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In the late 1980’s, Ou and Mandel experimentally observed signal beatings by performing a non-time-resolved
coincidence detection of two photons having interfered in a balanced beam splitter [Phys. Rev. Lett 61, 54
(1988)]. In this work, we provide an alternative interpretation of the fringe pattern observed in this experiment
as the direct measurement of the chronocyclic Wigner distribution of a frequency Schrödinger-cat-like state
produced by local spectral filtering. Based on this analysis, we also study the time-resolved HOM experiment to
measure such frequency state.
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I. INTRODUCTION

The Hong-Ou-Mandel experiment [1] is one of the founda-
tional experiments of quantum optics illustrating, for the first
time, the symmetry properties of particles wave functions. In
this experiment, two photons produced by spontaneous para-
metric down conversion (SPDC) are sent to different paths,
one of which has a dephasing element with respect to the
other. We will consider here that this optical path difference
depends on time delay τ between the two arms. In the original
version of the experiment [1], two indistinguishable photons
are combined in a beam splitter, after which coincidence
measurements are performed. Since photons are bosons, one
expects that, if they are identical, they should systematically
bunch, meaning that both will take the same output, which
can be either the C or the D path in Fig. 1. Bunching will
happen with equal probability in each arm, if the beam splitter
is balanced, which is the case considered here. A consequence
of bunching is that it eliminates coincidence detection. The
coincidence counting as a function of the time delay τ will
exhibit a characteristic continuous dip when the photons are
indistinguishable at τ = 0, that smoothly disappears when τ

moves away from zero. However, photon distinguishability
depends on several degree of freedom, as polarization, tem-
poral mode [2], spectral mode [3], or arrival time [4].

Using the manipulation of photonic degrees of freedom,
such as the transverse spatial modes and polarization [5], one
can also use the HOM interferometer to demonstrate anti-
bunching, revealed by and antidip, which can be associated
to a fermioniclike behavior [6,7] and is also an entanglement
witness [8–11].

Ou and Mandel in Ref. [12] proposed a different version
of the HOM experiment, adding frequency filters just before
each detector. The observed coincidence rate as a function of
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the delay τ presents an oscillation pattern. Remarkably, the
beating period in such two-photon interference experiment
is shorter than the time resolution of the detectors, which
is a consequence of the fact that the described experiment
evidences path interference rather than time interference.

In the present contribution we will present an alternative
interpretation of Ou-Mandel (OM)-type experiments in terms
of frequency-time phase distribution leading to a different way
of engineering and detecting frequency entangled states by
spectral postselection. Our work provides an interpretation to
the number of oscillations appearing in the OM experiment
and and it opens the way to the application of the engineered
states in different quantum protocols. Our work builds on the
results obtained in Ref. [9], where it has been shown that the
HOM experiment is the direct measurement of the chronocylic
Wigner distribution associated to a collective variable of the
photon pair. Following these lines, we develop a general
interpretation of OM-type experiments using filters of arbi-
trary width in frequency, allowing us to elucidate the fringe
pattern appearing in Refs. [12–14], as well as the interference
patterns reported in Ref. [15]. More specifically, we will
show that the oscillations pattern in the measured coincidence
probability thanks to a HOM interferometer corresponds to
the interference pattern appearing in the chronocylic Wigner
distribution of a two-photon Schrödinger-cat (SC)-like state or
called frequency-time cat-like state. Either the frequency-time
cat-like state is produced by spectral postselection in a nonre-
solved time OM experiment as in Ref. [12] or the signature of
such state is detected with a time-resolved HOM experiment
[15]. In order to illustrate these concepts and provide results of
numerical simulation, we present the case study of a transver-
sally pumped semiconductor AlGaAs waveguide generating
counterpropagating signal and idler photons [16,17].

This paper is organized as follows. We start in Sec. II by
defining the frequency-time cat-like state in Sec. II A and
the reinterpretation of the OM experiment in terms of that
state in Sec. II B. We propose various ways to modify such
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FIG. 1. Two indistinguishable photons are sent into the paths
A and B, one of the photons is delayed of a time τ . After the
beam splitter, four possible cases are possible. Then coincidence
measurement is performed, the only events recorded are those where
there is one single photon at each spatial port C and D.

measurement apparatus so that the full chronocyclic Wigner
distribution structure of a frequency-time cat state can be
revealed in Sec. II C and Sec. II D. In Sec. III A, we study
the time-resolved HOM experiment reported in Ref. [15], and
reinterpret the spatial beating obtained by measuring the joint
temporal distribution as the production of a frequency-time
cat-like state. Nevertheless, the detection is by nature very
different and corresponds in this experiment to the measure-
ment of the marginal of the chronocyclic Wigner distribution
whereas it corresponds to its cut at the zero frequency in the
nonresolved time detection of the HOM experiment. This last
experiment can be related to a biphoton Young experiment,
which is fully investigated in Sec. III B. Finally in Sec. IV, we
propose an experimental scheme to perform quantum gates
in the frequency-time variables so as to measure different
marginals of the frequency-time distribution of a frequency-
time cat-like state.

II. PRODUCTION OF FREQUENCY-TIME CAT-LIKE
STATE BY POSTSELECTION

A. Definition of frequency-time cat-like

We start by considering a time-frequency coherent state,
introduced in Ref. [18] and defined by the wave function:

|ω1, τ 〉 =
∫

dω fω1 (ω)eiωτ |ω〉, (1)

where fω1 (ω) is a Gaussian function centered at ω1 of width
�ω. |ω〉 denotes a single-photon state at frequency ω. We
define a frequency-time cat-like state as a single-photon
state having a frequency distribution composed of two peaks
centered around the frequencies ωa + ω1 and ωa − ω1. The
corresponding wave function can be expressed as:

|ψ〉 = 1√
2

∫
dω( fωa+ω1 (ω)eiωτ + fωa−ω1 (ω)e−iωτ )|ω〉

= 1√
2

(|ωa + ω1, τ 〉 + |ωa − ω1,−τ 〉). (2)

For simplicity, we set ωa = 0. This definition is mathemati-
cally analogous to the usual Schrödinger-cat state in position-
momentum phase space (x, p), defined as the linear superpo-
sition of two macroscopically distinguishable coherent states,
|ψ〉 = 1√

2
(|α〉 + | − α〉). This can be simply seen by noticing

that the coherent state |α〉 can be expressed in the position

basis: |α〉 = |x0, p0〉 = ∫
dxe−(x−x0 )2

eixp0 |x〉, where (x0, p0) is
analogous to (ω1, τ ) and is hence mathematically analogous
to Eq. (1). To sum up, standard Schrödinger cats are single-
mode multiphoton states composed of the superposition of
two coherent states. On the other hand, time-frequency cat-
like states are given by a single-photon distributed on a
continuum of frequency modes, whose frequency distribution
is the superposition of two Gaussian peaks. In addition, we
can see that both the coherent state |x0, p0〉 and the state
|ω1, τ 〉 form an overcomplete basis and obeys the relation
〈ω1, τ1||ω2, τ2〉 = e−(τ1−τ2 )2/4e−(ω1−ω2 )2/4ei(τ1−τ2 )(ω1+ω2 )/2. The
values (x0, p0) and (ω1, τ ) correspond to the center of the
Gaussian distribution in phase space and the chronocyclic one,
respectively. Some differences between these two states can
be noticed. The free evolution trajectory in the quadrature
position-momentum phase space of a coherent state |α〉 is a
circle and the average number of photons is given by |α|2.
On the other hand, the average value of the photon number
of the time-frequency coherent state is one, since the state is
a single photon. The trajectory of its free evolution in time-
frequency phase space is a translation along the time axis. The
denomination coherent in that case is not related to the photon
number statistics of the state, which is sub-Poissonian for a
single-photon state, but only due to its mathematical analog
structure.

In order to complete the mathematical analogy between
the frequency basis and the quadrature position one, we
can also notice that the frequency-time phase space of a
single photon is non-commutative similarly to the quadrature
position-momentum phase space as shown in Ref. [18]. As it
happens, one can define noncommuting frequency-time dis-
placement operators [18], which obey the Weyl algebra [19]
and hence have a complete mathematical correspondence with
the position-momentum quadrature displacement operators.
In this way, the need for a time operator is bypassed, even
if a time of arrival operator has been defined recently [20].
As a consequence, the frequency-time phase space of a single
photon exhibits a paving structure due to the noncommutativ-
ity of these displacement operators as is the case for the (x, p)
phase space. Such structure disappears in the classical limit
h̄ → 0. It is worth mentioning that the proposed distribution
should not be mingled to the Wigner-Ville distribution [21],
which is currently used in frequency-time classical signal
processing. The frequency-time phase space for high-intensity
laser is commutative and completely classical. In both repre-
sentations, either the phase space (x, p) one or the (ω, t ) one,
the Wigner distribution associated to a cat state has a charac-
teristic shape consisting of two separated peaks representing
one of the two possible classically distinguishable states and
an interference pattern along the symmetry axis, as shown in
Fig. 2(c).

B. Reinterpretation of the OM experiment

We now provide an original interpretation of the Ou-
Mandel experiment [12] and show how it can be used to
produce interesting nonclassical frequency states of photon
pairs by postselection.

The OM experiment can be summarized as follows: an
initial two-photon state is created by SPDC, whose joint
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FIG. 2. Sketch of the experimental setup of the Ou-Mandel experiment: Photon pairs are generated via SPDC in a second-order nonlinear
crystal. One of the photons undergoes a temporal delay τ , the path of the two photons recombine in a balanced beam splitter. Spectral filters are
placed before the single-photon detectors at the output ports of the beam splitter. The numerical simulations correspond to the state generated
in a transversally pumped AlGaAs waveguide: (a) joint spectral amplitude of the frequency anticorrelated state generated by the AlGaAs chip;
(b) joint spectral intensity obtained after the action of the beam splitter and the spectral filters (FF1, FF2) having a width of 50 pm and a
separation of 0.6 nm; (c) corresponding chronocyclic Wigner distribution; (d) coincidence probability corresponding to the cut ω− = 0 in (c).

spectrum amplitude (JSA), which corresponds to the ampli-
tude of probability of measuring one of the photon pair at
frequency ωs (called the signal) and the other one at frequency
ωi (called the idler) is shown on the left of Fig. 2 and
corresponds to a Gaussian frequency distribution. The wave
function can be mathematically expressed as:

|ψ〉 =
∫∫

dωsdωiJSA(ωs, ωi )|ωs〉|ωi〉, (3)

where we considered the pump beam to be in the narrow-
bandwidth limit [22]. The JSA can be factorized as follows:
JSA(ωs, ωi ) = f+(ω+) f−(ω−) with ω± = ωs ± ωi, which is
valid for most SPDC sources. The function f+ reflects the
energy conservation, and consists of a distribution of width
ξ , the same one as the pump’s, centered at the degeneracy
frequency ωdeg. While f− is related to the phase matching
condition and its width is noted as �. We make the ap-
proximation ξ � � in order to obtain analytical results and
impose strict conservation of energy f+(ω+) = δ(ω+ − ωdeg).
For convenience, we will set the frequency ωdeg to zero.

After their generation, the two photons of the pair are
separated into two different paths and are then recombined
in a balanced beam splitter as depicted in Fig. 2. After the
action of the balanced beam splitter and the postselecting done
by the coincidence measurement, the two-photon state can be
expressed as:

|ψτ 〉 = 1

2

[ ∫∫
dωsdωi(JSA(ωs, ωi )e

−iωiτ

− JSA(ωi, ωs)e−iωsτ )|ωs〉|ωi〉
]
, (4)

as in the usual HOM experiment. We now consider the effect
of placing frequency filters before each detector. Each filter

can be associated to a projector operator of the type:

F̂ (ω1, σ ) =
∫

dω fω1 (ω)|ω〉〈ω|, (5)

where fω1 (ω) is a Gaussian function centered at ω1 of width
σ . In the following, we will consider that the filters have the
same spectral width. For standard Gaussian filters,

fω j (ωα ) = 1√
2πσ 2

exp

(
− (ωα − ω j )2

2σ 2

)
, (6)

with j = 1, 2 and α = s, i. The frequency state after spectral
postselection filtering and coincidence detection is

|ψτ 〉 = 1

2

∫∫
dωsdωi[JSA(ωs, ωi )e

−iωiτ

− JSA(ωi, ωs)e−iωsτ ] fω1 (ωs) fω2 (ωi )|ωs〉|ωi〉. (7)

The first term of Eq. (7) represents the situation where both
photons are reflected by the beam splitter and the second term
represents the situation where both are transmitted. We have
that the photon pairs passing through the filters are described
by a quantum superposition of states having exchanged fre-
quencies. In the case in which both photons are reflected,
the signal photon with frequency ωs is filtered by the filter
centered at ω1 and the idler with frequency ωi is filtered by
the filter centered at ω2. If both are transmitted the opposite
occurs. Thus, for ω1 − ω2 � � the state described by Eq. (7)
corresponds to what we called a frequency-time cat-like state.
These states correspond to two distinguishable states of signal
and idler, since σ � �; the quantum superposition comes
from the path interference produced by the beam splitter.

For easier calculation, we write the product of the
frequency function filter in the frequency collective
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variable:

fω1 (ωs) fω2 (ωi ) = 1

2πσ 2
e− [ω+−(ω1+ω2 )]2

4σ2 e− [ω−−(ω1−ω2 )]2

4σ2

= fω1−ω2 (ω−) fω1+ω2 (ω+). (8)

f is a Gaussian function as f [see Eq. (6)] but differ from a
factor two in the frequency width.

Finally, the wave function after the spectral filtering can be
written as:

|ψτ 〉 = A

2

∫
dω−[ f−(ω−)e−iω−τ − f−(−ω−)eiω−τ ]

× fω1−ω2 (ω−)|ω−,−ω−〉, (9)

with A = fω1+ω2 (0). We can notice that the state described
by Eq. (2) and Eq. (9) are slightly different, if we consider
their chronocyclic Wigner distribution. Indeed the state given
by Eq. (2) has the characteristic shape of the cat state in the
frequency-time phase space [see Eq. (A9) in the Appendix]
but the postselected state Eq. (9) corresponds to a chrono-
cyclic Wigner distribution with only the interference pattern
[see Eq. (A11) in the Appendix].

We can now compute the coincidence probability as a
function of the temporal delay:

I (τ ) =
∫∫

dωsdωi|〈ωs, ωi||ψτ 〉|2, (10)

where we assumed that the width of the temporal photon wave
packet are very small compared to the temporal resolution of
the photodetectors (see the Appendix C and Sec. III A), which
is typically the case for photons produced by SPDC. After
integration on the variable ω+, and taking into account that
the frequency filters width is much narrower than the phase
matching width, σ � �, we obtain:

I (τ ) = 1

2
[1 − 1

N
Re(

∫
dω−e−2iω−τ | fω1−ω2 (ω−)|2)], (11)

where N is a normalization constant. A last integration gives:

I (τ ) = 1
2 [1 − e−τ 2σ 2

cos(2τ (ω2 − ω1))]. (12)

Equation (12) shows that the coincidence measurement dis-
plays a beating, with a period π

ω2−ω1
. For some values of τ ,

since we observe a coincidence probability that is greater
than one-half, this beating is a signature of entanglement in
frequency variable [8,9] but is completely independent of the
frequency entanglement of the initial state generated by SPDC
[12]. In other words, the Ou and Mandel experiment can be
seen as a measurement in a frequency entangled basis and as
such, it postselects an entangled state. In the literature, the
term of spatial beating is used to designate such oscillation in
the coincidence measurement [12].

The above discussion provides an alternate interpretation
of the oscillations shown in Fig. 2. Indeed, according to
Ref. [9], the coincidence probability Eq. (11) is the cut of the
chronocyclic Wigner distribution Wcat(ω−, τ ) at the frequency
ω− = 0 [see the Appendix, Eq. (A11)]. The measurement
procedure corresponds to a measurement in a Schrödinger-cat
basis of the frequency state that has been initially generated
by the SPDC crystal Eq. (3). We can conclude that the
signal obtained by coincidence detection corresponds to the

interference term of the frequency-time cat-like state:

I (τ ) = 1
2 [1 − Wbeating(0, τ )]. (13)

Where Wbeating(ω, τ ) corresponds to the chronocyclic Wigner
distribution of the phase matching function and is defined
in Appendix A. We verified our results by performing nu-
merical simulations (see Fig. 2) on the state generated by
SPDC using the experimental parameters for a transversally
pumped semiconductor waveguide studied in Ref. [17]. In
this device, a pump beam around 775 nm impinging on top
of a multilayer AlGaAs waveguide with an incidence angle
θ generates by SPDC two orthogonally polarized signal or
idler guided modes around 1.55 μm. Two Bragg mirrors
provide a vertical microcavity for the pump beam increasing
the conversion efficiency of the device [16]. This geometry
presents a particularly high degree of versatility in the control
of the biphoton frequency correlations via the spatial engi-
neering of the pump beam [6,23]. In the numerical simulations
reported in Fig. 2, the pump beam has a Gaussian intensity
profile with a waist 0.2 mm, pulses having a duration of 5 ps.
This leads to the generation of a biphoton state with a JSA
represented in Fig. 2(a). The spectral width of the JSA along
the ω+ = ωs + ωi axis is 1 nm (1.88×1012rad s−1) and along
the ω− = ωs − ωi axis is 0.2 nm (9.42×1012rad s−1).

In this section, we demonstrate that even starting from
frequency anticorrelated photon pairs, which is the most com-
mon type of two-photon state produced by SPDC, the action
of spectral filters allows us to postselect Schrödinger-cat-like
states. The numerical simulation of the chronocyclic Wigner
distribution of the filtered JSA and the coincidence probability
of the OM experiment are shown in Figs. 2(c) and 2(d),
respectively. They both match taking the cut ω− = 0 for the
chronocyclic Wigner distribution. Notice that the observed
oscillations appear irrespectively of the initial state produced
by SPDC, since we are dealing here with a postselection
process. Finally, the larger the ratio (ω1 − ω2)/σ , the higher
is the number of oscillations in the interference pattern of the
frequency-time cat-like state, since this term is a measure of
the size of the cat.

C. Effect of the filters parameters on the
frequency-time cat-like state

In this section, we explain how to produce different types
of frequency-time cat-like states by spectral postselection. For
such, we will use accordable frequency filters.

We start by studying the effect of the variation of the
central frequency ω1 and ω2 of the filters while their width
is fixed to 50 pm (37.6 × 1012rad s−1), see Figs. 3(a)–3(c). If
the central frequency of the filters are equal, we do not obtain
an interference pattern along the τ axis but rather a Gaussian
function, which is JSA. In that case, the photons are spectrally
indistinguishable. When the central frequencies of the filters
increases, the period of the beating oscillation T = π

ω1−ω2
[see

Eq. (12)] decreases and the number of oscillations increases.
We then investigate the influence of the spectral width of

the filters, keeping fixed the frequency separation ω1 − ω2 of
the filters at 0.6 nm (3.14×1012rad s−1), see Figs. 3(d)–3(f).
As the width decreases from 100 pm (18×1012rad s−1) to
25 pm (75×1012rad s−1), the coherence time of the wave
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FIG. 3. Chronocylic Wigner distribution of the frequency-time cat-like state. Top: effect of the variation of the frequency separation ω1 −
ω2 of the filters of (a) 0.3 nm (6.28×1012rad s−1), (b) 0.6 nm (3.14×1012rad s−1), and (c) 1 nm (1.88×1012rad s−1), for a fixed spectral width
of the filters of 50 pm (37.6×1012rad s−1). Bottom: effect of the variation of the spectral width of the filters [(d) 25 pm (75×1012rad s−1),
(e) 50 pm (37.6×1012rad s−1), and (f) 100 pm (18×1012rad s−1)] for a fixed spectral separation of 0.6 nm between the central wavelengths of
the filters.

packet increases, as a consequence of the Fourier-transform
relation between frequency and time.

D. Quantum eraser experiment

We now consider the experiment where each photon’s path
can be marked by placing frequency filters before the beam
splitter, a procedure that will destroy the previously observed
beating and, depending on the degree of distinguishability
between the photons, will lead to the appearance of dips with
different visibility in the Hong, Ou, and Mandel experiment
[1]. There are different ways to implement a quantum eraser
experiment with the HOM interferometer, using as a marker
the polarization [15,24]. If the filtered frequencies are such
that their difference, |ω1 − ω2| is smaller that the width σ

of the filters, this path marking will not be totally effective
and the two photons will spatially interfere after the beam
splitter. More specifically, as detailed in the following, the
dip’s visibility will depend on the ratio |ω1 − ω2|/σ , which
is proportional to the distance between the distributions repre-
senting the dead and alive state of the cat.

Figures 4(a), 4(b) report the results of the numerical simu-
lations of the chronocyclic Wigner distribution for an initial
state [Eq. (3)] with two frequency filters placed before the
beam splitter. The analytical expression for the coincidence
probability, demonstrated in Appendix B, is given by:

I (τ ) = 1
2 (1 − e−(ω1−ω2 )2/(2σ 2 )e−τ 2σ 2/2). (14)

Expression (14) evidences that the larger the ratio
(ω1 − ω2)/σ the lower the visibility is, since the action
of the filters makes the photons more distinguishable.

The described situation corresponds to selecting one of the
two possible states of signal and idler described in the previ-
ous section, i.e., the one where ωs = ω1 and ωi = ω2. Thus,
it corresponds to a Gaussian state in phase space, say, where
the cat is alive. As shown in Ref. [9], the HOM coincidence
measurement corresponds to a cut along the frequency axis
in phase space. When |ω1 − ω2| > σ , the two photons have
no spectral overlap, explaining a visibility that reaches 1/2,
which is the classical statistical (uncorrelated) situation. In
other words, the more signal and idler become distinguish-
able, the more the Wigner distribution corresponds to the one
of a quantum superposition of two distinguishable states, since
the Gaussians corresponding to each one of them become
farther from the origin. In order to recover the dip representing
the Gaussian chronocyclic Wigner distribution of a quasiclas-
sical state, one possibility is using electrooptical modulators
(EOM). But from our analogies, something simpler can be
conceived. We can think, for instance, of displacing the filter’s
central frequencies such that ω1 → ω1 − μ and ω2 remains
constant. Then, the exponent in the exponential in Eq. (14)
would be transformed as ω1 − ω2 → ω1 − ω2 − μ. Varying
μ is a way to displace the frequency axis so that eventually it
reach the central point of the two-photon frequency distribu-
tion, given by μ = ω1 − ω2. In this case, we recover photon
indistinguishability, as if we had translated the origin of the
frequency measurement to the central point of the Gaussian
representing one of the two possible classical states, as is
usually done in experiments.

To conclude this section, we described in detail a method
to realize a quantum eraser experiment. It permits us to
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FIG. 4. (a) Joint spectral intensity of bicolor photon when the frequencies filters are placed before the beam splitter and their corresponding
diagrams. (b) Diagrams of the quantum state after the beam splitter, taking into account only the coincidence events. (c) Chronocyclic Wigner
distribution W−(τ, ω−) of the two quantum state (b) when the time resolution of the detectors is lower than the temporal size of the wave packet
and |ω1 − ω2| �= 0. The distribution is zero when ω1 � ω2.

distinguish one of the two possible states that form the
Schrödinger’s-cat-like state at the origin of the interference
fringes described in Sec. II. What is more, this method can
be generalized to measure the state described by a Gaussian
in collective frequency-time phase space centered at the fre-
quency μ = ω2 − ω1. For such, one could simply change the
frequency filters of the previous paragraphs, so that ωs = ω2

and ωi = ω1.

III. ANALOGY BETWEEN THE TIME-RESOLVED HOM
EXPERIMENT AND A BIPHOTON YOUNG’S

EXPERIMENT

In this section, we will provide an analogy between the
time-resolved HOM experiment and the Young two-slits ex-
periment in the case of two anticorrelated photons in position.

A. Effect of the time resolution of the photodetector

In the previous section, the temporal size of the wave
packet δ was much smaller than the integration time T of
the photodetector. In this section we investigate the other
limit δ � T and reinterpret the measured spatial beating in
coincidence measurement presented in Refs. [15,25] in terms
of the signature of a frequency-time cat-like state. In this limit,
the probability of the joint detection is studied as a function of
two temporal parameters, the optical delay between the two
arms τ and the time difference τ between two detections:

I (τ, τ ) =
∫

dt0|〈t0, t0 + τ ||ψτ 〉|2. (15)

The full derivation of this result is presented in Appendix C.
t0 is the time of the first detection and |ψτ 〉 is the state after

the beam splitter:

|ψτ 〉 = 1

2

∫∫
dtsdti(JTA(ts − τ, ti ) − JTA(ti − τ, ts))|ts, ti〉,

(16)
where JTA stands for joint temporal amplitude and is the
Fourier transform of the JSA. The coincidence detection
probability given by Eq. (15) becomes:

I (τ, τ ) = 1

4

[ ∫
dt0|JTA(−τ + t0, t0 + τ )

− JTA(−τ + t0 + τ , t0)|2
]
. (17)

We point out that for a vanishing time difference τ , the
coincidence detection for any optical time delay and any wave
function is zero, a situation that has no equivalent in the
experiments described in the present paper and is analyzed
in Ref. [25].

We now consider again the experiment where two fre-
quency filters are placed before the beam splitter, as in the
quantum eraser experiment described in Sec. II D. When the
optical path delay is set to zero, τ = 0, the probability of
the joint detection as a function of the time-difference τ

detection shows a spatial beating, as shown in Fig. 4 in Ref.
[25]. We now explain the physical reason of this beating and
interpret it again as the experimental evidence of a frequency-
time cat-like state. We start by giving the analytic expression
of the coincidence detection probability. The expression of
the JTA for two frequency anticorrelated photons, when two
spectral filters are placed before the beam splitter is

JTA(τ ) = e−(ω1−ω2 )2/4σ 2
e−τ 2σ 2/4e−iτ (ω1−ω2 ), (18)
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FIG. 5. Joint detection probability I (τ ) as a function of the time
difference τ in arbitrary units. It corresponds to the marginal of the
chronocyclic Wigner distribution of a frequency (odd) cat state and
differ from the non-resolved HOM experiment [see Fig. 2(d)] where
the cut of the chronocyclic Wigner distribution is actually obtained.

where the JTA depends only on the time difference τ =
ts − ti owing to the anticorrelation in frequencies. Taking into
account Eq. (17), the joint detection measurement I (τ ) ∝
|JTA(τ ) − JTA(−τ )|2 becomes:

I (τ )= 1
4 [|JTA(τ )|2+|JTA(−τ )|2−2Re(JTA(τ )JTA∗(−τ ))].

(19)
Finally using Eq. (18) and after normalization, we obtain:

I (τ ) = 1

2
e−τ 2σ 2

[1 − cos(2τ (ω1 − ω2)]. (20)

Alternatively the joint detection can be written as I (τ ) =
|〈τ ||ψ〉|2, where the probability amplitude 〈τ ||ψ〉 is the
Fourier transform of the sum of the spectral function of the
filters. This measurement gives the marginal of the chrono-
cyclic Wigner distribution, defined in the Appendix Eq. (A5),∫

dωW−(ω, τ ) = I (τ ) and in that sense is perfectly analogous
to the intensity measured in a biphoton Young experiment as
we will see in the next section, except for the sign in front
of the interference term, which comes from the reflectivity
of the beam splitter. The joint detection measurement is
represented on Fig. 5. It shows an oscillatory behavior, which
is the marginal of the chronocyclic Wigner distribution of a
frequency-time cat-like state along the time axis.

B. Double-slit experiment with a biphoton state

We now develop the analogy between the biphoton
Young’s experiment and the time-resolved HOM experiment.
This analogy is useful to understand the previous experiment
in terms of frequency-time cat-like state. A similar experiment
to the one described below can be found in Refs. [26,27].

We consider two position anticorrelated photons, which are
polarized and sent through two slits: a vertically (V) polarized
photon can pass only in the lower slit and a horizontally (H)
polarized photon in the upper slit as indicated in Fig. 6(c).

&
BS

&

(a)

(b)

(c)

B

â†(ω1)b̂†(ω2)

â†
H(xA)â†

V (xB)

H

V

xA

xB

ω1

ω2

p

p1

p2

t1

t2

(d)

(e)

(f)

FIG. 6. Analogy between the biphoton Young’s experiment and
the time-resolved Hong, Ou, and Mandel interferometer. (a) A
biphoton with polarization H/V crosses the slits centered at xA/xB.
(b) A biphoton state in port A/B cross the filter centered at fre-
quency ω1/ω2. (c) Propagation of the biphoton in the near field.
(d) Propagation of the biphoton (the dispersion in free space being
neglected). (e), (f) An even (odd) cat state is produced in the far
field [after the beam splitter (BS in the figure)] where joint detection
measurement is performed. The detection parameters are noted in
the two experiments p1/2 = kx1/2/z and t1/2 but only their difference
matter.

The spatial degree of freedom in the HOM experiment corre-
sponding to the two ports of the interferometer is translated in
the Young’s experiment into the polarization since they both
constitute discrete degrees of freedom. In the far field regime
using the Fraunhofer approximation, propagation leads to the
Fourier transform of the photonic transverse spatial variables
[28,29]. Thus, the two slits experiment with anticorrelated
photons leads to the generation of position-momentum cat
states without postselection (see Fig. 6).

Formally, the two-photon cat state can be described by the
wave function after the two slits:

|ψ〉 =
∫∫

dx1dx2F (x1, x2) fxA+xB (x+)

× fxA−xB (x−)â†
H (x1)â†

V (x2)|0〉, (21)

where F (x1, x2) is the transverse distribution of the two-
photon state before the two slits. â†

H/V (xi ) is the creation
operator of a single photon at position xi with polarization
H/V . The two slits behave as a position filter that can
be modeled by a Gaussian function fxA/B (x) = exp[−(x −
xA/B)2/(2σ 2)], with σ the spatial width of the filter, which is
analogous to the width of the frequency filter as in Eq. (6).
We also employed the notation used for the factorized form
of the function filters fxA (x1) fxB (x2) = fxA+xB (x+) fxA−xB (x−)
where x± = x1 ± x2. We will consider again the factorization
F (x1, x2) = δ(x+) f−(x−) and the condition σ � �, where �

is the width of the slit of f−. In the near field, we observe two
Gaussian peaks which are the slits transmittance.

In the far field, two detectors are placed at position xi,
i = 1, 2, and at a distance from the slits z. Propagation in

023710-7



N. FABRE et al. PHYSICAL REVIEW A 102, 023710 (2020)

the far field (z � kx2
1) plays the role of the beam splitter:

due to the diffraction, each detector detects photons coming
from either slit, forming a coherent superposition of both
possible polarized photons that propagated until z. With the
same calculation of the previous section, the joint detection
I (p) = |〈p||ψ〉|2 is:

I (p) = 1
2 e−p2σ 2

[1 + cos(2p(xA − xB))], (22)

where p = k(x1 − x2)/z, which shows the signature of the
creation of an even position-momentum cat. Again the am-
plitude of probability 〈p||ψ〉 corresponds to the coherent sum
of the Fourier transform of the transmittance of the slits.
This biphoton Young experiment can be considered as a
momentum-resolved detection scheme, where the detection
parameter p is analogous to the time difference τ in the
time-resolved HOM experiment.

The propagation can also be viewed as a π/2 rotation
in the position-momentum phase space, or a Fourier trans-
form. Accessing the marginals of the Wigner distribution be-
tween these two limits corresponds to implementing fractional
Fourier transform to the state.

IV. MANIPULATING THE FREQUENCY-TIME DEGREE
OF FREEDOM OF THE BIPHOTON STATE

In this previous section, we discussed a method to per-
form a fractional Fourier transform in frequency-time variable
based on an experimental technique that can be implemented
in a chip in transverse pump configuration [17,22]. We will
work in the non-time-resolved detection limit δ � T .

The aim of this section is to provide the analogous
phase gate in position-momentum variable P̂(θ ) = exp(iθ X̂ 2)
(where θ is the rotation angle and X̂ is the position operator) in
the collective frequency-time variable (ω−, τ ) of the biphoton
state. We propose a solution using the integrated photonic
chip described in Sec. II B and Ref. [10] by engineering the
phase matching function so as to perform a rotation in the
frequency-time phase space.

If the length of the circuit is much greater than the spatial
width of the pump profile, the phase matching function is
the Fourier transform of the spatial profile of the pump A(z)
[10,22]:

f−(ω−) =
∫
R

A(z)eiω−z/vgdz, (23)

where vg is the group velocity and z is the direction of the
propagation of the two photons. According to Ref. [22] and
Eq. (23) the spatial profile of the pump is the rescaled Fourier
transform of the phase matching function f̃ (t−) = A(t−vg).
The adapted spatial profile to perform the rotation in the
frequency-time phase space is

A(z) = e− z2

2�z2 eiz2/a2
, (24)

where �z is the spatial width of the pump. The term eiz2/a2

can be obtained using a spatial light modulator (SLM) to
produce a quadratic spatial phase with a curvature a that can
be experimentally controlled and varied. It can be viewed as a
time chirp owing to the relation Eq. (23). This frequency-time
gate can also be considered as a time lens [30].

The chronocyclic Wigner distribution of the phase match-
ing function is modified as follows:

W−(ω−, τ ) → W−

(
ω− − τ

v2
g

a2
, τ

)
. (25)

Since the coincidence probability is the measurement of the
cut at ω− = 0 of the Wigner distribution, this solution enables
the measurement of the full distribution without a frequency
shift but rather by controlling the parameter a. Then, changing
the value of a and repeating the OM experiment by varying
τ , we can measure different cuts of the chronocyclic Wigner
distribution corresponding to different frequency values.

For integrated or bulk optical system, this phase gate
can be realized with a grating, which maps frequency to
spatial degree of freedom followed by a SLM and then an-
other grating to return in the frequency degree of freedom
domain [31].

V. CONCLUSION, PERSPECTIVES

As a conclusion, we fully revisited the OM experiment in
terms of chronocyclic Wigner distribution in frequency-time
phase space for nonresolved time coincidence detection. In
our interpretation of the experiment proposed here, interfer-
ence fringes are associated to a signature of a measurement
of a two-photon frequency-time Schrödinger-cat-like state.
An analogy between the time-resolved experiment and the
biphoton Young’s experiment has also been developed, which
can help to design experiments. Lastly, we propose several
approaches to engineer different frequency-time cat-like state
for application in quantum metrology. Due to the noncom-
mutativity structure of the frequency-time phase space at
the single-photon level, these variables are equivalent to the
quadrature position-momentum continuous variable. Another
perspective of our work is applying it on quantum informa-
tion protocols based on continuous variables by using the
mathematical analogy between a multiphoton state in a single
mode (field quadratures) and a single photon in many modes
[18]. Our results can hence be applied to propose nonlocal-
ity tests based on the detection of entangled Schrödinger-
cat states [32], on the coding of quantum information in
Schrödinger-cat states [33] and other parity-based continuous
variables quantum protocols. Our work provides an alternate
perspective on quantum state engineering and measurement,
opening applications in quantum information and metrology.
For instance, in Ref. [34], the authors use a frequency-time cat
state produced without postselection in a metrology protocol
to measure the thermal dilatation of an optical fiber.
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APPENDIX A: FREQUENCY-TIME CAT-LIKE STATE

Chronocyclic Wigner distribution of
frequency-time cat-like state

The chronocyclic Wigner distribution of a general two-
photon state is defined as [18,35]:

W (ωs, ωi, ts, ti ) =
∫∫

dω′dω′′e2iω′ts e2iω′′ti

×〈ωs − ω′, ωi − ω′′|ρ̂|ωs + ω′, ωi + ω′′〉.
(A1)

The construction of this frequency-time distribution was
shown in Ref. [18] and emphasizes the quantumness of this
distribution when the source of light is composed of single
photon. For a pure state ρ̂ = |ψ〉〈ψ |, and with a wave function
of the form:

|ψ〉 =
∫∫

f+(ω+) f−(ω−)|ωs, ωi〉dωsdωi. (A2)

We obtain the chronocyclic Wigner distribution:

W (ωs, ωi, ts, ti ) =
∫∫

dω′dω′′e2iω′ts e2iω′′ti f+(ω+ − ω′ − ω′′)

× f ∗
+(ω+ + ω′ + ω′′) f−(ω− − ω′ + ω′′)

× f ∗
−(ω− − ω′′ + ω′). (A3)

After performing a change of variable, the chronocyclic
Wigner distribution can be factorized as follows:

W (ωs, ωi, ts, ti ) = W+(ω+, t+)W−(ω−, t−), (A4)

where we have noted,

W±(ω, t ) =
∫

dω′e2iω′t f±(ω − ω′) f ∗
±(ω + ω′). (A5)

As it was shown in Ref. [9], the measured coincidence
probability in the generalized HOM experiment is related to
the chronocyclic Wigner distribution of the phase matching
function:

I (2τ, ω−) = 1
2 [1 − W−(ω−, τ )]. (A6)

The relevant part of the chronocylic Wigner distribution for
this experiment is the W− part. For an even (odd) frequency-
time cat-like state, with a phase matching function of the form:

f−(ω−) = 1√
2

[ fω1−ω2 (ω−) ± fω2−ω1 (ω−)], (A7)

where fωi (ω−) = exp[−(ω− − ωi )2/(2σ 2)], the chronocylic
Wigner distribution is

W−(ω−, τ ) = 1

2

[∫
dω′e2iω′τ [ fω1−ω2 (ω− + ω′)

+ fω2−ω1 (ω− + ω′)]( f ∗
ω1−ω2

(−ω′ + ω−)

+ f ∗
ω2−ω1

(−ω′ + ω−))

]
. (A8)

The distribution is composed of three terms,

W−(ω−, τ ) = Wcat(ω−, τ ) = W12(ω−, τ ) + W21(ω−, τ )

+Wbeating(ω−, τ ). (A9)

The shape of the Wigner distribution of the frequency-time
cat-like state Wcat(ω−, τ ) is shown in the main text on Fig. 2.
The first and second terms are Gaussian functions centered at
ω− = ω1 ∓ ω2 and τ = 0:

W12(ω−, τ )=
∫

dω′e2iω′τ fω1−ω2 (ω− + ω′) f ∗
ω1−ω2

(−ω′ + ω−)

= e−τ 2σ 2
e−(ω−−(ω1+ω2 ))2/σ 2

. (A10)

Whereas the interference term is under the form:

Wbeating(ω−, τ )=
∫

e2iω′τ ( fω1−ω2 (ω− + ω′) f ∗
ω2−ω1

(−ω′ + ω−)

+fω2−ω1 (ω− + ω′) f ∗
ω1−ω2

[−ω′ + ω−)]dω′.

(A11)

Since the filters are modeled by an even function, we can
write the product as: fω1−ω2 (ω− + ω′) f ∗

ω2−ω1
(−ω′ + ω−) =

fω1−ω2 (ω− + ω′) f ∗
ω1−ω2

(ω′ − ω−). Without a postselection
procedure, the coincidence measurement with a HOM inter-
ferometer permits to access to the cut of the beating term:

Wbeating(0, τ ) = e−τ 2σ 2
cos[2τ (ω2 − ω1)]. (A12)

The terms W12 and W21 can not be accessed through this
measurement because they are not along the ω− = 0 axis,
but could be obtained thanks to the generalized HOM
experiment [9].

APPENDIX B: QUANTUM ERASING EXPERIMENT

Here we detail the coincidence probability measured with
the HOM interferometer when the frequency filters are placed
before the beam splitter (see Sec. II D). We start from the state
defined by Eq. (A2). After the filtering operation the state
becomes:

|ψ〉 =
∫∫

f+(ω+) f−(ω−) fω1 (ωs) fω2 (ωi )|ωs, ωi〉dωsdωi.

(B1)
Using the relation fω1 (ωs) fω2 (ωi ) = fω1−ω2 (ω−) fω1+ω2 (ω+),
the condition f+(ω+) = δ(ω+) and considering again than the
frequency width of the phase matching function is larger than
the width of the filters, the wave function |ψτ 〉 can be written
before the beam splitter as:

|ψτ 〉 =
∫

dω−eiω−τ fω1−ω2 (ω−)|ω−,−ω−〉, (B2)

and we considered the following normalization:∫
dω−| fω1−ω2 (ω−)|2 = 1. After the beam splitter and

postselect only the coincidence terms, the wave function
becomes

|ψτ 〉 = 1

2

∫
dω−eiω−τ fω1−ω2 (ω−)(|ω−,−ω−〉

− | − ω−, ω−〉). (B3)

We then perform a change of variable:

|ψτ 〉 = 1

2

∫
dω−[eiω−τ fω1−ω2 (ω−) − e−iω−τ fω1−ω2 (−ω−)]

× |ω−,−ω−〉. (B4)
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Once the coincidence is measured I (τ ) = ∫∫
dωsdωi

〈ωs, ωi|ρ̂τ |ωs, ωi〉, with ρ̂τ = |ψτ 〉〈ψτ |, we point out that
the first two terms do not depend on τ and the two crossed
terms do not give rise to a beating pattern. Indeed, we obtain:

I (τ ) = 1

2

[
1 − Re

( ∫
dω− fω1−ω2 (ω−) f ∗

ω1−ω2
(−ω−)e2iω−τ

)]
.

(B5)

From this last equation, after performing the integration over
ω−, we get Eq. (14). We recognize the cut of the chronocyclic
Wigner distribution of W12 (or W21) at the frequency ω− = 0,
see Eq. (A10).

APPENDIX C: INFLUENCE OF TIME RESOLUTION OF
THE PHOTODETECTOR IN THE HOM EXPERIMENT

In this section, we remind the results on the influence of
the time resolution of the photodetector from Refs. [15,25].

1. Probability of the joint detection time
detection in the HOM experiment

The probability to measure one photon at the port C at
time t1 and one photon at the port D at time t2 (see Fig. 1 for
instance) is given by the second-order correlation function:

G2(t1, t2, τ )) = Tr[ρ̂(τ )ĉ†(t1)d̂†(t2)d̂ (t2)ĉ(t1)], (C1)

where τ is again the photon delay. ĉ(t1) denotes the cre-
ation photon operator at time t1 in the spatial port C. Any
photodetectors have a finite resolution T , then we access
experimentally to the probability to detect one photon in the
interval t0 ± T and the second in the interval t ′

0 ± T :

I (t0, t ′
0, τ ) =

∫ t0+T

t0−T
dt1

∫ t ′
0+T

t ′
0−T

dt2G2(t1, t2, τ ). (C2)

When T � δ, the range of the integral can be extended to the
infinity and we obtain:

I (τ ) =
∫∫

dt1dt2G2(t1, t2, τ ). (C3)

We can rewrite the coincidence probability as:

I (τ ) =
∫∫

dt1dt2

∫∫
dt3dt4〈t3, t4|ρ̂τ ĉ†(t1)d̂†(t2)

× d̂ (t2)ĉ(t1)|t3, t4〉. (C4)

By applying the bosonic operators and after integration,
the coincidence detection is I (τ ) = ∫∫

dt1dt2〈t1, t2|ρ̂τ |t1, t2〉,
which can be written alternatively, for a pure state, using the
closure relation: I (τ ) = ∫∫

dωsdωi|〈ψτ ||ωs, ωi〉|2, showing
Eq. (10) in the main text.

We demonstrate now the coincidence probability in the
case where δ � T :

I (τ, τ ) =
∫

G2(t0, t0 + τ , τ )dt0, (C5)

where t0 is the time of the first detection, which is integrated,
τ being the optical delay between the two arms and the time
difference between two detections is noted τ . Thanks to this
last equation, we easily prove Eq. (15).

2. Definition of the probability of the joint detection
in the Young experiment

We finish this section by reminding the probability of joint
detection of one photon of impulsion p1 and the second of
impulsion p2 in the biphoton Young experiment. It is given by
the second-order correlation function:

G2(p1, p2) =
∑
α,α′

Tr[ρ̂â†
α (p1)â†

α′ (p2)âα (p1)âα′ (p2)], (C6)

where âα (pi )/â†
α (pi ) denotes the bosonic annihilation (cre-

ation) operator of a single photon with polarization α and
impulsion pi = kxi/z. For two photons anticorrelated in posi-
tion, only the difference of the impulsion p is actually relevant.
This mathematical analogy permits us to conclude about the
equivalence of the two experiments.
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