
PHYSICAL REVIEW A 102, 023706 (2020)

Spatial quantum state tomography with a deformable mirror
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Quantum tomography is an essential experimental tool for testing any quantum technology implementation.
Transverse spatial quantum states of light play a key role in many experiments in the field of quantum information
as well as in free-space optical communications. In this paper we propose and experimentally demonstrate the
tomography of spatial quantum states with a deformable mirror. It may be used to significantly outperform the
conventional method with a spatial light modulator in terms of speed and efficiency, at the same time providing
polarization insensitive operation.
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I. INTRODUCTION

The tomography of a quantum state is a standard procedure
of determining an unknown quantum state by performing a
series of measurements over a large number of its copies
[1–3]. This procedure is widely studied both theoretically and
experimentally. In this paper we focus on the tomography of
transverse spatial quantum states of light, which are often used
as a model qudit system [4–6].

Unlike the two-dimensional case, where efficient experi-
mental tools for quantum measurements are readily available,
the realization of general measurements in higher dimensions
is typically a much more complex problem. In some cases,
e.g., for a composite qubit system, it is still easy to perform a
factorized measurement [7], effectively reducing the overall
task to single qubit measurements. On the contrary, higher
dimensional spatial quantum states of light use degrees of
freedom of a single particle, and so there is no universal and
efficient solution for their measurement.

A lot of efforts were targeted at the development of so-
called mode sorters [8–11]. They may be used for separation
of different spatial modes that represent a natural (computa-
tional) basis for the quantum system in question. However,
mode sorters formally enable only a single type of measure-
ment, namely, measurements in the computational basis, that
is obviously insufficient for a full state tomography. A typical
solution for a general projective measurement is the use of a
liquid crystal-based spatial light modulator (SLM) for mode
transformation followed by a single-mode fiber filter that
performs projection of the resulting field onto the fundamental
mode [12,13]. Although this method has been the standard
technique of projective measurements in the spatial mode
space, the SLM-based measurement technique has a number
of significant drawbacks, namely associated with its low
switching speed, poor efficiency, and polarization sensitivity.
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The goal of this paper is to show that a measurement SLM
may be effectively replaced by a micro-electro-mechanical
systems (MEMS) deformable mirror, which can be switched
at a much higher rate and at the same time provide nearly
lossless mode transformation and polarization insensitive op-
eration. In the result, quantum tomography of substantially
bright sources can be potentially performed at millisecond
time frames and even faster, which is far from being tractable
with conventional SLMs. This may find applications in real-
time tomography of turbulent atmospheric channels and other
nonstationary experimental environments.

We experimentally demonstrate a deformable mirror-based
tomography in a four-dimensional Hilbert space, that yields
adequate fidelity of the reconstructed quantum states.

II. QUANTUM TOMOGRAPHY

The goal of quantum tomography is to reconstruct an
unknown density matrix ρ by a series of measurements per-
formed on copies of the quantum state in question. According
to the Born’s rule the probability of observing an outcome
γ for a positive operator-valued measure (POVM) M with
elements {Mγ } is P(γ |ρ) = Tr(Mγ ρ). Experimentally ob-
tained probabilities for a sufficient number of different POVM
elements allow one to calculate the desired ρ. As mentioned
before, the realistic measurement technique is limited to pro-
jective measurements only, so a general POVM formalism
may be reduced to the following form of Mγ : Mγ = |Pγ 〉 〈Pγ |.

There has been a lot of progress in quantum state recon-
struction methods recently, including establishing of adap-
tive [14], self-guided [15], compressed-sensing and neural-
network enhanced [16,17], and many other techniques in-
cluding the so-called shadow tomography [18]. In this work
we primarily focus not on the tomography protocol itself but
rather on the experimental tool that is used for implementation
of the protocol. Therefore, for this proof of concept demon-
stration we use the most straightforward protocol, based on
the maximum likelihood estimation. In our understanding
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the proposed experimental tool is efficient with tomography
protocols, where only a fixed number of measurements is re-
quired. That basically rules out all truly adaptive approaches,
where a continuous shift of the measurement projection is
implied. However, some strategies such as neural network-
based correction for state preparation and measurement errors
[17], will definitely improve the obtained results. To keep the
paper succinct and the results clear, in the further text we do
not make any additional assumptions about the protocol used,
and show an example of the whole scheme implementation
with the most basic tomography protocol, described in detail
later. More advanced versions of quantum state tomography
may be built on top of the presented demonstration.

The minimum number of projectors required for a com-
plete tomography in a d-dimensional Hilbert space is d2,
which may be chosen as the set of the symmetric, informa-
tionally complete (SIC)-POVM elements. That would give
the most uniform distribution of the expected reconstruction
fidelity among all possible quantum states. In this paper we
use a redundant set of d (d + 1) projectors onto elements
of mutually unbiased bases (MUBs), which preserves the
same coverage uniformity as SIC-POVM, but results in a
much more symmetric and easy-to-implement array of the
deformable mirror states.

When it gets to experimental realization of projective mea-
surements especially with a continuous deformable mirror,
actual projectors may substantially differ from the designed
ones in terms of both efficiency and fidelity. In fact, lossless
projections onto MUBs elements is impossible to realize
even with a perfect phase mask. Thus, before the actual
state tomography one needs to perform the so called detector
tomography, to find the actual projectors that take place in the
experiment [19,20].

III. EXPERIMENTAL REALIZATION

In our demonstration we work with the following set
of Hermite-Gaussian modes constituting the computational
basis: HG00, HG01, HG10, and HG11, so the dimension of
the associated Hilbert space is d = 4. Such a choice is made
due to the rectangular geometry of the MEMS mirror actuator
array, which well matches that of the HG modes. Computa-
tional bases with other symmetry types, e.g., a circular one for
Laguerre-Gaussian or orbital angular momentum modes, are
in general less effective here as they would require more inde-
pendent pixels to approximate corresponding MUBs elements
with a rectangular grid. After all, the obtained tomography re-
sults may be easily converted to any other basis representation
as all of them are completely equivalent [21]. As a figure of
merit for state reconstruction we use the fidelity, defined as

F = [Tr(
√√

ρρ ′√ρ)]2. (1)

The experimental setup used in our realization is shown
in Fig. 1. The state preparation is performed with an SLM
using the conventional mode synthesis technique described
in Ref. [22]. The zero order diffraction is blocked by an iris
diaphragm placed at a distance of around 1 meter from the
SLM. The tomography stage is implemented with a Boston
Micromachines Mini-3.5 deformable mirror (DM) consisting

FIG. 1. Experimental setup. PC—polarization controller, SMF—
single-mode fiber, DM—deformable mirror, BS—symmetric beam
splitter, MMF—multimode fiber; D1,2—single photon avalanche
detectors.

of 32 active elements arranged as a 6x6 matrix with missing
corners. The resulting light field is focused into the single-
mode fiber (SMF), delivering it to the single photon avalanche
detector . As the rate of photons in the synthesized modes
varies with the mode, a reference channel with a multimode
fiber (is added by placing a symmetric beamsplitter in the
optical path.

The working wavelength is 780 nm, and the beam waist
parameter of HG beams is w0 = 0.9 mm. As the distance
between the SLM and the DM of 1.92 m is comparable with
the Rayleigh range of zR = 3.26 m, the SLM hologram was
adjusted to set the beam waist right at the DM plane. Besides
the apparent changes of the phase curvature and the hologram
size, this also requires proper accounting of the Gouy phase
to get correct relative phases for superpositions of modes.
Thus, with the help of the SLM we can synthesize an arbitrary
spatial quantum state at the DM plane. It is considered to
be the input of the further tomography step. The synthesis
technique is assumed to be ideal, as it gives the fidelity of
at least 0.99.

The tomography model that we exploit here would re-
quire measuring projections of the incoming states onto 20
MUBs elements shown in Fig. 2. So the ideal tomography
device would losslessly convert any of the MUBs elements
into the fundamental mode perfectly matching that of the
SMF. In other words, if we launch the signal backwards, the
tomography device is required to be capable of converting
the SMF output into any of the MUBs elements. This can
be easily performed with an SLM, as it is typically done in
many experiments. However, it has the already mentioned
drawbacks of significant signal loss, quite limiting switching
rates, and strong polarization sensitivity.

To overcome these limitations we use a DM instead. The
DM has its own flaws, and the most obvious is its poor spatial
resolution. Indeed, it is impossible to synthesize an arbitrary
spatial state from the SMF output using a DM. However, the
good news is that to perform the tomography we do not need
to project exactly on MUBs elements. As long as we know
what we project upon, we will be able to reconstruct the states
with the high fidelity even if the projectors are quite far from
the desired MUBs elements. To learn the actual projectors we
perform the detector tomography. It is completely equivalent
to tomography of all quantum states that we would get after
the DM if we launch signal backwards, i.e., from the SMF
onto the DM.
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basis 1 basis 2 basis 3 basis 4 basis 5

FIG. 2. Spatial distribution of amplitudes for all 20 MUB ele-
ments used for the tomography: 5 MUBs with 4 elements in each.
Identically looking patterns differ by the phase distribution, which is
not shown here.

What we do experimentally, is we synthesize all 20 MUBs
elements one by one, and optimize the shape of the de-
formable mirror to achieve the best coupling of these 20
MUBs elements into the SMF. The basic idea behind this
is to rectify the phase, thus attaining the best overlap of
the resulting field with the SMF mode. Thus, we know the
required geometry of the DM states and all optimization that
we performed was the adjustment of the amplitudes of the
DM shifts. In the end, we get projections upon something
roughly resembling the desired MUBs elements. To use them
as tomographic measurements we need to know exactly what
they are, i.e., we perform the detector tomography.

In general, mode transformation in the deformable mirror
may be described by a unitary matrix M ′ in a larger Hilbert
space that includes higher order spatial modes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M ′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5 = 0
...

bn = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where we assume that the input state is limited to the dimen-
sion of d = 4.

Thus, the tomography of DM states accesses only the left
upper corner of the whole matrix M ′:

M ′ =

⎡
⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 . . .

m21 m22 m23 m24 . . .

m31 m32 m33 m34 . . .

m41 m42 m43 m44 . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦

. (3)

We will call it M. This is a matrix with all eigenvalues |λk| �
1, because of a possible power leak into higher order modes.

In the experiment we directly (up to the constant splitting
ratio and the efficiencies of the detectors) measure probabili-
ties Pi j of coupling into the single-mode fiber, where i is the
number of the input state |�i〉 and j is the number of the
mirror setting; i, j ∈ {1, 2 . . . 20}. It equals

Pi j = | 〈�00|Mj |�i〉 |2, (4)

where |�00〉 is the fundamental mode of the SMF and |�i〉—
the MUBs elements.

If the mirror was the ideal tomography device, it would
work such as M†

j |�00〉 = |� j〉, so the jth projector would
be simply the projector onto |� j〉. This would result in a
matrix of Pi j shown in Fig. 3(a). In reality, a mirror even
with the infinite size and resolution is not capable of such
a transformation. Even the perfectly rectified phase of the
field does not allow us to match the amplitude profiles that
leads to significant deviations of probabilities. This scenario
of a perfect mirror is simulated in Fig. 3(b). As one can see,
some MUB elements, especially 4 and 5-8 (see Fig. 2) have
a smaller intensity overlap with the fundamental mode and,
thus, smaller probabilities of passing through.

The actual results of the detector tomography, i.e., the
experimentally measured matrix of Pi j is shown in Fig. 3(c).
Despite a significant deviation from the ideal DM, which is
expected because we use only a 6x6 pixels DM with a continu-
ous reflective membrane, the general pattern still holds and the
projectors are assumed to retain the high order of symmetry to
effectively perform the quantum state tomography. The lack
of a high spatial resolution together with minor alignment
errors results in noticeable deviations from Fig. 3(b). For
example, some nondiagonal elements on the plot are larger
than the diagonal ones. The advantage of the demonstrated
approach is that this disturbance can not significantly affect
the tomography results, as we measure the projectors in the
detector tomography step and then use this knowledge for
state reconstruction.

To solve the over determined system of equations (4) for
Mj , it is easier to use a more general formalism. Let the input
state is described by a density matrix ρ, which is measured
with the particular mirror setting j. Then the measured prob-
ability equals

Pj = Tr(ρ · M†
j |�00〉 〈�00| Mj ). (5)

This equation, being effectively a Hilbert-Schmidt inner prod-
uct for the two matrices, may be rewritten using the vectorized
notation [23,24]

Pj = 〈〈ρ |M†
j |�00〉 〈�00| Mj〉〉. (6)

In the detector tomography step the input states are known
and are described by the ρi = |�i〉 〈�i|, while the measure-
ment matrix � j = M†

j |�00〉 〈�00| Mj is to be found. By the
construction, this matrix � j is an improperly normalized
projector, i.e., has only one non-zero eigenvalue correspond-
ing to the eigenvector |Pj〉 = M†

j |�00〉. The eigenvalue itself
shows the efficiency of the projection. For each j one needs
to solve the over determined system of linear equations with
varying i:

Pi j = 〈〈ρi |M†
j |�00〉 〈�00| Mj〉〉. (7)
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(a) (b) (c)

FIG. 3. A matrix of measurement results for the MUB-based protocol in a four-dimensional Hilbert space: the probability of a state �i

to pass through the projector � j (a) ideal projectors onto MUB states � j ; (b) ideal deformable mirror with the infinite size and resolution;
(c) actual measurements with our experimental setup.

The system is solved in the sense of a least-squares solution.
Due to the presence of experimental errors especially in the
case of the over determined system the resulting matrix � j

contains more than one nonzero eigenvalue. In the detector
tomography step the minor eigenvalues are dropped to explic-
itly keep the form of this operator as � j = |Pj〉 〈Pj |.

The quantum state tomography is the reverse of the detec-
tor tomography: knowing � j and Pj for all js, one needs to
solve the system (6) for the unknown ρ.

It is quite apparent that almost any d2 = 16 different
DM states are sufficient for the qudit tomography. How-
ever, some sets are more optimal than others. The quantita-
tive measure may be the ratio between the largest and the
smallest singular values of the matrix formed by the set of
vectorized measurement matrices |� j〉〉: η = max λk/ min λk .
Indeed, if η is close to 1, inverting the system (6) ap-
pears to yield the smallest uncertainty due to the experi-
mental noise. On the contrary, very large ηs lead to the
strong propagation of small experimental noise into the
solution.

The ideal case of � j = |� j〉 〈� j | corresponds to η =√
5 ≈ 2.2. The infinite resolution mirror yields η ≈ 5.0; an

ideal 6x6 mirror with independent pixels and the same pixel
size as in the experiment shows η ≈ 10.5. The measured
matrix yields η ≈ 33, which is not so far from the idealized
case. The main difference between the latter two is due to
the large pixel-to-pixel cross talk in our DM. This is an
unavoidable drawback of the continuous mirror-based DMs,
where adjacent pixels are significantly coupled through the
reflective membrane. Although the corresponding η could be
potentially calculated via thorough modeling of the mirror,
it is not realistic because we do not know much about its
inner structure. We can only conclude that the aggregate effect
of this cross-talk and all other experimental imperfections,
including ever-present minor alignment errors, leads to the
threefold η increase, which looks rather reasonable. Finally,
as mentioned before, the value of η has no direct effect on the
obtained fidelities. A noiseless and perfectly repeatable ex-
periment would always yield perfect results anyway. A large

η only means stronger noise propagation into the tomographic
results.

After the DM calibration matrix [Fig. 3(c)] has been exper-
imentally measured, we calculate all 20 measurement matri-
ces � j , i.e., obtain the result of the detector tomography. Then
we use these data for quantum state tomography to reconstruct
the supposedly unknown input states ρ after measuring them
with all 20 projectors � j each. In the experiment, however,
we know exactly what these states are because we synthesize
them with the SLM. Therefore, we can calculate the fidelity
between the reconstructed and the actual states.

First of all we accomplished the tomography of the 20
|�i〉 states that yields the average fidelity with the actual
states of 0.977 and the worst case fidelity of 0.940. Then,
random pure qudit states were generated and their density
matrices were reconstructed using the tomographic procedure.
Figure 4 shows the histogram of the fidelity for the measured
210 random quantum states. The obtained fidelities are not

FIG. 4. Distribution of the reconstructed states fidelity for a set
of 210 random pure quantum states.
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particularly high and cannot be considered to be the best
among similar experiments, however, they are quite typical
for spatial state tomography of a dimension of 4. It is a
well-known experimental fact that the larger the reconstructed
state dimension the smaller are the typical fidelities [13]. This
is mainly due to the experimental errors that propagate into the
obtained reconstruction results, as spatial quantum states are
quite fragile in this sense. At the same time, it is somewhat
offset by the fact that the expected fidelity between two
random pure states is 〈Frnd〉 = 1/d with the exact probability
distribution of P(F ) = (d − 1)(1 − F )d−2 [25], so, for exam-
ple, the measure of the states having the fidelity with the given
one of F > 0.9 in a four-dimensional space is only 10−3.

IV. DISCUSSION

The performed experimental demonstration shows the
plausibility of the DM-based approach to spatial qudit tomog-
raphy. The experimentally obtained fidelity of the reconstruc-
tion is quite similar to other tomographic experiments with
spatial quantum states [13,17].

There are three main advantages of using a DM instead
of an SLM: (1) efficiency of mode transformation; (2) po-
larization insensitivity; (3) speed of operation. The gain in
efficiency is due to the way a liquid crystal SLM operates. Its
reliable use as a phase screen is typically performed in the first
order of diffraction, while all other orders, including the 0th,
lead to the signal loss. The phase shifts strongly depend on
the polarization, limiting SLMs to polarized inputs only. The
DM, on the contrary, reflects nearly 100% of light, giving in
practice virtually no loss, but the pure polarization insensitive
phase shift.

The speed of operation of a liquid crystal-based SLM is
limited by a few hundred Hz, as these large molecules are not
agile enough to move faster under the applied electric field.
The MEMS-based devices easily show kHz switching rates
and much more [26,27] so a properly driven DM may be able
to switch states orders of magnitude faster than conventional
SLMs. Another good reason for using the DM is a much more
reasonable amount of data required to define a new state. In
our setup we only need 32 bytes of data to completely describe
the states of all 32 available actuators. More recent DMs
typically have at least 100 and into a few thousand actuators,

which is enough for performing tomography in a much larger
Hilbert space than in our demonstration. On the other hand, a
typical SLM is a megapixel class device, requiring at least
1 MB of data to define all its pixels. The data should be
calculated and then transferred to the device. This by itself
takes at least three orders of magnitude more time than trans-
ferring sub-kB data for the DM, and is typically limited by
the supported frame rate of the High-Definition Multimedia
Interface/Digital Visual Interface of a few hundred Hz.

Thus, the DM-based tomography may play a key role
for the tomography of nonstationary states, where the high
rate of measurements is crucial. For example, it may be
used in free-space communication channels to measure the
disturbance of the transmitted quantum states as well as in
other dynamic experiments, where quantum states vary in
time. In the same way, it could be used for the measurement
of modal composition of classical bright beams of light, as in
classical free-space communications.

While the advantage in the efficiency is not that strik-
ing, DMs still may replace SLM’s to improve the overall
detection efficiency, critical in many quantum technology
demonstrations. This especially applies to the tomography of
unpolarized sources.

In conclusion, we demonstrated the use of a deformable
mirror for transverse spatial state tomography. Being one
of the most commonly used qudit systems, spatial quantum
states of light play a key role in many experiments in the field
of quantum information. Their fast and reliable tomography
is the cornerstone of further advancement into the field. The
proposed approach allows one to perform tomography orders
of magnitude faster and yielding higher efficiency than with
the conventional SLM-based approach. The experimentally
performed tomography of randomly sampled qudit states
demonstrated reasonable fidelity of reconstruction.
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Zeilinger, Triggered Qutrits for Quantum Communication Pro-
tocols, Phys. Rev. Lett. 92, 167903 (2004).

[13] N. Bent, H. Qassim, A. A. Tahir, D. Sych, G. Leuchs, L. L.
Sánchez-Soto, E. Karimi, and R. W. Boyd, Experimental Re-
alization of Quantum Tomography of Photonic Qudits Via
Symmetric Informationally Complete Positive Operator-Valued
Measures, Phys. Rev. X 5, 041006 (2015).

[14] S. S. Straupe, Adaptive quantum tomography, JETP Lett. 104,
510 (2016).

[15] C. Ferrie, Self-Guided Quantum Tomography, Phys. Rev. Lett.
113, 190404 (2014).

[16] D. Ahn, Y. S. Teo, H. Jeong, F. Bouchard, F. Hufnagel, E.
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