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Optimization of a lossy microring resonator system for the generation of quadrature-squeezed states
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The intensity buildup of light inside a lossy microring resonator can be used to enhance the generation of
squeezed states via spontaneous parametric downconversion (SPDC). In this work, we model the generation
of squeezed light in a microring resonator that is pumped with a Gaussian pulse via a side-coupled channel
waveguide. We theoretically determine the optimum pump pulse duration and ring-to-channel coupling constant
to minimize the quadrature noise (maximize the squeezing) in the ring for a fixed input pump energy. We derive
approximate analytic expressions for the optimal coupling and pump pulse duration as a function of scattering
loss in the ring. These results will enable researchers to easily determine the optimal design of microring
resonator systems for the generation of quadrature-squeezed states.
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I. INTRODUCTION

Squeezed states are a type of nonclassical light that are
characterized by squeezing of the quantum uncertainty in a
given quadrature below the level of vacuum noise. They can
be used in a variety of contexts, including in applications
where quadrature noise is a major concern, such as opti-
cal communications [1] and interferometers [2–4]. Squeezed
states can also be used as the starting point to create entangled
states of light. Weakly squeezed states can be used as a
source of entangled photons, which can be used for quantum
teleportation [5] and quantum cryptography [6]. Single-mode
squeezed states can be combined using waveguide couplers to
create quadrature-entangled states [7]. In addition, two-mode
quadrature-squeezed states are a source of continuous variable
(CV) entanglement, which can also be used for quantum
computation [8] and quantum information [9]; such states
are important as they are generally more robust to loss than
two-photon entangled states [10].

One way to generate squeezed states of light is via spon-
taneous parametric down conversion (SPDC), where a strong
coherent pump field interacts with a material that has a χ (2)

nonlinearity [11]. The conversion efficiency of pump photons
into signal and idler pairs can be enhanced by enclosing the
nonlinear interaction within a cavity that is resonant with the
pump. In this case, if it is a multimode cavity, where a second
mode is resonant at the signal and idler frequencies, then it
can play a dual role, by ensuring that essentially all generated
pairs end up in a single cavity mode.

Ring resonators side coupled to a waveguide have been
shown to enhance spontaneous parametric down conversion
efficiency [12]. Thus, they are promising structures for on-
chip applications such as entangled photon pair generation for
quantum communication [13] and generating squeezed light
for discrete and CV entanglement [14–17]. The schematic
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diagram of a side-coupled ring resonator is shown in Fig. 1.
The ring waveguide has a radius chosen such that it has
resonant modes at the frequencies of the pump and the
squeezed light. The straight waveguide (channel) and ring are
in proximity to each other, such that pump and squeezed light
can be evanescently coupled in and out of the resonator.

Considerable theoretical work has been done on a Hamil-
tonian treatment of SPDC and spontaneous four-wave mixing
in lossy microring resonators [18–21]. The general approach
is to solve the Heisenberg equations of motion for the mode
operators in the ring and channel. This procedure is applicable
in both the weak pumping limit for generating entangled
photon pairs and the strong pumping limit for generating
quadrature squeezing. For example single-mode quadrature
squeezing of −10 dB in the channel of a lossy SiN microring
resonator was recently shown to be theoretically achievable
[14], using a 100 pJ Gaussian input pulse of duration 30 ps.
Experimentally, about 4 dB [15] to 5 dB [22] of squeezing
has been inferred on-chip with SiN microring resonators.
Both the theory and experimental demonstration of quadrature
squeezing in lossy microring resonators provides a promising
path forward for creating a practical CV entangled states for
quantum computing applications.

Recent experimental work has demonstrated that one can
tune the squeezing level generated in coupled ring resonators;
by increasing the coupling efficiency, Dutt et al. [23] demon-
strated experimentally an increase of the on-chip squeezing
level in a SiN resonator from −0.9 to −3.9 dB. Although this
and other work demonstrate the promise of ring resonators for
generating squeezed light, it appears that very little has been
done on the optimization of the ring resonator system to obtain
maximum squeezing.

In this paper, we theoretically study the quadrature squeez-
ing inside a lossy ring resonator pumped by a Gaussian
input pulse. We focus on the optimization of the pump pulse
duration and ring-channel coupling, in order to achieve the
conditions that maximize the squeezing in the presence of
scattering loss.
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FIG. 1. Schematic of the ring resonator coupled to a channel
waveguide. The field components incident to the coupling point are
Ẽ1 in the channel and Ẽ3 in the ring. The field components leaving
the coupling point are Ẽ2 in the channel and Ẽ4 in the ring. The
cross-coupling coefficient is κ , and the attenuation in the ring is a.

We consider the case of squeezed-state generation via
SPDC in a single mode of the ring. To allow us to compare the
squeezing achieved for different pump durations, in all that
follows, the energy of the input pulse is held constant when
the pulse duration is changed. We model the dynamics of the
density operator for the state in the ring in the presence of
loss using the Lindblad master equation for a cavity with a
single lossy mode. It has recently been shown that the general
solution to this Lindblad master equation is a single-mode
squeezed thermal state [24] characterized by a time-dependent
squeezing amplitude, squeezing phase, and a thermal photon
number. Using this solution, we model the squeezed thermal
state in the ring resonator as a function of time, and derive an
approximate analytic expression for the maximum squeezing
in the presence of loss.

Our theoretical approach is somewhat different from what
is commonly done in the literature. The strength of our method
is that, because we know that the density operator inside the
ring is always a squeezed thermal state, the time-dependent
properties of the state in the ring, such as the variance of
the quadrature operator and expectation value of the number
operator, can be easily determined by simply solving for the
time dependence of the thermal photon number and squeezing
parameter of the state. Of course, our study is restricted to a
single-mode squeezed state in the ring, but this condition is
easily satisfied by limiting the bandwidth of the input pulse,
and carefully phase matching the desired pump mode and
squeezed light mode in the ring.

Using our exact solution for the time evolution of the
state, we derive approximate but accurate analytic expressions
for the optimum coupling value and optimum pump pulse
duration for a fixed pump energy. We show that they are in
excellent agreement with full numerical simulations when the
pump and ring configuration is relatively close to the optimal.
We find that the optimum pulse duration depends on the loss
in the ring and is in the range of 10 to 60 times the ring
round-trip time. We also show that the optimum coupling is
slightly below critical coupling (undercoupling).

The paper is organized as follows. In Sec. II A we review
the theory of the coupling of a pulsed classical pump field
from a channel waveguide into a ring resonator, discuss prac-
tical limitations on the pump pulse duration for generation
in a single mode, and determine the exact and approximate
expressions for the time-dependent pump field inside the lossy
ring. In Sec. II B we present the theory behind the generation
of a squeezed thermal state in a single leaky mode for a
pulsed pump. In Sec. III we model the system and develop
approximate analytic expressions for the optimal pulse dura-
tion, coupling constant, and quadrature noise for a given ring
loss. Finally, in Sec. IV we present our conclusions.

II. THEORY

In this section we present the theory behind the generation
of squeezed light inside a ring resonator. The system consists
of a ring resonator waveguide of radius R, side coupled to
a straight waveguide (the channel) (see Fig. 1). Both waveg-
uides are made from a material with a nonlinear χ (2) response.
We treat the ring resonator as an optical cavity that generates
squeezed light in a single leaky mode. The mode is leaky
due both to scattering loss and coupling to the channel. The
input field to the system is a classical pump pulse [E1(t )]
propagating in the channel. The bandwidth of the input pulse
is limited such that it only couples appreciably into a single
mode inside the ring, with frequency, ωP. Once inside the
ring, the pump will produce squeezed light in a separate mode
with frequency, ωS , that is half the frequency of the pump,
i.e., ωS = ωP/2. In Sec. II A we study the frequency response
of the ring using a transfer matrix approach in the presence
of loss, and derive exact and approximate expressions for
the time-dependent pump field inside the ring. In Sec. II B
we give the solution to the Lindblad master equation for the
quantum state of light generated inside the ring.

A. Time-dependent pump field inside the ring resonator

In this section we present the theory to obtain the time
dependence of the pump field inside the ring resonator and
examine the dependence of the field buildup in the ring on the
pump pulse duration, the scattering loss in the ring, and the
coupling between the channel and ring waveguides.

The classical pump pulse field, E1(t ), incident on the ring
resonator is taken to be a classical Gaussian pulse of the form

E1(t ) = E (+)
1 (t ) + E (−)

1 (t ),

where

E (+)
1 (t ) = E0

√
TR

τ
exp

(
−2 ln (2)

t2

τ 2

)
exp(−iωPt ), (1)

and E (−)(t ) = [E (+)(t )]∗. Here τ is the duration of the pulse
(FWHM of the intensity), ωP is the pulse carrier frequency, TR

is the ring round-trip time (discussed in more detail below),
and E0 is the amplitude of the pulse. The factor of 1/

√
τ is

included so that the energy of the pulse is independent of the
pulse duration. We do this so that we can study the squeezing
level in the ring for many different pumping durations, with
a constant amount of energy going into the system. In the
following, only the positive frequency part of the input field
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is needed, because we are using the rotating wave approxima-
tion.

In calculating the coupling of the field in and out of the
ring, it is easier to work in the frequency domain. We define
the Fourier transform of the time-dependent field as

Ẽ (ω) =
∫ ∞

−∞
E (+)(t ) exp(iωt )dt, (2)

and the inverse Fourier transform as

E (+)(t ) = 1

2π

∫ ∞

−∞
Ẽ (ω) exp(−iωt )dω. (3)

The Fourier transform of the input pulse of Eq. (1) is

Ẽ1(ω) = Ẽ0

√
τ

TR
exp

(
− (ω − ωP )2τ 2

8 ln 2

)
, (4)

where Ẽ0 ≡ E0TR
√

π/[2 ln (2)]. The bandwidth �ω (FWHM
in frequency) of the input pulse is related to the pulse duration
τ by �ω = 4 ln (2)/τ .

The fields in the ring and channel are assumed to couple
at a point, as indicated in Fig. 1. The fields incident on the
coupling point are Ẽ1(ω) in the channel and Ẽ3(ω) in the ring.
The fields leaving the coupling point are Ẽ2(ω) in the channel
and Ẽ4(ω) in the ring. The input and output field components
are defined at locations just to the left and right of the coupling
point, respectively. The input and output fields are related by
a transfer matrix as(

Ẽ4(ω)
Ẽ2(ω)

)
=

(
σ iκ
iκ σ

)(
Ẽ3(ω)
Ẽ1(ω)

)
, (5)

where σ and κ are real numbers called the self- and cross- cou-
pling coefficients, respectively. This is the form of the transfer
matrix that is commonly used [25]. The coupling is assumed
to occur at a single point, so the field components that pass
through the coupling point and stay in the same waveguide do
not acquire a phase. However, the field components that cross
over into the other waveguide at the coupling point do acquire
the phase i. This phase is needed in order to conserve power
across the coupling point (i.e., the transfer matrix must be
unitary). Additionally, the coupling is assumed to be lossless,
so we obtain the relation |σ |2 + |κ|2 = 1. The fields Ẽ4(ω)
and Ẽ3(ω) are related by

Ẽ3(ω) = a exp(i	)Ẽ4(ω). (6)

Here, a, is the field attenuation after one circuit of the ring
(excluding any coupling to the straight waveguide); this is
related to the scattering power-loss coefficient, αsc, in the ring
by a = exp(−αsc2πR/2). In what follows, we assume that a is
frequency independent, and also that a and κ are independent
of each other. The single-circuit phase shift 	 in the ring is
given by 	 = 2πRk, where k = 2πneff/λ, where neff is the
effective index of refraction for the pump mode in the ring
and λ is the free space wavelength. The phase shift can also
be expressed as

	 = ωTR, (7)

where TR = neff2πR/c is the ring round-trip time. For light
that is on resonance with a mode in the ring, the phase
shift is 	 = 2πm, where m is a positive integer (the mode

number). Thus, in order to ensure that the pump frequency is
on resonance with the ring, it is chosen to be ωP = 2πmP/TR,
where mP is the pump mode number. In all that follows, we
will scale the time, the pump duration, and the pump pulse
amplitude by the round-trip time TR; consequently, all of the
results that follow are independent of the ring radius and
mode number.

We choose the frequency of the signal and idler pho-
tons to both be ωS = ωP/2 (where S stands for “squeezed
light”), such that the mode number for the squeezed light
is mS = mP/2. The coupling coefficients are assumed to be
frequency independent. This is a good approximation as long
as the pump pulse is in a single mode. We assume that the
ring waveguide dimensions have been chosen such that the
squeezed light mode has the same neff as the pump mode (i.e.,
they are phase matched). This has been demonstrated in an
AlN ring resonator [17] for a waveguide with a height of 1 μm
and a width of 1.10 μm, and in AlGaAs nanowaveguides [26].

Using Eqs. (5) and (6), we find that the field inside the ring
is given by

Ẽ3(ω) = i
√

1 − σ 2 a exp(iωTR)

1 − σa exp(iωTR)
Ẽ1(ω). (8)

The ratio of intensity inside the ring to the incident intensity
in the channel is defined as the buildup factor,

B(ω) ≡
∣∣∣∣ Ẽ3(ω)

Ẽ1(ω)

∣∣∣∣
2

= (1 − σ 2)a2

1 − 2σa cos(ωTR) + σ 2a2
. (9)

It is maximized for light that is on resonance with the ring, i.e.,
cos(ωTR) = 1. Using ω = ωP in Eq. (9) gives the maximum
value of the buildup factor,

B(ωP ) = (1 − σ 2)a2

(1 − σa)2
. (10)

The value of a that maximizes Eq. (10) is a = σ . This is
known as critical coupling.

To ensure that the squeezed light will be generated mostly
in a single mode with frequency ωS we require that the pump
pulse almost exclusively couples into a single mode in the
ring with frequency ωP. In Fig. 2(a) we demonstrate that with
an incident pulse with duration τ = 2TR (thick line), virtually
all of the pulse intensity couples into a single ring resonance
(thin red line). In contrast, in Fig. 2(b) we show that, by
reducing the pulse duration to τ = TR/4, the broadening of the
pulse in frequency causes some of its intensity to couple into
adjacent modes. Thus, in all that follows, we restrict ourselves
to pulses with duration τ � TR to ensure the squeezed light
is generated almost entirely in a single mode. Although two-
mode squeezed light could also be generated in a number
of different mode pairs that satisfy energy conservation, we
assume that generation in those other modes is suppressed
because they are not well phase matched.

The intensity decay rate � of light in the ring cavity is
given by

� ≡ αtot2πR

TR
= 1

TR

[
ln

(
1

σ 2

)
+ ln

(
1

a2

)]
, (11)

where αtot is the total loss coefficient for the ring. It is given
by αtot = αsc + αcpl, where αsc is given above, and αcpl is

023705-3



COLIN VENDROMIN AND MARC M. DIGNAM PHYSICAL REVIEW A 102, 023705 (2020)

Ring
Channel

FIG. 2. The intensity buildup (in three ring modes) of the pump
pulse with durations of (a) τ = 2TR and (b) τ = TR/4. The normal-
ized intensity of the input pulse in the channel is |Ẽ1|2/Ẽ 2

0 (thick
curve), and the normalized intensity of the pulse in the ring, after its
intensity has built up, is |Ẽ3|2/Ẽ 2

0 (thin red curve). The buildup factor
(dashed line) and intensity are calculated with σ = 0.6 and a = 1.

defined by the equation σ = exp (−αcpl2πR/2) [27] and is
the power-loss coefficient due to light coupling out of the ring
into the channel. To obtain strong squeezing in the ring, the
intensity decay rate multiplied by the round-trip time must
be small, i.e., �TR � 1. If the loss is small enough such that
(1 − σa) � 1 then from Eq. (11) we obtain

� ≈ 2(1 − σa)

TR
. (12)

The decay rate � gives an estimate of the width of the peaks
in the the buildup factor.

The time-dependent pump field, E3(t ), inside the ring just
to the left of the coupling point (see Fig. 1) is calculated by
taking the inverse Fourier transform of Eq. (8), giving

E3(t̃ ) = iκaE0√
π

exp(−i2πmPt̃ )

√
τ̃

8 ln 2

×
∫ ∞

−∞
d

exp[−2τ̃ 2/(8 ln 2) − it̃]

exp(−i) − σa
, (13)

where  ≡ (ω − ωP )TR, t̃ ≡ t/TR, and τ̃ ≡ τ/TR. The integral
is real because we integrate  from −∞ to ∞. This is the
general expression that we use in our simulations. In the low-
loss limit, where (1 − σa) � 1, the integral in Eq. (13) can be
evaluated using Voigt functions [28] (see Appendix A), and
we obtain the approximate expression

|E3(t̃ )| =
√

πκaτ̃ ez(t̃ )2
erfc[z(t̃ )]√

8 ln 2
|E (+)

1 (t̃ )|, (14)

where

z(t̃ ) ≡ (1 − σa)τ̃√
8 ln(2)

−
√

8 ln(2)t̃

2τ̃
, (15)

and erfc(x) = 1 − erf (x), where erf (x) is the error function.
In the following sections, we shall use this expression to

optimize the incident pump pulse duration to achieve the
greatest nonlinear response in the ring. We note parentheti-
cally that Eq. (14) would also be useful for calculating clas-
sical nonlinear processes such as second harmonic generation
or parametric downconversion in a ring resonator, using the
undepleted pump approximation.

In this section, we have derived an expression for the time-
dependent pump field inside the ring, which we shall use in the
following section to calculate the generation of the squeezed
state.

B. Quadrature squeezing inside a lossy ring cavity

In this section we present the main theory behind quadra-
ture squeezing inside the ring.

The Hamiltonian for light inside the ring, using the unde-
pleted pump approximation, is given by [29]

Ĥ = Ĥ0 + γ E3(t )b̂†2 + γ ∗E∗
3 (t )b̂2, (16)

where the interaction-free part of the Hamiltonian is Ĥ0 =
h̄ωSb̂†b̂, and the last two terms account for the SPDC pro-
cess. The operator b̂ is the annihilation operator for the
squeezed light photons in the ring. The nonlinear coupling
coefficient between the pump, E3(t ), and squeezed light is
γ = h̄ωPχ

(2)
eff /n2

eff , where χ
(2)
eff is an effective nonlinear suscep-

tibility that depends on the intrinsic nonlinear susceptibility
of the ring material and spatial mode profiles in the ring [30].
Note that we neglect any nonlinear interactions in the channel
waveguide, because the pump intensity is much smaller there.
The pump field is given in Eq. (13), where only the positive
frequency part is used, as we are using the rotating wave
approximation.

The effects of scattering and coupling losses on the dynam-
ics of the generated light in the ring can be modeled using the
Lindblad master equation for the density operator ρ̂ [31]:

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] + �

(
b̂ρ̂b̂† − 1

2
b̂†b̂ρ̂ − 1

2
ρ̂b̂†b̂

)
, (17)

where � is the decay rate for the squeezed light generated in
the cavity. It is given in Eq. (11), where now σ and a cor-
respond to the coupling and loss parameter for the squeezed
light. For simplicity, we have assumed that the squeezed light
and the pump have the same coupling and loss parameters, but
it is straightforward to generalize this within our theory. The
effects of thermal photon populations are negligible at room
temperature for the optical frequencies of interest, and so they
are not included.

It was recently shown [24] that the exact solution to
Eq. (17) for the Hamiltonian given in Eq. (16) is a squeezed
thermal state, which can be written as

ρ̂(t ) = Ŝ(ξ (t ))ρ̂th(β(t ))Ŝ†(ξ (t )), (18)

where

ρ̂th(β(t )) = (1 − e−β(t )h̄ωP/2)−1e−β(t )Ĥ0 (19)

is the density operator for a thermal state at an effective
time-dependent temperature T (t ) = [kBβ(t )]−1, where kB is
the Boltzmann constant. In what follows, rather than use the
effective temperature, we characterize this thermal state by the
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average thermal photon number, which is given by

nth(t ) = (eβ(t )h̄ωP/2 − 1)−1. (20)

The operator Ŝ is a unitary squeezing operator, given by

Ŝ(ξ (t )) = exp 1
2 (ξ ∗(t )b̂2 − ξ (t )b̂†2), (21)

with a complex squeezing parameter ξ (t ) = u(t ) exp[iφ(t )].
The form of the state given in Eq. (18) is only a solution
to the Lindblad master equation if the squeezing amplitude
u, squeezing phase φ, and average thermal photon number
nth obey the following three coupled first-order differential
equations:

1

�

du(t )

dt
= g(t )

2
− cosh u(t ) sinh u(t )

2nth(t ) + 1
, (22)

dφ(t )

dt
= −ωP, (23)

1

�

dnth(t )

dt
= sinh2 u(t ) − nth(t ). (24)

Here,

g(t ) ≡ 4|γ ||E3(t )|
h̄�

(25)

is a dimensionless function of time that we will refer to as
the pumping strength [24]; it is the ratio of the pumping rate
to the total decay rate of the squeezed light in the cavity.
It is constructed such that when g(t ) = 1, the rate of signal
generation in the ring equals the signal loss out of the ring.
Using the approximate expression for the field in Eq. (14), we
can write the pumping strength as,

g(t̃ ) = g0
κa

�̃

√
τ̃

8 ln 2
exp

(−2 ln(2)t̃2

τ̃ 2

)

×√
πez(t̃ )2

erfc[z(t̃ )], (26)

where �̃ ≡ �TR and g0 ≡ 4|γ |E0TR/h̄ is a dimensionless
parameter. The pumping strength is the function that drives
the squeezing processes, and directly affects the amount of
squeezing in the ring. A large peak value in the pumping
strength will generate substantial quadrature squeezing. In
Fig. 3, the pumping strength in the ring is plotted as a function
of time for a = σ = 0.99 (critical coupling) and g0 = 0.413.
Initially (t = −∞), the pumping strength in the ring is zero.
As the input pulse starts to coupling into the ring the pumping
strength begins to build up. At t = 0, the input pulse takes
on its peak value at the coupling point in the channel. Some
time later the pumping strength reaches its peak value. As can
be seen, this time and the maximum value that the pumping
strength reaches depend on the duration of the input pulse
τ in the channel. For a short input pulse duration of τ̃ = 1,
the pumping strength very quickly builds up to its peak value.
The longer the input pulse becomes, the more time it takes for
this to occur. For very long input pulses, the peak pumping
strength will scale as 1/

√
τ , but the dependence on the pump

duration is more complicated for shorter pulses and, as can
be seen, the maximum pumping strength is in fact achieved
for intermediate pulse durations. We denote the input pulse
duration that maximizes the peak pumping strength by τg.
In Appendix B, we derive the following approximate but

-500 0 500
0
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2
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6

7

FIG. 3. The pumping strength g(t̃ ) in the ring for σ = a = 0.99
(critical coupling) generated with a short input pulse (τ̃ = 1) (solid
thin line), a pulse τ = τg that gives the highest peak in g (solid bold
line), and a long pulse (τ̃ = 300) (dashed line).

accurate expression for τg in the low-loss limit (1 − σa) � 1:

τ̃g ≈ 0.342

√
8 ln 2

1 − σa
. (27)

Also in Appendix B, we show that a pulse duration of τg given
in Eq. (27) causes the pumping strength to peak at the time

t̃peak = 1

2(1 − σa)
, (28)

which is 1/�̃, assuming that (1 − σa) � 1.
Before proceeding, we note that we could have used the

field E4(t ) rather than E3(t ) and produced similar results. They
are related by E3(t ) = aE4(t − TR). However, the field E3(t )
is a more conservative representation of the field inside the
ring, because it has been reduced by the attenuation loss of
one additional round trip relative to E4(t ).

The initial conditions for Eqs. (22) to (24) are evaluated at
an early time, ti (<0), when the incident pump pulse amplitude
is negligible. The initial state of the system is the vacuum
state, which means that u(ti ) = 0 and nth(ti ) = 0. We set the
initial squeezing phase, φ(ti ), to be φ(ti ) = 0, so that the time-
dependent phase is given by φ(t ) = −ωP(t − ti ). In numerical
calculations, the absolute value of the initial time must be
chosen such that |ti| � τ .

The numerical solution of the coupled equations (22)
to (24) enable us to determine the time-dependent level of
quadrature squeezing in the ring. To this end, quadrature
operators X̂ and Ŷ are defined as

X̂ = b̂†e−iθ (t ) + b̂eiθ (t ), (29)

Ŷ = i(b̂†e−iθ (t ) − b̂eiθ (t ) ). (30)

Here the quadrature phase θ (t ) is defined as θ (t ) ≡ ωS (t − ti ).
We include this phase so that the expectation value of the
quadrature does not contain fast oscillations in time, because
this choice cancels with the phase φ(t ) of the squeezed state.
The noise in the X̂ and Ŷ quadratures is defined as the square
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root of the variance, and written as �X and �Y . Using
Eq. (18) they can be shown to be given by [32]

�X (t ) =
√

2nth(t ) + 1 e−u(t ), (31)

�Y (t ) =
√

2nth(t ) + 1 eu(t ). (32)

Multiplying Eqs. (31) and (32) together gives

�X (t )�Y (t ) = 2nth(t ) + 1. (33)

If nth = 0, then �X�Y = 1 and a squeezed vacuum state is
recovered, with �X = exp(−u) and �Y = exp(u). With our
choice of quadrature operators, the noise in either quadrature
for a vacuum state (u = 0) is simply �X = 1 and �Y =
1. Therefore, squeezing below the vacuum noise in the X̂
quadrature occurs when �X < 1 in Eq. (31). The expectation
value of the photon number for the squeezed thermal state can
be shown to be given by [32]

〈n̂〉 ≡ 〈b̂†b̂〉 = nth(t ) cosh[2u(t )] + sinh2[u(t )]. (34)

When nth = 0, the expectation value of the photon number is
sinh2(u), which is the result obtained for a squeezed vacuum
state.

III. RESULTS AND DISCUSSION

In this section, we present our numerical solutions to the set
of equations (22) to (24). We solve them using a fourth-order
Runge-Kutta method; the total run time for a given configura-
tion is on the order of a few seconds on a standard PC. We also
derive an approximate analytic expression for the minimum
quadrature noise in terms of the peak pumping strength, and
an expression for the optimum choice of σ (or alternatively,
κ) that produces the global minimum in the quadrature noise.
In addition, we numerically determine the pulse duration that
produces the minimum quadrature noise for a given κ and
show that it is close to τg, as given in Eq. (27). We discuss
the effects of scattering loss a on the quadrature noise, and
the optimum coupling coefficient and pulse duration. Finally,
we study the sensitivity of the minimum quadrature noise to a
phase offset due to imperfect homodyne detection.

In the remainder of this paper, we use the following values
for our pump and ring parameters. We take the ring material
to be AlGaAs with χ

(2)
eff = 100 pm/V [18], neff = 2.85, and

ωP = 2π × 135.73 THz (λP = 775 nm). The amplitude of the
input pulse E0 can be written in terms of the total pump pulse
energy U as

E0 =
(

4 ln 2

π

)1/4
√

2U

Ac neffε0TR
, (35)

where A = 0.71 μm2 is the cross-sectional area of the ring
waveguide, ε0 is the permittivity of free space, and c is the
speed of light. The energy of the incident pulse is chosen to
be U = 0.188 pJ (independent of the pulse duration). This
value of U produces a substantial amount of squeezing, but
generally does not lead to significant pump depletion, even
for low-loss cavities.

The radius of the ring required to give a resonance at
the pump frequency is R = mPc/(ωPneff ), where we have
used Eq. (7) with ω = ωP and 	 = 2πmP. We choose the
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FIG. 4. (a) The quadrature squeezing �X (thick line) and pump-
ing strength g (thin line) as a function of time, and (b) the squeezing
amplitude u (thick line) and thermal photon number nth (thin line)
as a function of time for an input pulse duration of τ̃ = 300 and
coupling constant σ = a = 0.99. The time at which �X is minimum
is t̃min ≈ 40, indicated by the vertical line.

pump mode number to be mP = 200, which makes the ring
radius approximately equal to R ≈ 25 μm. The ring round
trip time is given by TR = 2πRneff/c, and in this case is TR ≈
1.47 ps. We present our results in terms of the dimensionless
parameters t̃ ≡ t/TR and τ̃ ≡ τ/TR. Once this is done, the
only place where R enters our model is in the amplitude of
the pumping strength in Eq. (26). Thus in order to make our
results independent of R we require E0TR be constant. We
collect all the dimensional parameters above into the single
dimensionless constant, g0, which was introduced in Eq. (26).
For the above choice of parameters, g0 = 0.413.

A. Dynamics of the squeezing process

We begin by examining the time-dependent quadrature
noise �X in the ring in Fig. 4(a) for σ = a = 0.99 (critical
coupling), for an input pulse duration of τ̃ = 300. Initially the
pumping strength is zero and the quadrature noise is equal to
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FIG. 5. The same plots as in Fig. 4 but for an input pulse duration
of τ̃ = 1. Note that now the time at which �X is minimum is
t̃min ≈ 26.

the vacuum noise �X = 1. As the pumping strength builds up,
the quadrature noise gets squeezed below the vacuum noise
(�X < 1). We find that the quadrature noise is a minimum at
approximately (but not exactly) the time at which the pumping
strength is at its peak, that is, at t̃min ≈ 40 (indicated by the
vertical line). Finally, when the pump pulse couples out of the
ring, the quadrature noise returns to the vacuum noise. The
time-dependent squeezing amplitude u and thermal photon
number nth are shown in Fig. 4(b) for the same parameters.
As the squeezing amplitude increases, the quadrature noise is
squeezed by the factor exp(−u). However, the tradeoff is that
the thermal photon number also increases, which results in
an increase in the quadrature noise by the factor

√
2nth + 1.

Thus the minimum quadrature noise does not happen when
the squeezing amplitude is maximum, but instead at an earlier
time closer to when the pumping strength is maximum and the
thermal photon number is much less than its peak value.

In Fig. 5(a), we examine a setup similar to the one above,
except our input pump pulse has a much shorter duration
of τ̃ = 1. Here, the pumping strength quickly reaches its
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FIG. 6. The same plots as in Fig. 4 but for an input pulse duration
of τ̃ = τ̃g ≈ 40. Note that now the time at which �X is minimum is
t̃min ≈ 29.

peak value and does not spend much time building up in
the ring. The quadrature noise is not as squeezed as it
was with the long pulse. Additionally, with the short pulse,
the minimum quadrature noise does not occur at the same
time as when the pumping strength is at its peak. In this
case the peak pumping strength occurs at approximately t̃ ≈ 2
and the minimum quadrature noise occurs at approximately
t̃min ≈ 26. The time-dependent squeezing amplitude and ther-
mal photon number are shown in Fig. 5(b) for the same short
pulse. The thermal photon number is significantly smaller
now, so the factor

√
2nth + 1 is less detrimental to the squeez-

ing. As a result we find that the minimum quadrature noise
now occurs closer to the time when the squeezing amplitude
is at its peak value.

Having examined the two extreme cases of a long pulse
and short pulse, we now consider the most interesting case for
quadrature squeezing. We pump the ring with an input pulse
duration τg [given by Eq. (27)] that gives the greatest peak
value of the pumping strength. For σ = a = 0.99, τ̃g ≈ 40.
In Fig. 6(a) the time-dependent quadrature noise is shown
for this pulse. When compared to the short and long pulses,
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we find that this duration produces the greatest quadrature
squeezing. The minimum quadrature noise occurs at roughly
the same time as the peak value of the pumping strength; using
Eq. (28) the peak pumping strength occurs at t̃peak ≈ 25, while
the quadrature noise is a minimum at t̃min ≈ 29. The time-
dependent squeezing amplitude and thermal photon number
for this pulse duration are shown in Fig. 6(b). The peak
squeezing amplitude is reduced by a factor of approximately
2 compared to the long pulse. However, the depletion of the
squeezing amplitude is counteracted by the thermal photon
number being reduced by a factor of roughly 105. This shows
that the thermal noise is much more sensitive to the duration of
the input pulse than the squeezing amplitude is, and therefore
it is better to err on the side of using a relatively shorter pulse
in a lossy ring resonator.

1. Minimum in the quadrature noise

We have demonstrated how the minimum in �X depends
on the pulse duration τ . Here we derive an analytic expression
for the minimum quadrature noise �Xmin. Setting the deriva-
tive of �X (t ) in Eq. (31) equal to zero at the time tmin and
simplifying gives

dnth(t )

dt

∣∣∣∣
t=tmin

− [2nth(tmin) + 1]
du(t )

dt

∣∣∣∣
t=tmin

= 0. (36)

Replacing the derivatives in Eq. (36) with Eqs. (22) and (24),
and using Eq. (31) to simplify, gives

�Xmin(τ ) = 1√
1 + g(tmin, τ )

, (37)

where g(tmin, τ ) is the pumping strength evaluated at the time
when the quadrature noise is at its minimum. In general,
we evaluate g(tmin, τ ) numerically in order to calculate the
minimum quadrature noise for a given σ , a, and τ . If the
input pulse duration is close to or larger than τg, then the
value of the pumping strength at the time when the quadrature
noise is minimum is roughly the same as the peak value of
the pumping strength [see Figs. 4(a) and 6(a)]. Thus, we can
neglect the difference between g(tmin) and the peak value
of the pumping strength. That is, if the pulse duration is
considerably longer than TR, then the pumping strength does
not vary appreciably over a timescale of a few round trips of
the ring. This approximation improves as the pulse duration
increases. Conversely, this approximation is not valid for the
setup in Fig. 5(a) for the short pulse, as we discussed earlier.
Let gmax(τ ) denote the peak pumping strength as a function
of τ . Then, since for pulses durations τ � TR gmax(τ ) ≈
g(tmin, τ ), we obtain the following approximate expression for
the minimum quadrature noise:

�Xmin(τ ) ≈ 1√
1 + gmax(τ )

(τ � τg). (38)

Therefore the minimum quadrature noise is expressed in terms
of the peak pumping strength, for which we have an expres-
sion in Eq. (26). The advantage of Eq. (38) is that it gives the
minimum quadrature noise as a function of τ and σ , without
having to solve the coupled differential equations numerically.
Additionally, letting τ = τg in Eq. (38), and using Eqs. (27)

and (28), gives the following result:

�Xmin(τg) ≈
⎡
⎣1 + 0.653

g0a

�̃

√
1 − σ 2

1 − σa

⎤
⎦

− 1
2

. (39)

This is the minimum quadrature noise in the ring for the
pulse duration of τg, as a function of σ and a. For a given
σ and a, we will show in the next section that this expression
approximately gives the best quadrature squeezing. We will
assess the accuracy of the expression given in Eqs. (38) and
(39) below.

B. Dependence of the minimum quadrature noise on pulse
duration and coupling

The minimum quadrature noise depends on the pulse du-
ration τ , coupling σ , and scattering loss a. Thus far, the
numerical results that we have presented have been only
for the case of very low scattering loss at critical coupling
(σ = a = 0.99), and for only three pulses. We have shown
that, compared to short and long pulses, τg generates the best
quadrature squeezing for a given σ and a. In this section,
we present numerical results for the maximum quadrature
squeezing as a function of the coupling constant and pump
duration for different scattering loss in the ring. We will
show that the choice of critical coupling, although an obvious
starting point, is not the optimal choice in order to achieve the
global minimum in the quadrature noise for a given a. In fact,
we find the global minimum in the quadrature noise is in the
undercoupled (σ > a) regime and derive an approximation
analytic expression for the optimal coupling.

Our analysis is done by computing the minimum quadra-
ture noise �Xmin(τ, κ ) as a function of pulse duration and cou-
pling for different attenuation constants a. Then we numeri-
cally determine the optimal choices for the pulse duration and
coupling, and finally compare them to approximate analytic
expressions that we derive.

In Fig. 7 we plot the minimum quadrature as a function of
the coupling coefficient and pulse duration for four different
loss parameters a. First, in Fig. 7(a), we consider the case
where there is no scattering loss (a = 1). In this case, the
minimum quadrature noise decreases as the cross-coupling
constant κ goes to zero (or σ goes to one). Consequently, we
find no optimum value of κ that gives a global minimum in
the quadrature noise. This is expected, because as κ goes to
zero the buildup factor continues to increase without bound.
In the figure, there are two hatched areas. The darker hatching
(around κ = 0.1) is where the expectation value of the number
of generated photons is at least 1% of the average number
of pump photons (〈npump〉 ∼ 2 × 106); thus, our undepleted
pump approximation is becoming less accurate. The second,
lighter hatching (where κ < 0.1) indicates when our simula-
tions break down, because the decay rate �̃ goes to zero as
κ goes to zero. The blue dotted line in the figure indicates
the computed pulse duration that gives the best quadrature
squeezing for a given κ . The red curve is the input pulse
duration τg(κ ) given by Eq. (27). The fact that τg fits agrees
well with the computed optimal pulse duration means that the
minimum in the quadrature noise is approximately where the
peak pumping strength is the greatest. For short pulses, or
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FIG. 7. The minimum quadrature noise �Xmin as a function of the input pulse duration τ̃ and cross-coupling constant κ for attenuation
constants of (a) a = 1, (b) a = 0.99, (c) a = 0.98, and (d) a = 0.95. The blue dots indicate the computed pulse duration needed to minimize
�Xmin for a given κ . The solid red line is the pulse duration τ̃g(κ ) as a function of κ given by Eq. (27). The red circles in (b)–(d) mark the
point at which the quadrature noise is at a global minimum for the given value of a. The vertical black lines in (b)–(d) indicate critical coupling
(σ = a, i.e., κ = √

1 − a2). The light hatched area in (a) marks the parameter space where our simulation does not converge. The dark hatched
areas in (a) and (b) indicate regions where the number of generated photons is in excess of 1% of the of photons in the incident pump.

pulses larger than τg, the peak pumping strength is too small
in the ring and we see that the squeezing gets worse.

We now consider how introducing scattering loss into the
ring affects the squeezing. When there is loss, the buildup
factor has a peak value at critical coupling κ = √

1 − a2 (or
σ = a). In Fig. 7(b) the scattering loss is a = 0.99. Con-
sequently, there is substantial squeezing at the peak in the
buildup factor at critical coupling (indicated by the vertical
line), and the squeezing gets worse away from the peak, as
κ goes to zero (undercoupling) or one (overcoupling). We
observe excessive photon generation, at least as much as 1%
of the average number of photons in the pump pulse (hatched
area), for pulses longer than τg near critical coupling. The
optimum squeezing point (indicated by the red circle) is at
a κ that is lower than critical coupling in the undercoupled
regime, where the buildup of pump intensity is less, but the
cavity decay rate is smaller. This shows that in order to achieve
the largest squeezing it is preferable to have a lower cavity
decay rate than that obtained at critical coupling.

In Figs. 7(c) and 7(d) we increase the attenuation loss
in the ring to a = 0.98 and a = 0.95, respectively. As the
scattering loss in the ring is increased, critical coupling shifts
to higher κ and so does the optimum point (indicated by a red
circle); however, it still remains in the undercoupled regime.
In addition, the optimum point shifts to shorter pulses, which
is expected, because the longer the pulse is, the more thermal

photons are generated. Our approximate expression τg(κ ) is
still in quite good agreement with the numerical results, but is
not as accurate as when the loss was very low (a = 0.99). This
is because it is an approximate expression that is valid only
when (1 − σa) � 1 (see Appendix B). Interestingly, it still
fits quite well at the optimum coupling point, with a difference
of less than 2.3TR or a relative error of 18% when a = 0.95.
Using the approximate value for the pulse duration in this case
only leads to a 1% increase in the quadrature noise relative to
the optimal value.

An approximate expression for the optimum coupling
value σopt (or κopt) is given by minimizing �Xmin(τg) in
Eq. (39) with respect to σ for a fixed a. Doing this we obtain

σopt (a) ≈ −1 + √
3a2 + 1

a
. (40)

This is a good approximation as long as (1 − σa) � 1 and
τ � τg. In Fig. 8 we compare the σopt given by Eq. (40)
(curve) to the numerically computed value (circles). We find
the analytic result fits well for a � 0.9. Note that, as the scat-
tering loss increases, the difference between critical coupling
(dashed line) and σopt increases. Thus, for lossy systems the
optimum coupling value σopt shifts closer to 1 (undercoupling)
as compared to critical coupling. This compensates for the
decrease in a and makes the decay rate smaller. We note
that the difference between the quadrature noise at critical
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FIG. 8. The computed optimum self-coupling constant (circles)
and the approximate optimum coupling constant given by Eq. (40)
(solid line), as a function of attenuation loss a. The dashed line
indicates critical coupling.

coupling and optimum coupling is generally small; for a =
0.95, the quadrature noise is reduced by only ∼0.3 dB, and
for a = 0.99 by only ∼0.2 dB [see Figs. 7(d) and 7(b).
However, it is useful to know that one should err on the side
of undercoupling if possible.

C. Comparing the analytic expression for the minimum
quadrature noise to the numerical results

Generating the three-dimensional plots in Fig. 7 is a rel-
atively time-consuming process. To solve Eqs. (22)–(24) for
each τ and κ , and at each time step, we have do the integral in
Eq. (13) to obtain the pumping strength. To greatly speed up
this process we can instead use the approximate expression
for �Xmin(τ ) given by Eq. (38), which gives the minimum
quadrature noise as a function of the peak pumping strength,
gmax(τ ). The maximum value of gmax(τ ) can then be deter-
mined using the analytic expression for g(τ ) given in Eq. (26).
The relative error between the approximate expression for
the minimum quadrature noise in Eq. (38) and the numerical
result is defined as

Error ≡
∣∣∣∣ 1 −

√
1 + g(tmin)

1 + gmax

∣∣∣∣, (41)

so that when gmax = g(tmin) the error is zero. In Figs. 9(a) and
9(b) we plot the relative error as a function of τ and κ for
(a) a = 0.99 and (b) a = 0.95, respectively. As expected, the
relative error approaches zero for long pulses. For a = 0.99,
at the optimum point [indicated by a red circle in Fig. 9(a),
the relative error is approximately 0.02%. This reinforces our
assumption that gmax ≈ g(tmin) when τ � τg and a ≈ 1. The
relative error increases when the scattering loss increases.
However, for a = 0.95, the relative error is still only ≈1%,
indicating that the approximation can still be used confidently
when a � 0.95.

Letting σ = σopt in Eq. (39), we obtain the follow-
ing approximate expression for the global minimum in the

FIG. 9. The absolute value of the relative error [see Eq. (41)]
between the approximate expression for the minimum quadrature
noise and the numerically computed result, as a function of the
coupling coefficient and pulse duration for (a) a = 0.99 and (b)
a = 0.95. The red circles in (a) and (b) mark the point at which the
quadrature noise is at a global minimum for the given value of a

quadrature noise �Xopt ≡ �Xmin(τopt, σopt ) as a function of
the loss parameter a:

�Xopt ≈
⎡
⎣1 + 0.653g0

�̃(σopt )

√
a2 − (1 − √

3a2 + 1)2

2 − √
3a2 + 1

⎤
⎦

− 1
2

, (42)

where the cavity decay rate at the optimum coupling is
given by

�̃(σopt ) = −2 ln(−1 +
√

3a2 + 1). (43)

The optimum pulse duration τopt is approximately given by
τg(σopt ) ≡ τopt,

τ̃opt (a) ≈ 0.342

√
8 ln 2

2 − √
3a2 + 1

. (44)

The expression in Eq. (42) can be used to determine the ap-
proximate optimum squeezing level in the ring as a function of
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FIG. 10. (a) The computed squeezing and (b) antisqueezing level
versus scattering loss a, for the optimum coupling constant κopt when
τ = τopt (circles) and when τ = τopt/2 (stars). The curve in (a) is our
analytic expression for the squeezing, given by Eq. (42).

a. In Fig. 10(a) we compare the computed optimum squeezing
level (in dB) (circle) to the value obtained with the expression
in Eq. (42) (curve). As can be seen, the agreement is excellent,
with a maximum relative error of 3% (that is, an absolute
difference of 0.06 dB) when a = 0.9. The globally optimal
squeezing level (for the range of a considered) is approxi-
mately −9.15 dB for a = 0.99 and σ = 0.995. In Fig. 10(b),
we also show the computed antisqueezing level (i.e., �Y )
(circles), when the squeezing is optimal. We see that for the
global optimum in the squeezing, the antisqueezing level is
approximately 44 dB. Such a high level of antisqueezing
might be of concern if there is some jitter in the homodyne
detection, such that one is not measuring the light at the time
when it is maximally squeezed. In the same figure, we show
that by cutting the pulse duration in half [i.e., τopt/2 (stars)]
the antisqueezing level reduces to approximately 26 dB, while
the squeezing level is only modestly affected [see the stars
in Fig. 10(a)] (a change of less than 3%, or ∼0.3 dB for
a = 0.99). This result is useful for applications trying to
achieve fault-tolerant quantum computing in noisy environ-
ments [8,33,34].

D. Sensitivity of the minimum quadrature noise to a phase offset

Thus far we have assumed that the measurement of �X
is perfect; that is, the phase of the local oscillator in a
homodyne measurement is exactly matched to the phase of
the squeezed light signal. We now allow for a small phase
offset, δθ , between the phase of the signal and local oscillator,
and study the effect it has on the measured quadrature noise.
Letting θ (t ) = −φ(t )/2 + δθ in the original definition for the
quadrature operator in Eq. (29), the quadrature variance now is

(�Xδθ )2 = [2nth(t ) + 1][cosh 2u(t ) − cos(2δθ ) sinh 2u(t )].

(45)

We interpret δθ as the angular deviation from the X̂ quadrature
in phase space. If δθ = 0 then the squeezing �X is measured,

FIG. 11. The minimum quadrature noise �Xδθ (tmin, τ, κ ) for a
phase deviation of δθ = 5 mrad as a function of the coupling constant
and the pulse duration. The blue star indicates the optimal operating
point, while the red circle gives the optimum point found when
δθ = 0. The hatched area indicates where the noise is greater than
the vacuum noise (�Xδθ > 1).

and if δθ = π/2 then the antisqueezing �Y is measured.
In Fig. 11, we plot the minimum quadrature noise that
is measured if the phase offset is δθ = 5 mrad and the
attenuation loss in the ring is a = 0.99. We chose this value
of phase offset because it is close to what was found in a
recent experiment [35]. The hatched region shows where the
measured quadrature noise is greater than the vacuum noise
(�X > 1). We find that the quadrature noise has increased at
the previous optimum point that we found for an offset of zero
(indicated by the red circle) to �X ≈ 0.8. One can correct for
the increase in noise caused by the phase offset by reducing
the pulse duration to approximately τ̃opt/2 ≈ 26. Doing so
reduces the squeezing level to approximately �X ≈ 0.37,
which is close to the optimum level for an offset of zero
(�X ≈ 0.35). Note that the new optimal point (when there
is phase offset) occurs for essentially the same coupling
constant and only the pulse duration needs to be adjusted.
Note also that there are a number of combinations of τ and κ

that achieve a squeezing level of �X < 0.4 where one could
work. The results are most sensitive to a phase offset when the
scattering loss is small (a close to 1). For a � 0.98, a phase
offset of 5 mrad did not significantly perturb the minimum
squeezing level at τopt and κopt.

IV. CONCLUSION

In this work we have studied the time-dependent squeezing
process in a lossy microring resonator pumped by a Gaussian
pulse. We derived approximate analytic expressions for the
optimum pulse duration [Eq. (27)] and optimum ring-channel
coupling constant [Eq. (40)] for a fixed pump energy. Using
these optimal parameters, we derived an analytic expression
for the maximum squeezing level achievable for a ring with a
given loss a [Eq. (42)]. We found that for the chosen pump
energy of 0.188 pJ and a scattering loss of a = 0.99 the
optimal coupling constant and pulse duration are σopt = 0.995
and τopt = 56TR, while for a scattering loss of a = 0.95 we
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find optimal values of σopt = 0.974 and τopt = 13TR. Under
these optimal conditions, we demonstrated maximum squeez-
ing levels of −9.15 and −3.67 dB for a = 0.99 and a = 0.95,
respectively. Furthermore, we demonstrated that, by reducing
the pulse duration at optimal coupling, the antisqueezing
level can be drastically reduced, while the squeezing level is
only modestly affected. Moreover, we showed that our model
shows how one can reduce the impact of homodyning phase
noise on the squeezing simply by reducing the pump pulse
duration from the nominally optimal value. We believe that the
analytic expressions that we have developed for this system
will help researchers looking to optimize the design of ring
resonator systems for the generation of squeezed light.
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APPENDIX A: DERIVATION OF THE TIME-DEPENDENT
PUMP PULSE IN THE RING

In this section we derive an approximate expression for
the pump field in the ring, E3(t̃ ). We start with Eq. (13). To
simplify this, we define

χ () ≡ 1

exp(−i) − σa
. (A1)

We expand this in a Taylor series about  = 0,

χ () =
∞∑

n=0

nχ (n)(0)

n!
, (A2)

where

χ (n)(0) ≡ dnχ ()

dn

∣∣∣∣
=0

(A3)

is the nth order derivative of χ evaluated at  = 0. In the high
squeezing limit (1 − σa) � 1 it can be shown that, for n � 2,
the nth and (n − 2)th derivatives are related by

χ (n)(0)

n!
= − 1

ε2

χ (n−2)(0)

(n − 2)!
, (A4)

where ε ≡ 1 − σa. Using Eq. (A4) in Eq. (A2) and after
simplifying we find that we can write χ () as

χ () = 1

ε

(
1 + i/ε

1 + 2/ε2

)
. (A5)

The modulus squared of this is a good approximation to the
buildup factor around the peak at  = 0. Now we define the
integral in Eq. (13) as A(t̃ ). It is given by

A(t̃ ) = exp

(−2 ln(2)t̃2

τ̃ 2

) ∫ ∞

−∞
dχ ()

× exp

⎡
⎣−

(
τ̃√
8 ln 2

+ i

√
8 ln 2 t̃

2τ̃

)2
⎤
⎦, (A6)

where we have completed the square in the argument of the
exponential in Eq. (13) to get this form. Using Eq. (A5) in
Eq. (A6), we obtain

A(t̃ ) = 1

ε
exp

(−2 ln(2)t̃2

τ̃ 2

) ∫ ∞

−∞
d

1 + i/ε

1 + 2/ε2

× exp

⎡
⎣−

(
τ̃√
8 ln 2

+ i

√
8 ln 2 t̃

2τ̃

)2
⎤
⎦. (A7)

Now we make the following substitutions in Eq. (A7): y =
/ε, s = 2 ln(2)/(ε2τ̃ 2), and x = −it̃4 ln(2)/(ετ̃ 2). Doing
this we obtain

A(t̃ ) = exp

(−2 ln(2)t̃2

τ̃ 2

)

×
∫ ∞

−∞
dy

[
e−(x−y)2/(4s)

1 + y2
+ i

ye−(x−y)2/(4s)

1 + y2

]
. (A8)

The integrals in Eq. (A8) can be expressed in terms of Voigt
functions U (x, s) and V (x, s) [36]:

U (x, s) = 1√
4πs

∫ ∞

−∞
dy

e−(x−y)2/(4s)

1 + y2
(A9)

and

V (x, s) = 1√
4πs

∫ ∞

−∞
dy

ye−(x−y)2/(4s)

1 + y2
. (A10)

It can be shown that

U (x, s) + iV (x, s) =
√

π

4s
ez2

erfc z (A11)

with z = (1 − ix)/(2
√

s). Equations (A9)–(A11) allow us to
write Eq. (A8) as

A(t̃ ) = exp

(−2 ln(2)t̃2

τ̃ 2

)
πez(t̃ )2

erfc z(t̃ ). (A12)

Transforming back to our original variables τ̃ and t̃ , we obtain
z(t̃ ) = (1 − σa)τ̃ /

√
8 ln(2) − √

8 ln(2)t̃/(2τ̃ ). Replacing the
integral in Eq. (13) with the expression in Eq. (A12) gives
Eq. (14) in the text.

APPENDIX B: DERIVATION OF τg

In this section we derive an approximate expression,
Eq. (27), for the pulse duration τg that gives the peak in the
pumping strength (see Fig. 3). In order to do this, we first hold
τ constant and then find the time tpeak when the pump is at its
peak value. Then we determine the pulse duration that causes
the greatest peak value. We solve the following two equations
simultaneously:

∂g(t, τ )

∂t

∣∣∣∣
t=tpeak

= 0 (B1)

and

∂g(tpeak, τ )

∂τ

∣∣∣∣
τ=τg

= 0. (B2)
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Rewriting Eq. (14) in terms of z(t ) alone and ignoring the
factors that do not depend on t or τ , we find

g(t̃ ) ∝ √
τ̃ exp

(
− ε2τ̃ 2

8 ln 2
+ 2ετ̃ z(t̃ )√

8 ln 2

)
erfc z(t̃ ), (B3)

where ε ≡ 1 − σa, τ̃ = τ/TR, and t̃ = t/TR. Also TR∂/∂t =
∂/∂ t̃ and ∂/∂ t̃ = −(

√
2 ln 2/τ̃ )∂/∂z. Using Eq. (B3) in

Eq. (B1) and switching the derivatives to z, we obtain the
following implicit equation for z(t̃peak ):

ez2
peak erfc zpeak = 1√

π

√
8 ln 2

ετ̃
, (B4)

where zpeak ≡ z(t̃peak ). Now, using Eq. (B3) in Eq. (B2) and
noting that TR∂/∂τ = ∂/∂τ̃ , we obtain

0 = 1

2τ̃g
− τ̃gε

2

4 ln 2
+ 2εzpeak√

8 ln 2

+
(

2τ̃gε√
8 ln 2

− 2√
π

[
ez2

peak erfc zpeak
]−1

)
∂zpeak

∂τ̃

∣∣∣∣
τ̃g

,

0 = 1

2τ̃g
− τ̃gε

2

4 ln 2
+ 2εzpeak√

8 ln 2
, (B5)

where the second equation is obtained from the first by using
Eq. (B4). Solving Eq. (B5) for zpeak gives

z(t̃peak ) = ετ̃g√
8 ln 2

−
√

8 ln 2

4ετ̃g
. (B6)

Transforming Eq. (B6) back to time t and using Eq. (15), we
find that

t̃peak(τ̃g) = 1

2(1 − σa)
(B7)

is the time when g(τg) is at its peak value. The time t̃peak is the
inverse of the decay rate 1/�̃ in the low-loss limit (1 − σa) �
1. We can determine τ̃g by using Eq. (B6) in Eq. (B4). Doing
this gives the following transcendental equation:

exp

(
x − 1

4x

)2

erfc

(
x − 1

4x

)
= 1√

πx
, (B8)

where x ≡ ετ̃g/(8 ln 2)1/2. We have numerically determined
that the solution of Eq. (B8) is x ≈ 0.34189. Thus, τ̃g is
approximately given by

τ̃g ≈ 0.342

√
8 ln 2

1 − σa
, (B9)

which is the expression given in Eq. (27).
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