ (x, z),
which can be fully expressed through Ê , is important for
our considerations in the continuation of this work. More
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FIG. 1. Schematic depiction of the considered nonlinear interfer-
ometer, representing a two-mode squeezing operation (labeled “NL”)
driven by a pump. The lower input, resembling the mode â ⊗ 1̂, is
seeded with Ê (x), and vacuum is assumed for the upper input mode
1̂ ⊗ â. Measuring Ê (z) at the upper output leaves the operator F̂ (x, z)
from Eq. (12) at the other output channel. Later, the input and output
shall be merged to create a feedback loop.

specifically, we can represent the seeded nonlinear process via
the input-output relation

Ê (x) �→ F̂ (x, z), (13)

which depends on the conditioning z and describes the inter-
ferometer shown in Fig. 1.

For example, and based on Eq. (12), we can now directly
compute the scenario in which n photons are used to seed the
nonlinear interferometer and a projection onto m photons is
performed in one output. Using Eq. (2), we directly find

F̂n,m = id ⊗ tr(Ŝ|n〉〈n| ⊗ |0〉〈0|Ŝ†[1̂ ⊗ |m〉〈m|])

= 1

n!m!
∂n

x ∂m
z F̂ (x, z)|x=0,z=0

= (γ − 1)m

γ m+n+1

(m + n)!

m!n!
|m + n〉〈m + n|. (14)

In relation to Fig. 1, this means that the lower input is seeded
with an n-photon state and the conditional measurement at
the upper output records m photons. Then the lower output is
given by F̂n,m in Eq. (14), showing that m photons have been
added to the initial n photons with a success probability which
corresponds to the scalar factor preceding |n + m〉〈n + m|.

Based on the methods presented so far, we have been able
to rigorously model our nonlinear element with regards to
arbitrary photon inputs and ideal projective measurements
onto photon number states. However, this is still restricted to
a single-pass scenario. Yet, we are going to demonstrate that
this is already sufficient in order to describe feedback loops
(i.e., multiple, subsequent passes through the active element)
under realistic experimental conditions.

IV. VECTOR-TYPE REPRESENTATION

After the exact derivation of the action of the nonlinear
process on a photonic input state, we now divert to a practical
decomposition. This enables us to develop an easily acces-
sible toolbox to model all elements and processes which are
relevant for our active-feedback loops.

A. State representation

Phase stability is a costly resource in experiments, thus
it is reasonable to consider phase-averaged states, result-

ing in density operators ρ̂ which are diagonal in the
photon-number basis. Furthermore, photon-number states can
be expressed via Eq. (2) as derivatives of the operator
Ê (x). Higher derivatives themselves can be described as
the limit of linear combinations of a function via a dif-
ference quotient, ∂n

x f (x) = limε→0[
∑n

j=0

(n
j

)
(−1)n− j f (x +

ε j)]/εn. Thus, a density operator (being a compact opera-
tor) which is diagonal in the photon-number basis can be
approximated with Eq. (2) and an arbitrary precision ε in
terms of the following linear combination:

∑
n∈N pn|n〉〈n| ≈∑

j∈N [
∑∞

n= j pn
(n

j

)
(−1)n− j/(εnn!)]Ê (ε j).

Consequently, the decomposition of density operators of
the considered class of states reads

ρ̂ =
∑

k

PkÊ (xk ). (15)

It is then convenient to identify this density operator ρ̂ with
an array of pairs [P, x] to represent each product P Ê (x) in the
sum,

�ρ = ([Pk, xk])k . (16)

For example, the thermal state in Eq. (4) is represented
through a single pair, �ρth = {[1/(n̄ + 1), n̄/(n̄ + 1)]}. It is
noteworthy that, in all scenarios considered in this work, the
representation of states ρ̂ in terms of a finite vector �ρ is exact
and not an approximation as it would be in the most general
scenario motivated above.

Moreover, the above representation directly enables us to
obtain the photon-number expansion of the state from Eq. (15)
and the vector �ρ. That is, the nth photon-number probability—
also establishing the fidelity F of ρ̂ with an n-photon state—
reads

F (ρ̂, |n〉〈n|) = tr(ρ̂|n〉〈n|) =
∑

k

Pkx n
k , (17)

directly resulting from Eq. (3). Similarly to this overlap with
photon-number states, we can express the mth normally or-
dered moments of photon-number operators as

tr(ρ̂:n̂m:) =
∑

k

Pk
m!xm

k

(1 − xk )m+1 , (18)

using the properties of exponential operators, particularly,
∂m
w Ê (w)|w=1 = :n̂m: [cf. Eq. (1)]. This is, for example, useful

to compute correlation functions exactly.

B. Measurement representation

When proceeding as done for states, we obtain a similar
representation of measurement operators that are diagonal in
the photon number by writing

�̂ =
∑

l

πl Ê (wl ) via �� = ([πl ,wl ])l . (19)

For the purpose of computing expectation values, we can now
evaluate the expectation value

tr(ρ̂�̂) =
∑
k,l

Pkπl

1 − xkwl
= (�ρ, ��) (20)
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by applying the properties of exponential operators. Therein,
(�ρ, ��) defines an inner-product-type functional for �ρ and ��.

A trivial example of a measurement operator is 1̂, repre-
sented by �� = �1 = ([1, 1]). The normalization of the state
ρ̂ as expanded in Eq. (15) is then obtained as (�1, �ρ ) =∑

k Pk/(1 − xk ). If the state is properly normalized, this gives
(�1, �ρ ) = 1. If the state is obtained via conditional measure-
ment (e.g., heralding) (cf. also Fig. 1), the quantity (�1, �ρ )
resembles the success probability to produce this state.

In Eq. (5), the positive operator-valued measure of a single
on-off detector is shown. More generally, one can consider
a multiplexing detection scheme that consists of splitting a
signal light field into N modes with identical intensities and
measuring each of those modes with an on-off detector sep-
arately [38]. In the ideal scenario, assuming unit efficiencies
and vanishing dark-count rates, the measurement operator for
obtaining K ∈ {0, . . . , N} clicks takes the form [33]

�̂K = :

(
N

K

)
(e−n̂/N )N−K (1̂ − e−n̂/N )K :

=
K∑

J=0

(
N

K

)(
K

J

)
(−1)K−J Ê (J/N ), (21)

which is a (finite) linear combination of operators Ê (w) for
w ∈ {0/N, 1/N, . . . , N/N}. This results in the vector repre-
sentation ��K = ([

(N
K

)(K
J

)
(−1)K−J , J/N])J∈{0,...,N}. This exact

detector model already includes saturation effects, meaning
the correct treatment of photon numbers that exceed the total
number of detectors N . It is also worth mentioning that
Eq. (21) converges to photon-number measurements for an
infinite number of multiplexing steps and detectors, �̂K →
|K〉〈K| for N → ∞ [33].

C. General process representation

The third building block which is essential for the quantum
description are processes. One can express each process in
terms of the corresponding input-output relation,

ρ̂ �→ �(ρ̂ ), (22)

where � defines the quantum channel that models the evo-
lution under study. From expectation values, tr(�[ρ̂]�̂) =
tr(ρ̂�†[�̂]), the known map for density operators implies the
operation

�̂ �→ �†(�̂), (23)

which mathematically describes how the process acts on
measurement operators. Therein, �† is the adjoint map to
�, with respect to the Hilbert-Schmidt inner product. It is
worth recalling that �(ρ̂ ) relates to the Schrödinger (i.e.,
state-based) picture of a process, and �†(�̂) defines the
corresponding Heisenberg (i.e., measurement-based) picture.
Furthermore, it is also noteworthy that the composition of a
first process, �′, with a second one, �′′, to get the overall
process � obeys

�(ρ̂) = �′′(�′(ρ̂)) and �†(�̂) = �′†(�′′†(�̂)). (24)

This naturally extends to more than two operations and is
convenient to consider powers of a single channel � for
representing multiple round trips in a loop configuration.

Again, for our purposes, it is sufficient to describe the
action on Ê . For example, we may describe a loss channel
with a quantum efficiency η. For a measurement, the loss is
typically modeled as [19]

�†[Ê (w)] = : exp [(w − 1)ηn̂]: = Ê (ηw + 1 − η), (25)

implying that � acts on measurement vectors in Eq. (19) as

�†( ��) = ([πl , ηwl + 1 − η])l . (26)

For determining the action of loss on a state, we can employ
Eq. (20), yielding

tr[�[Ê (x)]Ê (w)] = tr[Ê (x)�†[Ê (w)]]

= 1

1 − x[ηw + 1 − η]

= 1

1 − [1 − η]x

1

1 − w
ηx

1−[1−η]x

.

Thus, we find the adjoint operator � to �†, which reads

�[Ê (x)] = 1

1 − [1 − η]x
Ê

(
ηx

1 − [1 − η]x

)
,

�(�ρ ) =
([

Pk

1 − [1 − η]xk
,

ηxk

1 − [1 − η]xk

])
k

. (27)

The latter expression shows the action of the loss channel �

on the state vector in Eq. (16). In addition, it is straightforward
to verify that the composition of two loss channels is described
through a single loss channel with η = η′η′′.

Beyond losses, dark counts can be treated in a similar
fashion, cf. Appendix B. However, for our types of detectors,
the dark count rate is negligible [64]. Consequently, we set
the dark count contribution to zero for the remainder of
this work, δ = 0, and focus on the impact of more relevant
imperfections.

D. Nonlinear process representation

A loss channel represents a passive element. The main
focus in this work is, however, on active elements as analyzed
in Sec. III. Therein, we already derived that, for a conditioning
to Ê (z), the input state Ê (x) maps to

F̂ (x, z) = 1

γ
Ê

(
x + [γ − 1]z

γ

)
= �[Ê (x)]. (28)

See also Fig. 1. Again, our inner product enables us to
compute

tr[�[Ê (x)]Ê (w)] = tr[Ê (x)�†[Ê (w)]]

= 1

γ

1

1 − w
x+[γ−1]z

γ

= 1

γ − [γ − 1]zw

1

1 − x w
γ−[γ−1]zw

,
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from which we obtain the impact on the measurement,

�†[Ê (w)] = 1

γ − [γ − 1]zw
Ê

(
w

γ − [γ − 1]zw

)
. (29)

Like for the case of loss, this can now be used to expand the
action of the nonlinear channel onto the vectors for density
operators �ρ and measurement operators ��.

Since it is going to be of relevance, we also explicitly
consider the special case z = 1, resulting in an input-output
formula for the nonlinear process in our notation,

�(�ρ ) =
([

Pk

γ
,

xk + [γ − 1]

γ

])
k

,

�†( ��) =
([

πl

γ − [γ − 1]wl
,

wl

γ − [γ − 1]wl

])
l

. (30)

This corresponds to the scenario in which one traces over the
upper output in Fig. 1, Ê (0) = 1̂. Similar to the loss channel
description, multiple processes of this amplifying form corre-
spond to a single process, with, for example, γ = γ ′γ ′′.

E. Preliminary summary, limitations, and extensions

In summary, we formulated a vector-type formalism to
easily access states [Eq. (16)] and measurements [Eq. (19)],
as well as the combination of both via a generalized inner
product [Eq. (20)]. We also showed how this technique ex-
tends to processes, such as equipping the ideal click-counting
operators [Eq. (21)] with losses [Eq. (26)]. Finally, we demon-
strated that the nonlinear process depicted in Fig. 1 can
be straightforwardly embedded in this formalism [Eq. (30)].
Moreover, we mentioned how success probabilities and the
photon-number basis expansion follow from our vector repre-
sentation. For practical purposes, it is particularly important
to emphasize that the above findings enable us to implement a
simple numerical toolbox for analyzing systems that include
active elements. This is done by implementing the vector-
based functions and relations and applying them—including
arbitrarily complex combinations thereof—as needed.

Our approach applies to any systems that are well de-
scribed through the exponential-operator-based framework,
using Eq. (1). This includes all states, operations and pro-
cesses, and detection scenarios discussed previously. To fur-
ther generalize our method, the central object of our studies
can be modified. For example, a Kerr-type interaction—being
quadratic in the photon-number operator—can be included
by using the extended exponential operator : exp([x − 1]n̂ +
x̃n̂2):, where the contribution proportional to the additional
parameter x̃ accounts for the higher-order nonlinearity. An-
other example concerns two-mode scenarios, e.g., leading
to operators : exp([x − 1]n̂ ⊗ 1 + [y − 1]1̂ ⊗ n + câ ⊗ â† +
c∗â† ⊗ â):, where the contributions for c and c∗ relate to
two-mode correlations from a beam splitter. Similarly, other
nonlinear quantum effects and multimode scenarios can lead
to significant future extensions of the fundamental framework
introduced in this contribution.

In the following section, we demonstrate the usefulness of
the approach developed so far by applying it to two examples
of experimental relevance, Secs. V and VI. This includes

not only the description of existing experiments but also the
conception of future experiments with quantum light.

V. PHOTON-NUMBER STATE GENERATION

Here, we apply our theoretical framework to model and im-
prove state-of-the-art experiments to generate photon-number
states. One aim of this description is to assess the expected
quality of multiphoton states produced by repeated seeding of
a PDC source of light and subsequent heralding.

A. Motivation and description of setup

Quantum metrology, quantum computation and commu-
nication, as well as fundamental studies of physics rely on
the generation of complex quantum states [1,65,66], usually
requiring single photons (e.g., for producing GHZ and W
states [67]) and multiphoton states (e.g., Holland-Burnett
states [68,69] and cat states [70]). Typical sources for these
families of photonic states are single emitters (see, e.g.,
Refs. [23,24,71]) and PDC sources [72]. One possibility to
enhance the performance of the latter kind of source are
so-called quantum interference buffers [73], relating to source
multiplexing. Within this work, we focus on a dispersion-
engineered PDC source as presented in Ref. [72].

Even if PDC sources are the workhorse in today’s ex-
periments, they have severe limitations in the generation
probabilities of single- and multiphoton states, rendering this
an outstanding problem [30]. This usually leads to the naive
assumption that increasing the intensity of the pump pulse
would solve the problem since the probability to generate
n photons increases with the mean photon number of the
pump. But one encounters two main problems with this ap-
proach: an unreasonable power demand [74] and unwanted
higher photon-number components. The latter significantly
diminishes the fidelity of the generated state with the target
state [30]. Thus, a model of such contributions is essential to
foresee the expected quality of produced states.

In this section, we demonstrate how we mitigate the
mentioned limitations by using active elements (i.e., time-
multiplexed, pumped, and seeded PDC processes). One way
to make use of active elements is to include a PDC source
into time-multiplexing architecture, where we utilize quantum
feedback; see Fig. 2. Time-multiplexing in this scheme makes
use of generating photons in multiple time bins (defining
temporal or pulse modes of light) to enhance the single- and
multiphoton generation probabilities. Our PDC source gener-
ates polarization nondegenerate photon pairs. The horizontal
polarization is sent into our time-multiplexing loop, which
leads to a temporal overlap with the subsequent pump pulse,
therefore serving as a feedback into the process. Thus, cycling
photons induce self-stimulation, i.e., the seeded generation
of the subsequent photon pairs. The vertical polarization is
sent to a detector. A click from this detector serves as an
indicator of the successful stimulated generation of photons.
The obtained photon-number state depends on the number T
of conditioning clicks and round trips in the loop. We have
already shown the versatility of this setup because it can, in
principle, produce complex quantum states of light since it
enables us to generate tensor network states [67].
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FIG. 2. Setup for higher-photon-number state generation. Laser
pulses with a repetition rate τ optically pump a PDC source. The
pump light is filtered at the second dichroic mirror (DM). The
generated photon pairs in horizontal (H ) and vertical (V ) polariza-
tion propagate to a polarizing beam splitter (PBS). The vertically
polarized light is reflected and measured with an on-off detector
for heralding a photonic state, resembling a single photon. The
horizontally polarized photons are transmitted and, therefore, enter
the loop structure. This cycling mode overlaps with the subsequent
pump pulse after passing the first DM again in the nonlinear element
since the round trip time matches the repetition rate τ . Because of this
structure, the cycling mode stimulates the PDC process, acting as a
seed to the process. If another click is reported at the detector, a sec-
ond photon was heralded, i.e., coherently added to the cycling mode.
This process can be repeated for multiple round trips in the loop.

B. Modeling and characterization

For providing a theoretical model of the proposed iter-
ative photon generation process in Fig. 2, we consider the
scenario in Fig. 1, where Ê (z) is replaced by general �̂ =∑

l πl Ê (zl ) and general input ρ̂ = ∑
k PkÊ (xk ). Furthermore,

we emphasize that the described optical mode is, in this case,
the traveling mode in the loop configuration, showing that
the applicability of our approach is not restricted to spatial
modes but also extends to pulse modes. Using the approach
in Sec. IV D, the output state of this treatment then takes the
form

ρ̂ �→ ρ̂�̂ =
∑
k,l

Pkπl F̂ (xk, zl ), likewise

�ρout = �(�ρin ) =
([

Pkπl

γ
,

xk + [γ − 1]zl

γ

])
k,l

. (31)

In the following, we first describe the setup in Fig. 2 theo-
retically and then compare it to direct heralding techniques
without feedback loops. In addition, our model enables us
to study the influence of different imperfections separately,
which is useful to distinguish different sources of experimen-
tal impurities.

The above input-output relation (31) describes a single
seeded nonlinear process, stimulated with �ρin, and a condi-
tional measurement, expressed through a heralding with ��. In
the loop configuration in Fig. 2 for T round trips, T -fold ap-
plication of � has to be performed—meaning �ρout = �T (�ρin ).
Note that, at this point, we have not included losses to focus on
studying the impact of the active element separately. Such im-
perfections are studied later by additionally including Eq. (27)
in the loop and measurement description.

FIG. 3. Success probability (top) for T successive heralding
events and fidelity (bottom) with |T 〉〈T | for the resulting state of
the setup in Fig. 2 for T = 1, 2, 3, 4 round trips when conditioned to
a click of the on-off detector in each cycle. Both plots are shown
as a function of the squared squeezing parameter |ζ |2, which is
proportional to the pump power for the nonlinear process [Eq. (6)].
The success probability—relating to the production rate of the state
when scaled with 1/τ—increases with the pump power. At the same
time, the fidelity with the target state decreases.

To assess the quality of the produced states and rate of their
production on a quantitative basis, two figures of merit are
identified which are relevant in this context. First, the success
probability P is given by the normalization of the resulting
state,

P = tr(ρ̂�̂)

tr(ρ̂)
= (�ρout, �1)

(�ρin, �1)
, (32)

recalling that �1 = ([1, 1]) and even allowing for unnormalized
inputs, tr(ρ̂) = (�ρin, �1 ) = 1. Second, the fidelity in Eq. (17),
normalized to (�ρout, �1 ), gives us the overlap of the output state
with an n-photon state.

Figure 3 shows the success probability P (top) and fidelity
F (bottom) for T round trips through the loop. The condition-
ing in each round trip is set to one click, �̂ = 1̂ − Ê (1−η)
[Eq. (5)], assuming a perfect detection efficiency η = 1 and
no losses when light propagates in the cycle. This idealized
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FIG. 4. Nonclassicality by violating inequality (33) as a function
of the number T of round trips and heralding events, resembling the
active feedback-loop-based generation of T photons. We set |ζ |2 =
0.04 (cf. Fig. 3) and consider 1 − η = 10% loss in the loop. The
nonclassicality increases with T and eventually saturates.

scenario is first investigated to assess the general possibility
to produce multiphoton states |T 〉 with the setup in Fig. 2
with T round trips. Both figures of merit (P and F) are
shown in Fig. 3 as a function of |ζ |2 = (arcosh[γ 1/2])2 (being
proportional to the pump intensity) on a logarithmic scale over
two orders of magnitude. The success probability of heralding
T photons increases with |ζ |2 and is higher for lower T values.
The fidelity of the produced state with the targeted T -photon
states increases with decreasing |ζ |2 values and is higher for
smaller photon numbers T .

The targeted photon-number states are nonclassical quan-
tum states of a quantized radiation field [18]. Thus, in order
to quantify the nonclassical character of the actually produced
states, we consider a method which is based on the moments
of the click-counting statistics [75], thus not requiring photon-
number resolving detectors and additionally being exactly
accessible within our framework and in experiments. For
convenience, the constraints for classical light are briefly
recapitulated in Appendix B and can be put into the form

N = (tr[ρ̂Ê (1)])(tr[ρ̂Ê (0)])

(tr[ρ̂Ê (1/2)])2
− 1 � 0, (33)

which can be expressed in terms of our inner products (20). A
violation of this constraint certifies nonclassicality based on
second-order correlation functions [75] and connects to the
notion of sub-binomial light [76,77].

In Fig. 4, the nonclassicality, certified by violating inequal-
ity (33), is shown for the state produced after the T th cycle.
For those examples, we choose γ = 1.04 (i.e., |ζ |2 ≈ 0.04)
and, in addition to the previous scenario, a round-trip loss of
10%. For T = 0, we have a vacuum state, which must not
show nonclassicality, N � 0. Hereafter, the nonclassicality
increases with the number of heralded photons and saturates
by converging to one. The latter behavior is in fact a result of
the click-based nonclassicality condition which utilizes sev-
eral on-off detectors, saturating for larger intensities. It might
be important to emphasize that Fig. 4 shows the nonclassical-
ity of the iterative generation of up to eight photons and can

TABLE I. Comparison of three heralding scenarios with respect
to the success probability P of the heralding (second column) and the
fidelity F with an ideal two-photon state (third column). We set the
detection efficiency η = 80% and |ζ |2 = 0.04. Scenario (i) describes
two looped heralding processes, each conditioning to one click from
a single on-off detector; scenario (ii) describes two looped heralding
processes, each conditioning to one click from two multiplexed on-
off detectors; and scenario (iii) describes a direct heralding process
(no loop), conditioning to two clicks from two multiplexed on-off
detectors. See Fig. 5 for the resulting photon-number distributions.

Scenario P F

(i) 1.94‰ 86.9%
(ii) 1.85‰ 91.2%
(iii) 0.49‰ 93.2%

be extended to any desired photon number by increasing the
number of round trips and heralding events.

Finally, we may also compare our scheme with the direct
heralding (i.e., without loop feedback) by employing click-
counting devices consisting of N multiplexed on-off detectors
as our heralding measurement, Eq. (21). The click-counting
detector can result in K = 0, . . . , N clicks. In addition, we
assume a quantum efficiency of each on-off detector of η =
80%. We consider the following three scenarios (see Table I):
(i) light circles twice in loop, and a conditioning (i.e., herald-
ing) to one click in each round trip from a single on-off
detector is considered (N = K = 1); (ii) light also travels
twice in loop, but a conditioning to one click in each round trip
from two multiplexed on-off detectors is considered (N = 2
and K = 1); and (iii) a direct heralding is considered by a con-
ditioning to two clicks from two multiplexed on-off detectors
(N = K = 2), without a round trip. Scenario (iii) represents
the commonly applied approach to produce a two-photon
state, scenario (i) uses our loop architecture as it is (Fig. 2),
and scenario (ii) presents a combination of both previous
approaches. In addition, in Fig. 5, the exact photon-number
distribution for all three possibilities is depicted, for γ = 1.04

FIG. 5. Photon-number distribution of two-click heralded states
for the different scenarios given in Table 5. From scenario (i) to (iii),
left to right, the targeted probability of the two-photon component
increases while higher (more than two) photon-number components
are increasingly suppressed.
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and a non-unit detection efficiency, η = 80%, while now
ignoring round-trip losses since they have been considered
previously.

Our analysis of all cases (Table I and Fig. 5) shows that,
for scenario (i), the success probability is comparably high,
but the fidelity is comparably low. Conversely, the success
probability is comparably low, yet the fidelity is comparably
high in scenario (iii). Interestingly, scenario (ii) offers both a
comparably high success probability and high fidelity. This
demonstrates that a combination of direct and loop-based
heralding schemes is in fact advantageous for experimentally
producing higher-order photon-number states, going beyond
existing schemes which employ multiplexing layouts to ex-
perimentally produce higher photon-number states [37,78].
As mentioned before, our method is not restricted to the
specific number of photons considered here and can be scaled
up easily to any photon number by increasing the number
of round trips and the number of multiplexing detectors.
Therefore, our theoretical model enables us to improve our
initial setting in Fig. 2 by replacing the single on-off heralding
detector with a multiplexing detector to enhance the setup’s
performance in future multiphoton-generation experiments.
Also note that the direct higher-order photon-number state
heralding [scenario (iii)] is, by construction, limited to the
number N of available on-off detectors, which is not the case
for our feedback-loop-based approach [scenarios (i) and (ii)].

VI. BALANCING LOSS THROUGH AMPLIFICATION

In this section, we apply our methodology to a second
example of practical relevance. The purpose of this study is
to compensate for losses, originating from the propagation in
a loop, by means of amplification as commonly done in classi-
cal optics. However, quantum models of such amplifiers also
introduces additional noise (see, e.g., Ref. [60]), which has to
be characterized for an optimal utilization of the amplifier.

A. Motivation and description of setup

Quantum walks in Mach-Zehnder setups are proven to
provide a versatile platform to approach the goal of realizing
a universal quantum simulator [79–83]. We devised a looped
Michelson interferometer as a platform for time-multiplexed
quantum walks, which overcomes some of the restrictions of
previous implementations [84]. The main advantage of this
architecture is a higher-dimensional internal state for walkers
(i.e., the photons), arising from the additionally available trav-
eling direction in the loop, clockwise and counterclockwise.
In addition, we successfully implemented three electro-optic
modulators (EOMs) in our setup to manipulate the polariza-
tion of the traveling photons. This increased configurability
allowed us to study the walker’s evolution on complex graph
structures, such as realizing quantum walks on a circle with
periodic boundary conditions and other scenarios which are
only accessible with higher-dimensional internal states [84].

Beyond previously existing experiments, a revised version
of this setup is described in Figs. 6 and 7. The modifications
mainly concern the introduction of an active element, together
with an additional in- and out-coupling stage. The nonlinear
component in this scenario is an erbium-doped fiber amplifier.

FIG. 6. Outline of a Michelson interferometer in a loop config-
uration with deterministic in- and out-coupling; see also Fig. 7. An
erbium-doped fiber amplifier serves as our active element within the
main loop. In each interferometer arm, as well as in the second arm
of the coupling stage, a 45◦ polarization rotation together with a
mirror (thick horizontal and vertical lines) reflect the incident light
while simultaneously swapping horizontal with vertical polarization.
Both switches S1 and S2, implemented as EOMs, enable us to further
manipulate the polarization for the clockwise and counterclockwise
traveling pulses of light; see also Fig. 7 in this context. A third switch
S (light gray) could modulate the mixing ratio of light at the PBS of
the Michelson interferometer but is not used here.

The idea behind introducing this nonlinear optical element is
to counter the losses in our setup, significantly impacting the
quantum properties of light propagating in a feedback loop.
See Refs. [85,86] for promising applications of this approach.
Again, a comprehensive model of the quantum properties of
the amplifier is required to assess and quantify the potential
success of the proposed setup.

B. Modeling and characterization

For studying amplification, we again apply the results
in Eq. (12) from Sec. III C. While we pursued a state-
based approach in the previous application, let us focus on
a measurement-operator-based approach to complement our
earlier considerations. The goal is to analyze the evolution of
the quantum correlations from a two-mode squeezed vacuum
state when including amplifiers to counter propagation losses
in the Michelson interferometer loop. Before doing so, we
analyze the excess noise from the nonlinear process to deter-
mine different possibilities for how one could overcome losses
with amplification in the quantum domain.

For simplicity, we begin by considering a thermal state
with mean photon number n̄in [cf. Eq. (4)]. Note, however,
that the fundamental noise effects of amplification are not
dependent on the specific input state. When including losses
in the loop, Eq. (27) for 0 � η � 1, we get the reduced
output photon number n̄out = ηn̄in. We can also apply the
amplification in Eq. (30), which yields n̄out = γ n̄in + (γ − 1).
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FIG. 7. Settings of switches S1 and S2 for the setup in Fig. 6.
For in- and out-coupling of type-II PDC light, being a two-mode
squeezed vacuum state in polarization modes, one of the two
switches is set to 0◦, and the other one is set to 90◦, cf. top panels
(a) and (b). The paths of light pulses propagating in clockwise and
counterclockwise direction are depicted in the bottom row, panels
(c) and (d), respectively, together with the angles of polarization
rotation implemented by the switches. Recall that, in the arm of
the interferometer and coupling stage (cf. Fig. 6), light passes twice
through a 45◦ rotation stage (before and after the reflection at the
mirror), resulting in a swap of polarization.

The gain factor γ � 1 in Eq. (8) describes the amplification,
and the latter summed term γ − 1 is the excess noise of this
process; see also Ref. [60] for further details.

Combining first loss with second amplification, and iterate
those processes T times in a loop, we get

n̄out =
{

n̄in + T (γ − 1) for ηγ = 1

(γ η)T n̄in + 1−(γ η)T

1−(γ η) (γ − 1) for ηγ = 1.
(34)

To exactly compensate for the losses, we can choose γ η = 1.
In this case, however, we also expect an additional noise
contribution of γ − 1 for each round trip. If we set γ = (1 +
n̄in )/(1 + ηn̄in ), resulting in γ η = 1 − (1 − η)/(1 + ηn̄in ) <

1 for η = 1, we get n̄out = n̄in. This constitutes what we
define as the balanced scenario. Recall that excess noise is
relatively small in the classical high-intensity regime when
compared with the signal, rendering the balanced scenario an
option that is mostly relevant in the quantum domain. Both
cases (compensated and balanced) can be compared with the
nonamplified propagation in the loop, i.e., γ = 1.

For characterizing the setup in Fig. 6, we assume
that a continuous-variable two-mode squeezed vacuum |λ̃〉
[Eq. (7a)] enters the loop, where the two modes correspond
to two polarizations. Again, other states of nonclassical light
could be used similarly, such as the discrete-variable heralded
photon-number states considered in the previous section. Con-

sidering broadly accessible sources, it makes sense, however,
to focus on the specific example under study. The initially
horizontal and vertical (H and V ) photons of the two-mode
squeezed vacuum state propagate in a clockwise and coun-
terclockwise direction through the setup, respectively; see
Fig. 7. After T cycles, including loop losses and amplification
acting separately on each polarization, the light pulses are
coupled out and measured. Following a Heisenberg-picture-
like approach, the measurement operators for horizontal and
vertical light are propagated backwards according to Eqs. (26)
and (30). The relevant integral to describe expectation values
is then given by

〈λ̃|Ê (w) ⊗ Ê (w′)|λ̃〉 = 1 − |λ̃|2
1 − |λ̃|2ww′ (35)

for the two-mode squeezed input state |λ̃〉. More generally,
a functional on the propagated measurement operators, rep-
resented via �� and ��′, can be defined through the bilinear-
form-like expression

| ��, ��′|λ̃ =
∑
l,l ′

(1 − |λ̃|2)πlπ
′
l ′

1 − |λ̃|2wlw
′
l ′

. (36)

Note that the first derivative of the expression (35) for w and
w′ at the value one yields the mean photon number for the hor-
izontal and vertical component of the state |λ̃〉, tr ⊗ tr(ρ̂[1̂ ⊗
n̂]) = tr ⊗ tr(ρ̂[n̂ ⊗ 1̂]) = |λ̃|2/(1 − |λ̃|2). Finally, to charac-
terize nonclassical correlations between the H and V polariza-
tion, we can consider a click-based cross-correlation criterion
to assess the quantum correlations between the polarizations
[75,87]; see also Appendix B for some details.

In Table II, we consider the initial state and the output
states after one round trip in the loop shown in Figs. 6 and
7 for different amplification scenarios. For no amplification,
γ = 1, the losses of the propagating pulse diminishes the sin-
gle counts and coincidence counts between the polarizations
when compared with the initial state. When setting γ η = 1,
we completely compensate losses by a corresponding ampli-
fication factor. While the coincidences increase, the singles

TABLE II. Amplification in the loop in Fig. 6 for four scenarios
(first column). The first row shows the properties of the initial state
|λ̃〉, with |λ̃|2 = 0.1. The following rows include one round trip
in the loop, including a loss of 1 − η = 20%. In those cases, the
amplification is set to γ = 1, γ = 1/η, and γ = [1 − (1 − η)|λ̃|2]−1

to represent the nonamplified, loss compensated, and balanced [i.e.,
input equals output mean photon number (see singles)] scenarios.
“Singles” (column two) denotes the probability to measure a click
for H polarization (identical value for V ), assuming a single on-off
detector with unit efficiency. “Coincidences” (column three) defines
the probability for a click from each polarization. Nonclassicality,
i.e., quantum correlations between H and V , is certified through a
negative value in the last column. See Fig. 8 for multiple round trips.

Scenario Singles Coincidences Cross-correlations

Initial 0.100 0.100 −0.804×10−3

No amplification 0.082 0.067 −0.337×10−3

Compensated 0.265 0.109 +0.061×10−3

Balanced 0.100 0.068 −0.346×10−3
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FIG. 8. Properties of the two-mode squeezed vacuum state |λ̃〉,
with |λ̃|2 = 0.1, propagating T cycles in the loop setup in Fig. 6, in-
troducing 20% loss per round trip. Three scenarios of amplifications
are considered, γ = 1 (no amplification, solid), γ = 1/η (compensa-
tion, dashed), and γ = [1 − (1 − η)|λ̃|2]−1 (balanced case, dotted).
The top, middle, and bottom plots show the single counts for H and
V (identical values), coincidence count probability, and the cross-
correlations to infer nonclassicality, respectively.

increase even more because of the unavoidable excess noise
of the amplifier. In the balanced scenario, in which the singles
are kept constant, the coincidences slightly increase. Note that
on-off detectors are assumed to have a unit quantum efficiency
to only study the impact of the loss in the loops and strategies
to counter those imperfections through quantum amplifiers.

Most significant is the impact of the different amplifi-
cations on the nonclassical cross-correlations, which have

to be negative to certify nonclassicality [75,87] (cf. also
Appendix B). Here, the initial nonclassicality is significantly
reduced by the loop losses; see the last column of Table II for
the nonamplifying scenario. Again, the strong contribution of
excess noise affects the correlations, which are no longer de-
tectable for γ η = 1 because of the positive cross-correlation
value. Conversely, the balanced amplification does slightly
increase the verified nonclassical feature when compared
with the nonamplified scenario, thus showing a much better
performance than the compensated amplification case.

The evolution of the described features over multiple round
trips T is further analyzed in Fig. 8. The top plot shows how
single counts for the three considered amplification values
vary. It can be seen that the balanced case undoes the effect
of loss for all T values. The middle plot also shows that the
coincidences for the compensated case slightly exceed those
for the pure loss case. In the nonclassical cross-correlations,
both the nonamplifying and the balanced scenario exhibit
nonclassicality, which is decreasing with T . In contrast, the
compensated case fails to exhibit nonclassicality already after
a single cycle in the loop, as indicated by the positive cross-
correlation value. This is surprising since the commonly ex-
pected case to counter losses through amplification would be
ηγ = 1, the compensation case. Yet, excess noise—correctly
included in our methodology—spoils this expectation and, in
fact, favors the balanced scenario. Again, our rigorous model
enables us to find unexpected experimental situations (here,
the balanced scenario) which are advantageous when com-
pared with commonly applied usage of a nonlinear element
(i.e., the standard loss compensation).

VII. DISCUSSION AND CONCLUSION

In summary, we derived an exact theoretical framework
for the unified description of loop-based optical networks
which include a second-order nonlinear medium. By using
a vector-type representation, we additionally formulated a
numerical toolbox for implementing and applying our ana-
lytical findings. We then modeled two realistic experimental
setups for realizing iterative photon-addition protocols and
quantum amplification processes in photonic systems with
looped optical paths. Our techniques enabled us to reveal non-
intuitive improvements for both experiments, which highlight
the power of our approach.

Our general method is based on linear combinations of
exponential operators of the photon-number operator, which
is—as we demonstrated—already sufficient to cover a broad
range of experiments. The resulting vector-type description
describes density and measurement operators, and mappings
between the exponential operators can be used to model all
processes that occur in the scenarios we studied. Even the
seeded nonlinear process with a conditional measurement can
be modeled in this manner. Moreover, the same description is
the basis for our numerical toolbox, including exact expres-
sions for, among others, expectation values, state fidelities,
heralding success probabilities, and even nonclassical quan-
tum correlations. Our technique applies equally to state-based
and measurement-based quantum photonics.

Furthermore, our method naturally accounts for many
imperfections. For instance, our framework enables us to

023712-11



M. ENGELKEMEIER et al. PHYSICAL REVIEW A 102, 023712 (2020)

directly and exactly include, describe, and quantify finite
quantum efficiencies, noise count contributions, saturation
effects in detection schemes with finite photon-number resolu-
tions, higher-order photon-number contributions of heralded
photon-number states, excess noise from amplification, etc.
Since we have access to arbitrary combinations of such imper-
fections, we can, in turn, use our method to propose improve-
ments to mitigate the negative impact of such perturbations.

For instance, we found that heralding with an improved
photon-number resolution is advantageous even if we condi-
tion to single clicks only, and that amplifiers can be useful
even in the few-photon regime when properly balancing ex-
cess noise against gain rather than choosing a gain which fully
counteracts losses. Both improvements are to some extend
counterintuitive in a classical picture. Within our full quantum
description, however, it certainly makes sense that measure-
ments have a projective effect onto states even if only parts
of a measurement are used, and that an increased gain also
leads to additional and unavoidable noise contributions. We
exemplified our general finding with these specific examples,
modeling realistic experiments together with readily available
sources of quantum light. However, we emphasize that our
approach is not limited to these scenarios and can be applied
to other cases as well.

As such, our method is not only the theoretical basis
for future experimental implementations, it also serves as a
starting point for future theoretical studies; we briefly outlined
a few of them. While we considered a first example in which
we quantified quantum correlations of a two-mode light field,
a full multimode description could be developed to gener-
alize the results found here. For instance, correlated losses
and nonlinear processes which are not mode-matched with a
signal field are of additional interest for many experiments.
Similarly, other quantum-optical nonlinearities could be stud-
ied, e.g., to analyze a Kerr-type medium. Also, we mainly
focused on nonclassical effects as defined in quantum optics.
Other types of quantum phenomena and their optimization
in photonic systems, such as multiphoton entanglement, are
of major relevance for future quantum technologies, such as
quantum communication in large optical networks and could
be accessible with our method.

In conclusion, a framework has been devised for the de-
scription for photons traveling in networks which include

feedback loops and active elements. Our method is well suited
for the realistic description and directed planning of experi-
mental setups, aiming at advancing their performance by max-
imizing quantum features while also minimizing experimental
resources and constraints. Furthermore, our techniques could
inspire future extensions, which hopefully further advance
the realization of practical quantum technologies and mark
the starting point for exploring the full potential of quantum
photonics with active feedback loops.
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APPENDIX A: COMMUTATION RULES
AND PARTIAL TRACE

We consider an operator reordering for exponential op-
erators. The applied technique is based on the single-mode
approach in Ref. [88], therein Appendix A. With that method,
we can easily verify

exp (xâ ⊗ â)un̂ ⊗ vn̂ = un̂ ⊗ vn̂ exp (xuvâ ⊗ â),

un̂ ⊗ vn̂ exp(yâ† ⊗ â†) = exp(yuvâ† ⊗ â†)un̂ ⊗ vn̂, (A1)

for u, v, x, y ∈ C.
In addition, we require a reordering of exponential func-

tions of â† ⊗ â† and â ⊗ â. For the following calculations,
it is relevant to recall the following simple relations:
a decomposition of the identity in terms of coherent
states, π 1̂ = ∫

C d2α|α〉〈α|; a normally ordered represen-
tation of coherent states, : exp([â − α]†[â − α]): = |α〉〈α|;
a special case of the Baker-Campbell-Hausdorff formula,
exp(uâ) exp(vâ†) = exp(uv) exp(vâ†) exp(uâ); and a Gaus-
sian integral identity,

∫
C d2α exp(−w|α|2 + uα∗ + vα) =

(π/w) exp(uv/w) for Re(w) > 0. It is also worth empha-
sizing that, under normal ordering, operators behave like
complex numbers [19]. Applying the above relations for 1 >

Re(xy) results in

exp (xâ ⊗ â) exp(yâ† ⊗ â†) =
∫
C

d2α

π
exp (xâ ⊗ â)|α〉〈α| ⊗ 1̂ exp(yâ† ⊗ â†)

=
∫
C

d2α

π
: exp([â−α]†[â−α]): ⊗ exp (xαâ) exp(yα∗â†)

= :
e−n̂⊗1̂

π

∫
C

d2α exp(−[1 − xy]|α|2 + [â ⊗ 1̂ + y1̂ ⊗ â†]α∗ + [â† ⊗ 1̂ + x1̂ ⊗ â]α):

= 1

1 − xy
: exp

(
yâ† ⊗ â†

1 − xy
+ xy[n̂ ⊗ 1̂ + 1̂ ⊗ n̂]

1 − xy
+ xâ ⊗ â

1 − xy

)
:

= exp

(
yâ† ⊗ â†

1 − xy

)(
1

1 − xy

)n̂⊗1̂+1̂⊗n̂+1̂⊗1̂

exp

(
xâ ⊗ â

1 − xy

)
. (A2)
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Finally, we may compute the partial trace of the operators considered so far. Applying the same techniques as used above, we
find

id ⊗ tr[eyâ†⊗â†
un̂ ⊗ vn̂exâ†⊗â†

] =
∫
C

d2α

π
(1̂ ⊗ 〈α|)eyâ†⊗â†

un̂ ⊗ vn̂exâ†⊗â†
(1̂ ⊗ |α〉) = 1

1 − v

(
u + xy

1 − v

)n̂

. (A3)

APPENDIX B: NOISE COUNTS AND CLICK-COUNTING MOMENTS

In Eq. (5), the impact of the noise contribution on a single on-off detector is shown. More generally, a measurement operator
for K ′ clicks from a multiplexing of N on-off detectors with a noise count contribution δ is given by

�̂
(η,δ)
K ′ =

N∑
K=K ′

(
K

K ′

)
(e−δ )K ′

(1 − e−δ )K−K ′
�̂

(η,0)
K , (B1)

where �̂
(η,0)
K labels the analog noise-free operator for K clicks, which includes a quantum efficiency η. It is further worth noting

that applying the same type of convolution to �̂
(η,δ)
K ′ with a negative count rate, −δ, allows one to deconvolute dark counts to

retrieve �̂
(η,0)
K [89]. Moreover, �̂

(η,δ)
K ′ is a linear combination of operators Ê (z) since �̂

(η,0)
K is.

In addition to the treatment of dark counts, we may also briefly summarize moment-based nonclassicality criteria for click-
counting detectors which have been rigorously derived in Ref. [75]. In particular, we consider second-order criteria. For instance,
the following variance-based constraint holds true for classical states:

tr[ρ̂:(�e[w−1]n̂)2:] = tr[ρ̂:(e[w−1]n̂)2:] − (tr[ρ̂:e[w−1]n̂:])2 = det

(
tr[ρ̂Ê (1)] tr[ρ̂Ê (w)]

tr[ρ̂Ê (w)] tr[ρ̂Ê (2w − 1)]

)
� 0, (B2)

where we applied the exponential measurement operators Ê as used throughout this paper. A violation of this inequality certifies
nonclassical light, termed sub-binomial light [33]. Note that we choose w = 1/2 in the main text for simplicity. Analogously,
including the chosen setting z = 1/2, a cross-correlation-based constraints for classical states can be formulated [33] and applied,

(tr ⊗ tr[ρ̂:(�e[w−1]n̂)2: ⊗ 1̂])(tr ⊗ tr[ρ̂1̂ ⊗ :(�e[z−1]n̂)2:]) − (tr ⊗ tr[ρ̂:�e[w−1]n̂: ⊗ :�e[z−1]n̂:])2

= det

⎛
⎜⎝

tr ⊗ tr[ρ̂Ê (1) ⊗ Ê (1)] tr ⊗ tr[ρ̂Ê (w) ⊗ Ê (1)] tr ⊗ tr[ρ̂Ê (1) ⊗ Ê (z)]

tr ⊗ tr[ρ̂Ê (w) ⊗ Ê (1)] tr ⊗ tr[ρ̂Ê (2w − 1) ⊗ Ê (1)] tr ⊗ tr[ρ̂Ê (w) ⊗ Ê (z)]

tr ⊗ tr[ρ̂Ê (1) ⊗ Ê (z)] tr ⊗ tr[ρ̂Ê (w) ⊗ Ê (z)] tr ⊗ tr[ρ̂Ê (1) ⊗ Ê (2z − 1)]

⎞
⎟⎠ � 0. (B3)
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