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Geometry-based circulation of local photonic transport in a triangular metastructure
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A geometry-based mechanism for inducing circulation of photons is illustrated by a metastructure consisting
of three quantum dots embedded in photonic structures and forming a triangle. The coupling between the photons
and the excitons in the quantum dots leads to a photon blockade and limits the number of photons participating
in the transport. In the steady state described by the quantum master equation of photons, the local photonic
currents exhibit distinct circulation patterns, which originate from the wave nature in a multipath geometry.
The geometry-based mechanism does not require an artificial gauge field from light-matter interactions. The
phase diagrams showing the regions of different patterns of circulation with and without the effective photon
interactions are presented. As the number of photons allowed per site increases, the regions saturate. By
using the third-quantization formalism, we show the circulation survives without any photon blockade in the
noninteracting case. Moreover, we demonstrate the decoupling of the direction of the local current from the
density difference and propose possible applications of the local photonic transport.
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I. INTRODUCTION

Quantum systems with interesting photonic transport prop-
erties play an instrumental role in quantum simulations [1,2]
and quantum information [3–5]. It is possible to induce ef-
fective photon interactions using optical nonlinearities in the
medium [1], so photonic systems can be used to simulate
a variety of model Hamiltonians such as the Bose-Hubbard
model [6], Jaynes-Cummings-Hubbard model [7], and Lieb-
Liniger model [8]. On the other hand, photons are noninter-
acting in the absence of medium effects, so they provide an
inherently decoherence-free system. By coupling the system
with photonic reservoirs, the cavity or circuit quantum elec-
trodynamics provides an ideal ground for simulating open
quantum systems [2,9,10]. Meanwhile, the rapid propagation
of photons [11] and the ability to be highly stable carriers of
quantum information [5] make photons an important player in
quantum information technology.

Photonic transport is a nonequilibrium process, which may
be described by the open quantum system approach [12] or
other frameworks [13–17]. There has been recent interest
in coupling photonic crystal arrays and quantum dots for
enhanced efficiency of the emission rate of the photons from
the quantum dots [18], as well as exciting physics such as co-
herent superradiance and high fidelity in quantum emitters for
quantum network applications [19,20]. Meanwhile, geometry
plays an important role in quantum transport. For instance, the
propagation speed of a wave packet reflects the group velocity,
which depends on the underlying lattice structure [21]. More-
over, counterintuitive local flows can arise due to multipath
geometries. For example, Ref. [22] shows the dynamics of
electrons in a conducting ring embedded in a cavity coupled
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to electrically biased leads may exhibit a persistent circular
current in the presence of a constant magnetic field. Reference
[23] shows that nonlocal correlations can be achieved by
entangling the photons placed in a triangle. In absence of any
magnetic field, Ref. [24] shows that the steady-state electronic
current flowing through a triangular triple quantum dot may
exhibit local circulations and reasons that the circulation is
due to the wave nature of the electrons spreading across the
underlying multipath geometry. Reference [25] shows that
local thermal current may flow from cold to hot in classical
harmonic systems by applying the idea of transporting waves
in multipath geometries.

There are many ways to induce a circulating current. For
charged particles like the electrons, an external magnetic field
can induce a circulating current in classical [26] as well as
quantum [27] systems. Although photons are charge neutral,
it is possible to exploit light-matter interactions to generate
an artificial gauge field [28–30], thereby driving the photons
the way a magnetic field drives a charged particle. Instead,
here we explore the geometry-induced circulation, which has
been shown to work for electrons and classical harmonic
systems [24,25]. As we will show shortly, the geometry-based
mechanism works for photonic transport and establishes its
universal properties.

There have been many theoretical frameworks for studying
photonic systems coupled to reservoirs [14,31–33]. Reference
[14] reviews the open system Keldysh functional integral
approach and its applications while Refs. [31–33] uses differ-
ent methods to study photons modeled by the Bose-Hubbard
Hamiltonian. In the following, the dynamics of the photons
will be described by the Lindblad equation [12], which allows
a detailed analysis of the local current through each link
in a multipath geometry. We will consider a metastructure
realizable by integrating three quantum dots with photonic
structures and waveguides, as illustrated in Fig. 1. The system
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FIG. 1. The quantum dot–photonics metastructure for studying
the geometry-based circulation of photons. The three quantum dots
are embedded in the three photonic cavities labeled by 1, 2, and 3.
The cavities are connected by photonic waveguides. The quantum
dots provide excitons for coupling to the photons, and only the
photons coupled to the excitons are transported via the waveguides.
The photonic transport is described by the effective hopping of the
photons and effective repulsion from the underlying electrons. Site 1
(3) of the system is connected to a photon pump (sink) via additional
waveguides for maintaining a steady state.

is coupled to two photonic reservoirs for sustaining a steady-
state current. The photonic transport in the metastructure will
be shown to exhibit steady-state circulations without any arti-
ficial gauge field. Importantly, the orientation and magnitude
of the circulation can be tuned by the system parameters as
well as the system-reservoir coupling.

While the Bose statistics of photons allows arbitrary num-
bers of photons on a given site, the quantum dot–photonics
metastructure considered here has a constraint on the photons
that can participate in transport. Due to the coupling between
the photons and the excitons in the quantum dots, the spectrum
of the coupled photons may differ from that of the uncoupled
photons. With carefully designed waveguides, only the pho-
tons coupled to the excitons can be transmitted [34]. Given the
limited number of excitons on each quantum dot, the number
of photons on each site that can participate in transport is
limited. This phenomenon is generally known as the photon
blockade [35–37]. Tuning the gate voltage of the quantum
dot may change the number of excitons, thereby providing a
possible way to control the number of photons on each site.

The ability to control the local photonic current may find
future applications. By encoding the binaries 0 and 1 by
the orientations of the circulation, the photonics–quantum
dot metastructure may serve as a memory element similar
to one using only the electronic transport in triangular triple
quantum dots [24]. Moreover, we will show that the steady-
state photonic transport establishes the decoupling of the flow
direction and the density difference. Thus, it is possible to
design systems which can transport photons in a preferential
direction regardless of the number of photons on the sites.

The rest of the paper is organized as follows. Section II
describes the metastructure and its modeling. The effec-
tive Hamiltonian and the Lindblad quantum master equa-
tion for studying the photonic transport are also presented.
Section III A shows the numerical results for the noninteract-
ing case, where we identify the clockwise and counterclock-
wise circulations. In Sec. III B, we present the phase diagrams
of the metastructure in the weak and strong interaction regime
and discuss how the interaction and system parameters in-
fluence the photon circulations. The dependence of the local
photonic transport on the maximal number of photons on each

site is discussed in Sec. III C. Section III D proves that the
photon blockade is not essential for the circulation by showing
the results without any limitation on the photon number.
Possible experimental realizations of the metastructure and
applications of the geometry-based photon circulation are
summarized in Sec. IV. We conclude our paper in Sec. V.
The Appendix summarizes the third-quantization formalism
for the system without photon blockade.

II. MODEL AND METHOD

As illustrated in Fig. 1, the quantum dot–photonics metas-
tructure that we envision consists of three quantum dots
embedded in three photonic cavities, forming a triangular ge-
ometry. Photonic waveguides are placed between the cavities
for transferring photons. The photonic crystal structure forms
the “photonic connections,” as the photons can evanescently
couple from one cavity to the waveguides [38,39], resulting
in photonic transport across the cavities. The system is con-
nected via additional waveguides to two photon reservoirs
acting as incoherent photon pump and sink for sustaining
the photonic transport across the metastructure. As we will
explain later, only the photons coupled to the excitons in
the quantum dots are transported through the system due to
their shifted dispersion. The main function of the quantum
dots is to provide excitons for coupling to the incoming and
outgoing photons.

A full description of the photons interacting with the
excitons in the quantum dots and moving via the waveguides
requires a microscopic Hamiltonian to include the photon
tunneling, photon-electron interactions, and electron-electron
interactions. Here we take a phenomenological point of view
and consider an effective model of the photons in the metas-
tructure. The electronic contribution has been integrated out
and the transfer of photons has been simplified as a hopping
process. Thus, we choose to model the photons in the metas-
tructure by an effective Bose-Hubbard Hamiltonian, which
includes the hopping of the photons and the effective inter-
actions between the photons due to the underlying electrons
in the quantum dots. Explicitly, the effective Hamiltonian is

H = −t1(c†
1c2 + c†

2c1 + c†
2c3 + c†

3c2)

− t3(c†
1c3 + c†

3c1) + U

2

3∑
i=1

ni(ni − 1). (1)

Here t1 is the tunneling coefficient between the first and
second sites, and we assume the tunneling coefficient between
the second and third sites is also t1 for simplicity. t3 is the
tunneling coefficient between the first and third sites. U is the
the effective onsite coupling constant and we assume repulsive
interactions with U � 0. ni = c†

i ci is the photonic number
operator at site i. We choose h̄ = 1 with the time unit T0 = h̄

t1
.

We treat the metastructure as an open quantum system
driven by the two reservoirs. Physical observables, such as the
density or current, can be obtained from the corresponding
expectation values once the time evolution of the reduced
density matrix of the photons participating in the transport,
ρ(T ), is known. In general, the evolution of ρ is not unitary
under the influence of the reservoirs and cannot be described
by the Liouville–von Neumann equation. Such a nonunitary
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evolution of ρ, nevertheless, may be investigated by the
Lindblad quantum master equation of the form [12,24,40]

∂ρ(T )

∂T
= L ρ(T )

= i

h̄
[ρ,H ] + γLNL

(
c†

1ρc1 − 1

2
{c1c†

1, ρ}
)

+ γL(NL + 1)

(
c1ρc†

1 − 1

2
{c†

1c1, ρ}
)

+ γRNR

(
c†

3ρc3 − 1

2
{c3c†

3, ρ}
)

+ γR(NR + 1)

(
c3ρc†

3 − 1

2
{c†

3c3, ρ}
)

. (2)

Here L is the Lindbladian, a superoperator describing the
nonunitary time evolution of ρ. H is the system Hamiltonian.
[A, B] and {A, B} represent the commutator and anticommuta-
tor of operators A and B. c†

i and ci are the photonic creation
and annihilation operators at site i.

The left and right system-reservoir coupling constants are
γL and γR, respectively. Assuming the left and right reser-
voirs have fixed photon numbers NL and NR, respectively,
the reservoirs emit photons at the rate γ jNj into the system
while they absorb photons at the rate γ j (Nj + 1) with j =
L, R, as shown in Eq. (2). Those exchange rates of photons
follow the assumption of Bose statistics and instantaneous
relaxation of the reservoirs. The rates also maintain the system
in equilibrium if only one reservoir is connected. Moreover,
the rate at which the photons are exchanged is consistent
with the quantum optical master equation [12,40]. There are
three basic assumptions [12,40] behind the Lindblad equation
(2): (1) the Born approximation, which assumes the system
interacts weakly with the reservoirs so that the influence of
the interaction is negligible on the reservoirs; (2) the Markov
approximation, or the memoryless reservoir condition, under
which the timescale associated with the system dynamics is
taken to be longer than the reservoir correlation time; and
(3) the secular approximation, under which one assumes the
timescale associated with the system dynamics is smaller
compared to the relaxation timescale of the system so that the
fast oscillating terms can be discarded.

The photonic current operator from site i to site j is
given by

Ji j = −i(ti jc
†
i c j − t jic

†
j ci ), (3)

where ti j takes the value t1 or t3 for J12 or J13, respectively.
The expectation value 〈A〉 of an operator A can be obtained
from Tr(ρA). Here Tr denotes the trace. After the steady-state
density matrix ρSS is found from Eq. (2), the steady-state
current and density can be obtained accordingly. In the steady
state, 〈J12〉 = 〈J23〉 if the photon loss inside the system is neg-
ligible. Thus, the total steady-state photonic current through
the metastructure is given by the steady-state value of

〈JT 〉 = 〈J13〉 + 〈J12〉. (4)

In absence of any constraint on the photon number on each
site, the density matrix for a bosonic system can be infinite
dimensional because each site can accommodate any number

of photons due to the Bose statistics. However, the coupling
between the photons and the electrons in the quantum dots
leads to a photon blockade due to the limited number of
available excitons in the quantum dots. Therefore, each site
can accommodate at most M photons. The photon blockade
thus introduces a truncated basis in the Fock space, allowing
at most M photons on one site. The states in the truncated
Fock space can then be constructed following Ref. [41].

The Lindblad Eq. (2) describes a homogeneous Markov
process. According to Ref. [42], there exists at least one
steady-state solution in a finite-dimensional space, which
applies to the case with the photon blockade. Reference [42]
shows that when ρ is rewritten as an equivalent column vector
the Lindblad superoperator L can be written as a square
matrix. However, L is usually not of the form of a normal
matrix and may not be diagonalizable. To overcome this
technical difficulty, we implement the fourth-order Runge-
Kutta method [43] to integrate Eq. (2) from a given initial state
and obtain the steady-state density matrix after the transient
behavior decays away. By evaluating the expectation values
in the steady state, the local photonic currents and occupation
numbers can be found.

In our simulations, the initial density matrix was set to
the one with no photons or maximally allowed numbers of
photons in the system. Both types of initial states lead to the
same steady-state density matrix. However, in the strongly
interacting regime when γ T0 is very small, the convergence to
the steady-state value can be slow, so we use the steady-state
value of an adjacent point in the parameter space as the initial
condition to achieve faster convergence. Importantly, we have
checked that ρSS obtained from the numerical integration
of Eq. (2) indeed makes the right-hand side vanish within
machine precision.

III. RESULTS AND DISCUSSIONS

A. Noninteracting photons with photon blockade

We begin with the photonic transport through the metas-
tructure illustrated in Fig. 1 in the incoherently driven-
dissipative regime with γL = γR = γ �= 0 and fixed NL = 1
and NR = 0. The photon blockade due to the photon-exciton
interaction will cap the number of photons on each site by
M. We begin with the noninteracting Hamiltonian with U = 0
and discuss the interaction effect later.

The case with at most one photon per site, M = 1, may be
experimentally realized by tuning the gate voltages to allow
only one exciton per quantum dot. The upper panel of Fig. 2
shows the time dependence of the local currents for t3/t1 =
0.6 and 1.4 and γ T0 = 0.5, exhibiting steady-state behavior
in the long-time limit. Importantly, one can see that J13 of the
case with t3/t1 = 0.6 as well as J12 of the case with t3/t1 = 1.4
flow against the pumping of the reservoirs.

The steady-state values of the local and total currents are
then extracted for different values of t3/t1 with fixed γ T0 =
0.5 and shown in the lower panel of Fig. 2. Note that the com-
bination of J12 > 0 and J13 < 0 corresponds to a clockwise
(CW) circulation of the photons in the metastructure shown
in Fig. 1 while the combination of J12 < 0 and J13 > 0 cor-
responds to a counterclockwise (CCW) circulation. There are
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FIG. 2. Top panel: The local currents J12 and J13 as functions
of time with t3/t1 = 0.6 and 1.4, γ T0 = 0.5, and M = 1 without
the onsite interaction (U = 0). The plateaus of the currents are the
signatures of a steady state. Bottom panel: The steady-state values of
the local currents J12 and J13 and the total current JT as functions of
t3/t1 with the same γ T0 and M, showing opposite signs of J12 and J13

in certain regimes.

other points showing both J12 > 0 and J13 > 0, corresponding
to the unidirectional (UD) flow. Throughout the paper, we will
use this criterion for labeling the orientation of the circulation.
As the ratio t3/t1 changes, the internal circulation of the
photons in the steady state can be tuned.

In the bottom panel of Fig. 2, the photons show CW
circulation (UD flow) when t3/t1 is small (intermediate in the
range 0.8 � t3/t1 � 1.2). For large t3/t1, the photons exhibit
CCW circulation. We emphasize that the internal circulation
of photons is a steady-state phenomenon, not a transient one,
because the long-time limit has been taken. The mechanism
behind the photonic circulations is a combination of the
wave nature of quantum particles and multipath geometry. As
explained in Ref. [24], the wave functions spread out over the
whole system in the triangular geometry during the dynamic
process, making it possible for one path to overflow while
another path transports the particles backward to compensate
for it. Utilizing the wave nature and multipath geometry,
Ref. [25] shows that local thermal current can flow in the
direction opposite to the total current as well. Since the mech-
anism transcends spin statistics, here we found circulation of
photons in a similar setup. Nevertheless, the Bose statistics of
photons allows us to explore the dependence of the circulation
on the number of particles allowed on each site, and we
will address this issue shortly. Moreover, the geometry based

circulation is not associated with any real or artificial gauge
field. Thus, there is no quantization condition on the vorticity
of the photons.

In the M = 1 photon blockade case, the nonmonotonic
dependence of JT on t3/t1 shown in Fig. 2 may be considered
as an indication of a change of the orientation of the photon
circulation in the metastructure. We notice that the M = 1
case of photons is similar to the spinless fermions studied
in Ref. [24] because there cannot be two particles on the
same site. However, a careful comparison shows that the
similarity is only qualitative because of the different spin
statistics. Specifically, the evaluations of the commutator in
Eq. (2) and the exchange terms with the reservoirs depend on
whether bosons or fermions are considered. The spin statis-
tics thus causes quantitative differences between the elec-
tronic transport and the photonic transport with the constraint
M = 1.

After establishing the existence of internal photon circu-
lations in the metastructure, it is important to check if the
circulation can survive in the photon blockade regime with
more photons per site, i.e., when M > 1. In the following, we
consider the cases with M = 2, 3, 4, 5 and show that the phase
diagrams of the photon circulation do not change much as M
increases. Later on we will show the phase diagram without
any photon blockade, M → ∞, and confirm that the photonic
transport already saturates for relatively small values of M.

Figure 3 shows the phase diagrams of the steady-state
flow patterns as a function of M, t3/t1, and γ . By compar-
ing the phase diagrams of noninteracting photons with M =
1, 2, 3, 4, 5, we infer that in the photon blockade regime with
higher numbers of photons per site the internal circulations
of photons survive and the regimes of both CW and CCW
circulations increase with M. As will be shown later, more
photons are present in each site when M increases. This in
turn increases the possible configurations of the photon wave
functions, leading to overshoots of the flows along certain
paths and causing the internal circulation.

B. Photons with effective interactions and photon blockade

While photons in vacuum do not have bare interactions
with each other [44], the photons in the metastructure shown
in Fig. 1 interact with the excitons in the quantum dots and
may experience an effective repulsion among themselves. To
investigate photonic transport in the presence of the effective
interactions, we introduce an effective onsite interaction in
Eq. (1) and calculate the steady-state expectation values of the
local currents from Eq. (2). After extracting the steady-state
pattern of the local flow, the phase diagrams of the interacting
photons in the metastructure are shown in Fig. 4.

When the coupling constant U is smaller or comparable
to the hopping coefficients, the results shown in the upper
row of Fig. 4 are qualitatively similar to the noninteracting
cases shown in Fig. 3. The regimes showing CW and CCW
circulations increase as M increases from 1 to 4, but then the
circulation regimes seem to saturate as M further increases.
The results thus establish that the photon circulation is not
unique to noninteracting systems.

As U increases further, the regimes showing CW or CCW
circulations are suppressed, as shown in the lower panel of
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FIG. 3. Phase diagrams showing the steady-state patterns of the photonic current with U = 0 and M = 1, 2, 3, 4, 5 (from left to right).
Here the pink upside-down triangles denote the CW circulation, the black circles denote the UD flow, and the blue triangle denote the
CCW circulation.

Fig. 4. For electronic transport in a triangular triple quantum
dot system, a similar suppression of circulations by onsite
interactions has been discussed in Ref. [24], where scattering
of the electrons due to the onsite interactions is believed to be
the reason for the suppression. Here the effective scattering
of photons may suppress the circulation as well, but the
Bose statistics of photons leads to more complicated phase
diagrams as shown in the bottom row of Fig. 4.

The regime of weak γ and strong U/t1 is interesting in
the sense that, as t3/t1 increases, intermediate regimes with

CW or CCW circulation are enclosed by the unidirectional-
flow regime for M = 3, 4, 5. For example, The lower-left
parts of the phase diagrams shown in the bottom row of
Fig. 4 have a CW regime emerging at small values of t3/t1,
but the UD regime occurs both above and below the CW
regime. The competition among the different circulations in
the small γ and strong interaction regime implies the system
is sensitive to the parameters, adding challenges to an accurate
measurement of the phase diagrams of strongly interacting
nonequilibrium systems.

FIG. 4. Phase diagrams showing the steady-state patterns of the photonic current for the cases with U = t1 (the top row) and U = 5t1 (the
bottom row). Here M = 2, 3, 4, 5 from left to right. The pink upside-down triangles denote the CW circulation, the black circles denote the
UD flow, and the blue triangles denote the CCW circulation.
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C. Photon-number dependence of local transport

Here we show how the local currents and densities of the
photons depend on M due to the photon blockade. The value
of M is limited by the number of excitons available for cou-
pling to the photons on each site. As suggested in Ref. [24],
the number of excitons in each quantum dot may be tuned
by the gate voltage. Since we consider the photonic structures
that only transport the photons coupled to the excitons in the
metastructure shown in Fig. 1, the number of photons on each
site may also be tuned by the gate voltage. However, each
quantum dot may not accommodate more than a few excitons,
so tuning the gate voltage may be more suitable for M � 2. To
study transport in a photon blockade regime with M > 2, it is
possible to adopt and modify the quantum-dot metastructure
of Ref. [19]. The idea is to let each vertex of the triangle
shown in Fig. 1 consist of multiple quantum dots, and each
dot can hold up to one exciton. Therefore, each group of M
quantum dots represents an effective site that can accommo-
date up to M photons, which can then be transported via the
photonic structures.

Figure 5 plots the local steady-state currents J12, J23, and
J13 as functions of 1/M with γ T0 = 0.5 and U = 0, showing
clockwise circulation for t3/t1 = 0.6, unidirectional flow for
t3/t1 = 1.0, and counterclockwise circulation for t3/t1 = 1.4.
The insets of Fig. 5 show the occupation numbers on the three
sites, n1, n2, and n3, as functions of 1/M with the same set of
parameters of the main panels. Importantly, while the local
occupation numbers of the photons follow n3 < n2 < n1 in
all the insets of Fig. 5, the local currents exhibit different
patterns depending on t3/t1. Therefore, the quantum transport
of photons is very different from classical transport in the
sense that the quantum current may flow opposite to the
direction of the density gradient even in the steady state. Our
results thus establish the decoupling of the directions of the
local currents and those of the local densities in quantum
transport of photons. In other words, it is possible to transport
photons from a low-density site to a high-density one in the
steady state by using a multipath geometry. The 1/M = 0
results will be discussed in the next section.

To further demonstrate the tunability of the local pho-
tonic currents, we show the local currents can change signs
as γ varies. Figure 6 shows J13 for fixed t3/t1 = 0.6 and
J12 for fixed t3/t1 = 1.4 as functions of γ , both from the
noninteracting case with M = 5. A change of the sign of
the local current implies the reversal of the local-flow direc-
tion. The possibility of tuning the local currents using the
system-reservoir coupling γ introduces additional knobs for
controlling the photonic transport. Moreover, the dependence
of the local photonic currents on γ implies that the photonic
circulation results from a combination of the system and
reservoirs, so the circulation is not an intrinsic property of the
metastructure alone.

We have verified that the results of the cases with asym-
metric system-reservoir couplings (γL �= γR) are qualitatively
similar to those of the case with the symmetric condition
γL = γR. All the circulation patterns can be found in the asym-
metric cases. We have also checked other values of NL and
NR of the reservoirs, and the results only differ quantitatively.
Therefore, the photonic circulations are robust against the

FIG. 5. The dependence of the local steady-state currents J12

(blue hollow hexagons), J23 (green triangles), and J13 (red upside-
down triangles) on 1/M for t3/t1 = 0.6, 1.0, 1.4 from top to bottom.
Here γ T0 = 0.5 and U = 0. J12 and J23 overlap in the steady state.
The insets show the photon occupation numbers on the three sites,
n1, n2, and n3 (cyan circles, black squares, and brown diamonds),
as functions of 1/M with the same parameters as those in the
main panels.

asymmetry of the system-reservoir couplings and the number
of particles in the reservoirs. The robustness of the geometry-
induced circulation will make it more feasible to observe the
phenomenon in experiments.
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FIG. 6. Tuning the local currents by the system-reservoir cou-
pling γ : The upper (lower) panel shows J13 for t3/t1 = 0.6 and
M = 5 (J12 for t3/t1 = 1.4 and M = 5). Both cases show a change
of the sign of the local current as γ increases.

D. Photon circulation without photon blockade

Before concluding our analysis of the geometry-based cir-
culation, we show that the photon blockade is not necessary, at
least in the noninteracting case, for generating the circulating
current in the triangular metastructure shown in Fig. 1 by
using the third-quantization formalism [45] for bosons to find
the local currents in the M → ∞ limit. The formalism is
summarized in the Appendix, allowing us to calculate the
local flows and densities when the Fock space has the full
states without any truncation. We remark that the system-
reservoir coupling terms of the Lindblad Eq. (2) fit the third-
quantization formalism.

FIG. 7. Phase diagram showing different steady-state patterns of
the photonic current in a noninteracting (U = 0) system in absence
of the photon blockade (M = ∞). The pink upside-down triangles
denote the CW circulation, the black circles denote the UD flow, and
the blue triangles denote the CCW circulation.

Figure 7 shows the phase diagram of the steady-state
circulations of the noninteracting photons in the metastructure
without any limitation of the photon number on each site.
All three types of patterns (CW, CCW, and UD) are indeed
present. Importantly, the noninteracting photons with M →
∞ are the genuine case of a noninteracting system because
imposing a finite cap M on the number of photons on each site
may be considered as introducing effective interactions among
the bosons due to the truncated Fock space. Therefore, Fig. 7
establishes the following two crucial factors of the photon
circulation in the triangular metastructure:

(1) The photon blockade is not a necessary condition
even though experimental setups are likely to introduce the
blockade.

(2) The geometry based circulation survives in the genuine
noninteracting case.

By comparing Fig. 7 with M → ∞ to Fig. 3 with M =
1, . . . , 5, one can see that the phase diagram without any
photon blockade is almost identical to the one with M = 5.
It is thus expected that the local currents and circulation
patterns will remain basically the same as M increases above
5. Therefore, the circulation regimes saturate with increasing
M in absence of the onsite interaction, and it is sufficient to
analyze the systems with M � 5 for practical purposes. The
1/M = 0 results shown earlier in Fig. 5 were also obtained
using the third-quantization approach. As 1/M decreases,
the local currents and occupation numbers all approach the
1/M = 0 values. The results again suggest that the photonic
transport in the triangular metastructure saturates as M in-
creases. One may infer the qualitative behavior of the M →
∞ limit already in systems with a moderate photon blockade.

The third-quantization method, however, is mainly for
noninteracting systems. One may use numerical methods such
as the density-matrix renormalization group [33,46,47] to
include interaction effects in intermediate-sized systems. We
have shown that the photon circulation survives in metas-
tructures supporting M � 5 photons per site in the presence
of the effective photon-photon onsite interactions. There are
both theoretical and experimental challenges for realizing and
analyzing multipath metastructures with high photon numbers
per site with effective interactions, and they await future
research.

IV. EXPERIMENTAL IMPLICATIONS

A. Possible realization of the metastructure

For the metastructure shown in Fig. 1, the size of the
photonic crystal structure, its component (photonic crystal
cavities and waveguides) and the distances between them need
to be on the order of the wavelength of the photons. The
cavities need to be matched to the wavelength of the quantum
dot in order to achieve sufficient polariton coupling between
the cavity photons and quantum-dot excitons. The separation
between the cavities and the distance between the cavities
and the waveguides will set the upper limit for the coupling
strength, which then will limit the tunneling of photons and
constrain the hopping coefficients in the effective model.
Techniques for fabricating nanophotonic crystal cavities and
photonic crystal waveguides containing quantum dots have
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been established, for example, in Refs. [48,49]. The photonic
crystal structures are commonly fabricated with electron-
beam lithography and chemical etching.

The photonic structures then may be integrated with a suf-
ficiently low quantum-dot density so that only a few quantum
dots are within a photonic crystal cavity. Those quantum dots
are typically all different from each other in shape and size.
However, each dot may be tuned in situ in various ways, most
conveniently by electric fields via the quantum confined Stark
effect if the sample structure is designed as a (pin-type) diode.
In addition, the quantum dots may be strain tuned in order to
get them in resonance with each other and/or the cavities [19],
allowing us to select one dot in each cavity with significant
photon-exciton coupling. Moreover, by designing the sample
in a way that allows tuning to be performed separately on
each photonic crystal cavity and having additional waveguides
between the metastructure and the reservoirs, it is possible
to couple only two sites to the reservoirs [24], as illustrated
in Fig. 1.

The photon blockade in the metastructure may be real-
ized as follows. The photons coupled to the excitons in the
metastructure have two exciton-polariton branches, an upper
one and a lower one. The reservoir sends photons tuned to
a frequency slightly above the lower branch to incoherently
pump the photons into the metastructure, similar to the idea
of Ref. [14]. The waveguides, through which the photons can
travel [24], are also tuned to the frequency of the lower branch,
and we focus on those coupled photons and their transport
in the metastructure. Although the electronic relaxation in
the quantum dots may decrease the number of excitons, we
consider the system driven by the photonic reservoirs in the
steady state and the average exciton number is held constant
by the pumping and gate voltage. Although the metastructure
of Fig. 1 has not been experimentally realized, the fabrication
should be achievable in future experiments.

Meanwhile, there have been analogs of the local transport
phenomena in the literature. References [50,51] present exper-
imental probes of circulation based on the similarity between
the Helmholtz equation of classical electromagnetic waves
and the Schrödinger equation of quantum particles. The role
of the local current of single-particle quantum mechanics is
played by the transmission coefficient of microwaves between
adjacent macroscopic resonators in the experiments. Specifi-
cally, Ref. [50] experimentally verifies that the transmission
coefficients of the microwave correspond to a circulating
current in a benzenelike hexagon, showing the wave nature
and the ability of multipath geometry to induce an internal
circulation. While the microwave simulators have demon-
strated circulating current for single-particle transport of the
analogous quantum systems, the metastructure presented in
Fig. 1 will offer a route to the study of many-body quantum
transport and establish the circulating current in the presence
of self-interactions.

In addition, cold-atom simulators may also help shed light
on many-body quantum transport [52]. There have been recent
progresses towards engineering nearest-neighbor (NN) and
next-NN hopping coefficients of bosonic atoms in optical
potentials connected to particle reservoirs [53], which may
resemble the setup of Fig. 1. The bosonic cold atoms are
massive bosons, but the photons are massless bosons. How-

ever, the geometry-based circulation only concerns the wave
nature and should apply to both massive and massless bosons.
Therefore, a circulating mass current of bosonic atoms may
emerge if the setup of Fig. 1 is constructed using cold atoms
in optical potentials.

B. Possible applications

The system shown in Fig. 1 has internal and external
parameters. The former includes t1, t3, and U , the values of
which may be determined by the device fabrication or tuned
by gate voltage. The latter includes M, γL,R, and the average
number of photons in the reservoirs, which may be tuned by
coupling the device to external source or bias. We have shown
that both types of parameters can affect the photonic transport.
Here we propose two possible applications of the circulating
photons in multipath geometries like the one shown in Fig. 1.

The first application is to use the CW and CCW circula-
tions to encode the binary numbers 0 and 1 for realizing a
memory element. The circulation may be changed by tuning
the hopping coefficients, the coupling γL,R with the reservoirs,
or the photon blockade M by controlling the underlying
quantum dots or the photonic structures and reservoirs. To
read out the information, additional photon detectors may
couple to the sites and siphon out some photons to mea-
sure their momentum, which determines the direction of the
photonic current.

The second application follows the possibility of transport-
ing photons from a low-density site to a high-density one
using the underlying geometry. The system shown in Fig. 1
may be viewed as a proof-of-principle device serving as a
controllable local photonic router. If one needs to transport
photons from, say, site 2 to site 1 regardless of the densities on
those sites, one can tune the internal or external parameters to
ensure the system stays in the CCW circulation regime. Such a
router is made possible by the underlying multipath geometry,
and it is not necessary to have artificial gauge fields or other
extra interactions.

V. CONCLUSION

We have demonstrated the possibility of using a multipath
geometry to induce steady-state circulation of local photonic
currents without introducing any artificial gauge field. The
minimal system for demonstrating the geometry-based circu-
lation may be realized in a metastructure integrating quantum
dots and photonic structures in a triangular geometry. While
the photon-exciton interactions may lead to a photon blockade
that restricts the number of photons participating in the trans-
port, the photon blockade is not necessary for inducing the
circulation, as shown by the third-quantization calculations
without any photon blockade. Moreover, the decoupling of
the direction of the local current from the density difference
between the sites is demonstrated in the metastructure, al-
lowing more tricks for tuning the local transport of photons.
Future advances in nanotechnology will allow us to explore
more geometric effects in transport phenomena like the one
investigated here.
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APPENDIX: THIRD-QUANTIZATION FORMALISM

The local currents and densities with 1/M = 0 in Fig. 5
and the phase diagrams shown in Fig. 7 were obtained by
using the third-quantization formalism for bosons [45]. The
formalism provides an explicit solution to the dynamics of a
bosonic system with a quadratic Hamiltonian described by
the Lindblad equation. There is no truncation in the Fock
space, so M → ∞. However, the Lindblad operator needs to
be linear in the creation and annihilation operators in order to
construct the exact solution. In the following application of the
third-quantization formalism, we use the notation of Ref. [45].

The Lindblad master equation considered in Ref. [45] is

∂ρ(T )

∂T
= L ρ(t )

= i[ρ,H ] +
∑

μ

(2LμρL†
μ − {L†

μLμ, ρ}). (A1)

Here Lμ denotes the Lindblad operators. The generalized
decompositions of H and Lμ for the system shown in
Fig. 1 are

H = c† · Hc,

Lμ = lμ · c + kμ · c†, (A2)

where

H =
⎛
⎝ 0 −t1 −t3

−t1 0 −t1
−t3 −t1 0

⎞
⎠ (A3)

encodes the information of the system parameters. c and c† are
column vectors of the creation and annihilation operators. lμ
and kμ are column vectors of the coefficients. The dot product
multiplies two vectors in the Euclidean sense. μ is the index
over the reservoir terms. lμ and kμ for our system are given by

l1 = (0 0 0)T , k1 = (
√

γ NL/2 0 0)T ,

l2 = (
√

γ (NL + 1)/2 0 0)T , k2 = (0 0 0)T ,

l3 = (0 0 0)T , k3 = (0 0
√

γ NR/2)T ,

l4 = (0 0
√

γ (NR + 1)/2)T , k4 = (0 0 0)T .

(A4)

The superscript T denotes the transpose. With those quanti-
ties, we can build the matrices M, N, and L mentioned in

Ref. [45]. For our systems, they have the following expres-
sions:

M =
⎛
⎝γ (NL + 1)/2 0 0

0 0 0
0 0 γ (NR + 1)/2

⎞
⎠, (A5)

N =
⎛
⎝γ (NL )/2 0 0

0 0 0
0 0 γ (NR)/2

⎞
⎠, (A6)

L =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠. (A7)

Here we assume γL = γR = γ .
The Lindbladian L may be written in terms of

b, the transformation of (cA, j, cB, j, c′
A, j, c′

B, j )
T , where

cA, j, cB, j, c′
A, j, and c′

B, j represent combinations of the cre-

ation and annihilation operators c j and c†
j at site j and satisfy

the almost commutation relations of Ref. [45]. Explicitly,

L = b · Sb, (A8)

where

S =
(

0 −X
−X T Y

)
. (A9)

Here, X and Y are defined as

X = 1

2

(
iH̄ − N̄ + M −2iK − L + LT

2iK̄ − L̄ + L̄T −iH − N + M̄

)
(A10)

and

Y = 1

2

(−2iK̄ − L̄ − L̄T 2N
2NT 2iK − L − LT

)
. (A11)

According to Ref. [33], the continuous Lyapunov equation
X T Z + ZX = Y in the absence of any coherent pumping term
can be simplified as

X̃ Z̃ + Z̃X̃ † = Ỹ , (A12)

where

X =
(

X̃ 0
0 X̃ ∗

)
, Y =

(
0 Ỹ
Ỹ 0

)
. (A13)

For our system, using the previously defined M, N, and L
matrices in conjunction with Eqs. (18) and (19) of Ref. [45],
we can write X̃ and Ỹ as

X̃ = 1

2

⎛
⎝γ /2 −it1 −it3

−it1 0 −it1
−it3 −it1 γ /2

⎞
⎠ (A14)

and

Ỹ =
⎛
⎝γ NL/2 0 0

0 0 0
0 0 γ NR/2

⎞
⎠. (A15)

Solving Eq. (A12) yields the matrix Z̃ , the elements of which
are equivalent to the correlation functions Z̃l j = 〈c†

j cl〉. The
local currents and occupation numbers can then be calculated
from the correlation functions.
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