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Revisiting the Fresnel-phase-matched nonlinear frequency conversion
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A flexible phase-matching method is introduced to manipulate the energy flow in nonlinear frequency
conversion processes. With the use of photonic crystal as the reflective medium, the phase mismatching could
be adjusted by the interface and the nonlinear crystal. We call this method the reflective phase matching. Here
we present an experiment to demonstrate this idea in a single-domain MgO:CLN wafer with photonic crystal
on the surface. A frequency-doubling signal enhanced 52 times is achieved. The result suggests the potential of
the function to one more dimension phase matching without additional artificial structure inside the crystal. In
addition, the proposed reflective phase-matching method could find broad application in the nonlinear optics and
laser device miniaturization and integration.
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I. INTRODUCTION

The development of micro- or nanostructures could break
through certain scientific limitations or broaden the horizon
of the physics world. Crystals, which used to be considered
as high-ordered atomic structures, have special electrical and
optical properties. Artificial microstructured materials such
as photonic crystals (PCs), sonic crystals, or metamaterials
possess unusual properties that traditional crystals do not have
[1–5]. Novel optical properties such as negative refractive ma-
terial, zero-index materials, superlenses, and perfect imaging
could be realized in a specially designed metamaterial [6–10].
The classical Fresnel principle is challenged by the two-
dimensional metasurface and has to be improved to a more
generalized law [11]. In nonlinear optics, research on nonlin-
ear photonic crystals has led us to reconsider our understand-
ing of the conventional phenomena and concepts, for example,
the nonlinear Talbot effect, the nonlinear Cerenkov effect,
and nonlinear optical diffraction, to name a few [12–19]. In
previous work, the Huygens principle was extended into the
nonlinear regime to study local quasi-phase-matched second
harmonic generation (SHG) and holographic techniques were
extended to nonlinear imaging processes [20–23]. Here we
combine a one-dimensional (1D) PC and a single nonlinear
crystal sheet to reexamine a basic phase-matching technique
which has been disregarded for a long time.

In nonlinear optics, the most famous concepts are the
various kinds of phase-matching methods which have been
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introduced since 1962 [24]. One of them is the so-called
Fresnel phase matching (FPM) with a nonlinear crystal sheet
placed in the air. The phase mismatching is compensated by
the total internal reflection of all waves. Therefore, the inner
reflection angle of all light should be larger than the total
reflection angle in the crystal, which definitely would lead to
a significant walk-off effect and severely limit the effective
interaction length [25–29]. In this paper, the concept of FPM
is extended to reflective phase matching (RPM) with the re-
flective layer replaced by a 1D PC. Thus the walk-off effect is
enormously reduced. Experimentally, highly efficient second
harmonic generation is realized in a MgO:CLN crystal sheet.
The RPM scheme offers the possibility of miniaturization of
photonic devices which might provide broad applications in
nonlinear optics, laser physics, and device integration with
optical multifunction.

II. PRINCIPLES OF REFLECTIVE PHASE MATCHING

Figures 1(a) and 1(b) show the architectural design of the
RPM method. A single-domain nonlinear crystal material is
covered by 1D PCs as the internal reflective surfaces on both
sides. The laser path, drawn in a simple line colored from
red to green, reflected between the two surfaces, is zigzaglike
as depicted in this figure. The fundamental wave (FW) goes
through the entrance window and leaves with the generated
harmonic waves from the exit window. Each wave upon each
reflective surface experiences a different phase shift which
is determined by the different wavelengths and the optical
polarization direction.

Each zigzag length between two successive bounces (L)
depends on the thickness t of the nonlinear crystal and the re-
flection angle β, that is, L = t/ cos β. For the SHG interaction
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FIG. 1. Schematic diagram of (a) the RPM setup, (b) the z-axis
cross section on the xy plane, and (c) the expanded view of the RPM
for SHG.

in a 1D situation with the FW ω1 and second harmonic wave
frequency ω2 = 2ω1, the SHG is determined by

dA2 = Cχ (2)A2
1 exp(i�kx)dx, (1)

where A1 and A2 are the amplitudes of the FW and SHG,
respectively, χ (2) is the nonlinearity coefficient of the non-
linear crystal, and �k = k2 − 2k1 stands for the wave-vector
mismatching, where k1 and k2 are the wave vectors of the FW
and SHG, respectively. Other coefficients, not considered in
this paper, are all included in the constant C.

The global phase shift �� plays an important role in
energy flowing in the frequency conversion process. It is
considered as the sum of two major parts. The first one is
the dispersion phase mismatching on propagation �D = �kx.
The other is the artificial relative reflective phase shift �R,
which is given by �R = φ2 − 2φ1. Here φ is the reflective
phase shift of each wave. Only when the reflective phase shift
�R compensates for the dispersion phase mismatching �D in
each zigzag path can the energy flow continuously from the
FW to the harmonic wave, that is,

�� = �D + �R = �kL + �R = 2mπ, (2)

where m is an integer.
Assuming that the phase mismatching �D achieves −π

before a bounce, the energy would flow back to the FW. Then
an additional artificial phase shift �R = π is imposed into
the process, which definitely results in an energy conversion,
because of the presence of exp(�R) = −1. This is equal to the
function that the conventional quasi-phase-matching (QPM)
method used: directly changing the crystal direction (χ (2) →
−χ (2)) in order to obtain this minus to reverse the energy flow.

In the −π mismatching situation, the relationship of the
output SHG amplitude to the mismatching phase and the
total internal bounce time is shown in Fig. 2. It apparently
indicates that the maximum SHG increases when the number
of bounces is growing. In addition, the maximum output
values exist under a certain condition that dispersion phase
mismatching is close to the odd multiple of −π when the

FIG. 2. (a) Calculated output SHG as a function of the phase
mismatching with different total internal bounces P under the perfect
reflective surface. The inset is the output SHG when P = 350.
(b) SHG output under different phase-mismatching situations after
RPM.

number of bounces is sufficient (see the inset of Fig. 2).
Further, there is an obvious extinction phenomenon occurring
at the 2mπ phase mismatching as shown in Fig. 2(a).

To directly understand the phenomenon, the entire RPM
process could be described in terms of reciprocal space anal-
ysis. The zigzaglike light propagation path can be unfolded
to a straight line as shown in Fig. 1(c). The red and green
arrows represent FW and SHG wave vectors, respectively. The
periodic reflective phase �R affects the behaviors of beams
by the efficient reciprocal lattice vector, which is Geff (m) =
±m|�R/t |. Here the m (m = 1, 2, 3, . . .) denote the orders
of the structure reciprocal vectors; the vectors’ relationships
among them, depicted in the figure, are determined by

�k2 − 2�k1 = Geff (m). (3)

In the conventional FPM scheme, the reflection angle β

must be larger than the total reflection angle, usually several
tens of degrees. Thus some unexpected phase shift could
affect the reflection angles differently for the FW and SHG
beams according to the generalized laws of reflection and
refraction or the nonlinear total internal reflection law [11,28].
Then the overlap area of the beams will gradually decrease,
which leads to a drop in the conversion efficiency, which is the
walk-off effect. In contrast, in the RPM method with a small
reflection angle, the walk-off effect is mostly eliminated and
the interaction of waves becomes nearly collinear.

Besides decreasing the walk-off effect and the single-
domain crystal characteristic mentioned above, the most at-
tractive potential promotion is that the PC’s surfaces make
it possible to realize near-perfect phase matching in the dis-
persion in a single-domain crystal. Figure 2(b) shows the
SHG output for four different phase-mismatching situations
after they are compensated respectively by RPM. The black
line refers to the perfect-phase-matching (no dispersion) case
in which no phase matching is needed and the efficiency
is the highest. The blue line refers to the –π type phase-
mismatching case, so the compensation phase is π and the
output SHG growth curve is the same as for the traditional
QPM situation. The other two phase-mismatching situations,
shown as the green and the red curves, refer to the cases
around the −π case. For example, when �D is 0.8π (or
1.2π ), the phase shift produced by 1D PCs can be designed
to be �R = −0.8π (or −1.2π ) to completely compensate
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FIG. 3. Calculated reflection on the 1D PCs: the reflectivity
and the reflective phase shift with wavelengths of (a) 532 nm and
(b) 1064 nm under a 0° reflection angle. Also shown is the reflective
situation of (c) SHG and (d) the FW as a function of the reflection
angle.

for the dispersion phase mismatching. It is worth noting that
whatever the phase mismatching �D is, there is always a
compensation phase �R = −�D to match it. Thus the energy
flows from the FW to SHG continuously [see Fig. 2(b)].
Theoretically, the nonlinear output in RPM has the ability
to achieve a conversion efficiency as high as that for the
perfect-phase-matching case.

III. EXPERIMENTAL SETUP AND RESULTS

To demonstrate the RPM method, 1D PCs are adopted as
the reflective surface on a nonlinear crystal sheet. It is well
known that the 1D PCs composed of dielectric multilayer
stacks with alternating refractive indices can lead to a pho-
tonic band gap and consequently provide certain reflectivity
and reflective phase shift. Therefore, we adopt a common
engineering film system based on periodic dielectric layer
stacks of high- and low-refractive-index layers

(0.5H × 0.5L)15(HL)15H, (4)

where H and L represent high- and low-refractive-index lay-
ers, respectively (the structure details can be found in the Sup-
plemental Material [30]). The free modulation of the reflective
phase of the beams is realized by the complex layers on the
nonlinear crystal surface. The two coating materials chosen
are silicon dioxide (n = 1.5) and hafnium oxide (n = 1.9).

The reflectivity and reflective phase shift of the 1D PCs
designed are calculated and shown in Fig. 3. The reflectivity
is more than 99.5% on wavelengths of 1064 and 532 nm with
a 0◦ reflection angle; it is always more than 99% around these
two wavelengths. Moreover, the reflective phase shifts achieve
π at these two wavelengths. It is worth noting that there is no
obvious change in reflectivity and the reflective phase when
the wavelengths shift slightly or the reflection angle is smaller
than 5◦, as can be ssen in Figs. 3(c) and 3(d). These results

FIG. 4. Experimental and calculated results of RPM SHG with
1D PCs as the reflective surface.

provide the ability to establish a “total” internal reflection
system to compensate for the phase mismatching as the FPM
did, but with a smaller angle to shorten the crystal on the y
axis and reduce some side effects.

In the experiment, the PCs are constructed on the z surface
of a 5% mol MgO-doped lithium niobate chip (MgO:LN),
which is a single domain with the same polarization direction
on the whole crystal plate. The nonlinear interaction is the
oo-e process, where the letters o and e represent the ordinary
and the extraordinary light. The letters before the hyphen
represent the polarization of the FW and that after it represents
the harmonic wave. A 1064-nm continuous-wave laser such
as the FW (model No. LE-LS-1064-500TA, power equal to
1.5 W, and polarization direction perpendicular to the z axis)
enters a 1-mm-thick sample from the left entrance window
[Fig. 1(a)]. It generates a 532-nm SHG when it propagates
in a zigzag pattern in the xy plane between two reflection
surfaces as shown in Fig. 1(b). Finally, the z-polarized SHG
signal is collected under different temperatures from the exit
window after filtering the FW. It is worth noting that the best
and most direct schemes test many samples with different
thicknesses. Samples with nearly the same parameters (phase
shift, size of the covered PCs, etc.) except for the thickness
t (y axis in Fig. 1) are not easy to fabricate. Thus we
chose to tune the temperature as the same effect to change
the coherent length LC (2π/�k), which determines the rela-
tive propagation phase between two bounces and influences
the main important relationship between the fixed zigzag
length L (L = t/ cos β) and LC . Under this circumstance the
SHG output can be measured at one wafer rather than testing
the wafers with different physical thicknesses over and over.
In order to acquire a better result, the overlap area of the
beams needs to be increased. Thus the reflection angle β

inside the crystal is controlled under 5◦ to reduce the beam
walking off. Figure 4 shows the SHG intensity distribution
as a function of the crystal temperature. Since 107 ◦C is the
birefringent phase matching (BPM) temperature of the oo-e
process on MgO:LN crystal, the main peak of the direct
transmission case appears at this temperature; however, in the
single-bounce case (red circles in Fig. 4), the main peak splits
into two peaks for which the temperature is 96 ◦C or 124 ◦C.
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FIG. 5. Experimental and calculated results of SHG as a function
of the crystal temperature based on the RPM with Ag film as the
reflective surface.

The SHG distribution is extinct at 110 ◦C, which is close to
the BPM temperature. This situation of the peak and valley
changing is similar to the case in a one-period structured
crystal with two conversion domains. In addition, the peak
value is nearly 4 times higher than in the direct transmission
case. This means that the reflectivity is 96%, which is close
to 100%. The intensity ratio of the two split peaks is 2:1,
which provides a clue to deduce the actual reflection phase
shift (details will be discussed later). Due to the defection of
the artificial PCs, the phase is 0.75π rather than the ideal
value π . The extinction effect at the BPM temperature is
strong evidence that the phase shift indeed participates in the
nonlinear waves coupling process. Then, in the multibounce
case, the maximum SHG signal is 52 times higher than the
direct transmission case when the bounces number is 19,
as shown by the blue triangles in Fig. 5. The 19 bounces’
zigzag path is the same as the situation of ten periods in
periodically poled crystal. The results in both the single- and
the multibounce cases agree well with the calculated results.

As a comparison, another sample with a simpler reflective
surface is tested. Metal, especially a perfect metal, which
has infinite conductivity and no loss, is the best choice of
surface in RPM. Here 200 nm of Ag is evaporated on both
surfaces of the MgO:LN plate. The theoretical reflectivity of
Ag film is more than 96% in the spectral range considered.
The phase shift on Ag should be 0.6π at 532 nm and 0.81π at
106 nm according to the database. Thus the total net reflective
phase shift is close to –π (0.6π–2 × 0.81π ). However, in the
experiment, the losses of Ag film cannot be neglected nor
is the phase shift exactly equal to what we expected. The
same SHG intensity distributions phenomenon is observed
in the Ag surface case shown in Fig. 5. The peak value of
the one-bounce case is twice that in the direct transmission
case, which indicates more losses than PCs. The extinction
of SHG is found at around the BPM temperature; the peak
splits at a temperature of 99 ◦C or 117 ◦C. The maximum SHG
in the nine-bounce case is 10 times higher than the direct
transmission case, shown by stars in Fig. 5. Compared with

FIG. 6. (a) Calculated intensity as a function of reflectivity.
(b) Ratio of two main peaks with different phase shift.

the theoretical parameter, the actual reflectivity of Ag in the
experiment is 10% lower. Consequently, after several bounces
both the FW and the second harmonic wave lose most of
the energy and the efficient SHG output is far lower than
expected.

To figure out the relationship between the nonlinear con-
version and the reflection, we calculate the SHG intensity
for the single-bounce situation (π phase shift). It is easy
to understand that the output SHG becomes stronger as the
reflectivity increases, which is shown in Fig. 6(a). The scale
bar represents the intensity. There are always two equally split
peaks because the π phase shift is fair enough for the two
mismatching cases because whether the propagation phase
shift �D goes toward +π (�k > 0) or –π (�k < 0), it can be
fully compensated by the same surface reflection phase shift
π according to the matching method [Eq. (2)]. Otherwise,
the absolute values of �D are different, which causes the
unequal effective efficiency of the two cases (peaks). The
relationship in the one-bounce situation is calculated and
shown in Fig. 6(b), which shows the phase shift determining
the ratio of two peaks. Thus the ratio of 2 in the previous 1D
PC experiment indicates that the phase shift on the surface is
about 0.75π [shown by the dashed line in the Fig. 6(b)].

It is universally known that in all BPM, FPM, and RPM
methods, the walk-off effect is inevitable because of the
noncollinear situation between the two interaction beams. The
longer the propagation distance is, or the longer the reflective
times are, the less energy flows from the FW to SHG due to a
quick reduction of the beam overlap. Nevertheless, comparing
with the other two methods, the separate angle of two waves in
RPM is much smaller, which means there is more opportunity
to guarantee the energy flowing positively. Therefore, in the
RPM prototype, the optical nonlinear frequency conversion
could achieve a high efficiency which is close to the phase-
matching situation.

Another advantage of the RPM is that the mismatched
phase can be compensated for and the continuous growth of
the SHG can be realized in a single-domain nonlinear crystal.
The folded zigzag light path has a miniaturized characteristic
which could provide great opportunities for nonlinear optical
system compaction and integration.

IV. CONCLUSION

By using a 1D PC as the reflective medium, the con-
ventional Fresnel-phase-matching concept can be extended
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to RPM. Experimentally, the maximum output SHG sig-
nal is 52 times greater than that in the phase-mismatch
case in a single-domain MgO:CLN wafer. The advantage
of this method can greatly reduce the walk-off effect with
outstanding phase-compensating ability. Our results can be
straightforwardly applied to the realization of miniatur-
ized optical systems based on optical polarization rotation
metamaterials.

ACKNOWLEDGMENTS

This work was financially supported by the National Key
Research and Development Program of China under Grant
No. 2017YFA0303700; the National Natural Science Founda-
tion of China under Grants No. 11304159, No. 11504166, No.
11874214, No. 11774165, No. 11574146, and No.11974188;
and the Natural Science Foundation of Jiangsu Province
under Grants No. BK20150563, No. BK20161512, and
No. SBK2015042643.

[1] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs,
Phys. Rev. Lett. 76, 4773 (1996).

[2] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77
(2001).

[3] Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14,
8247 (2006).

[4] N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534
(2005).

[5] C. He, S. Y. Yu, H. Ge, H. Q. Wang, Y. Tian, H. J. Zhang,
X. C. Sun, Y. B. Chen, J. Zhou, M. H. Lu, and Y. F. Chen,
Nat. Commun. 9, 4555 (2018).

[6] H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B.
Yin, and X. Zhang, Science 342, 1223 (2013).

[7] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W.
Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu,
and D. P. Tsai, Nat. Commun. 8, 187 (2017).

[8] G. X. Li, T. Zentgraf, and S. Zhang, Nat. Phys. 12, 736 (2016).
[9] E. Almeida, O. Bitton, and Y. Prior, Nat. Commun. 7, 12533

(2016).
[10] E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and

A. Polman, Phys. Rev. Lett. 110, 013902 (2013).
[11] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne,

F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[12] V. Berger, Phys. Rev. Lett. 81, 4136 (1998); A. Arie and

N. Voloch, Laser Photon. Rev. 4, 355 (2010).
[13] N. G. R. Broderick, G.W. Ross, H. L. Offerhaus, D.

J.Richardson, and D. C. Hanna, Phys. Rev. Lett. 84,
4345(2000).

[14] S. M. Saltiel, Y. Sheng, N. Bloch, D. N. Neshev, W.
Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, IEEE J.
Quantum Electron. 45, 1465 (2009).

[15] Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, Phys. Rev. Lett.
104, 183901 (2010).

[16] T. Ellenbogen, N. V. Bloch, A. G. Padowicz, and A. Arie,
Nat. Photon. 3, 395 (2009).

[17] D. Z. Wei, C. W. Wang, H. J. Wang, X. P. Hu, D. Wei, X. Y.
Fang, Y. Zhang, D. Wu, Y. L. Hu, J. W. Li, S. N. Zhu, and
M. Xiao, Nat. Photon. 12, 596 (2018).

[18] N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Nat. Photon.
9, 180 (2015).

[19] K. O’Brien1, H. Suchowski, J. Rho, A. Salandrino, B. Kante,
X. B. Yin, and X. Zhang, Nat. Mater. 14, 379 (2015).

[20] Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao,
Phys. Rev. Lett. 100, 063902 (2008).

[21] X. H. Hong, B. Yang, C. Zhang, Y. Q. Qin, and Y. Y. Zhu,
Phys. Rev. Lett. 113, 163902 (2014).

[22] A. Shapira, I. Juwiler, and A. Arie, Opt. Lett. 36, 3015
(2011).

[23] A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Opt. Lett. 37,
2136 (2012).

[24] J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan,
Phys. Rev. 127, 1918 (1962).

[25] G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
[26] H. Komine, W. H. Long, Jr., J. W. Tully, and E. A. Stappaerts,

Opt. Lett. 23, 9 (1998).
[27] R. Haïdar, P. Kupecek, E. Rosencher, R. Triboulet, and P.

Lemasson, Appl. Phys. Lett. 82, 1167 (2003).
[28] M. Raybaut, A. Godard, A. Toulouse, C. Lubin, and E.

Rosencher, Opt. Express 16, 22 (2008).
[29] S. Banik, S. Deb, and A. Saha, Opt. Commun. 287, 196 (2013).
[30] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.102.023529 for details.

023529-5

https://doi.org/10.1103/PhysRevLett.76.4773
https://doi.org/10.1126/science.1058847
https://doi.org/10.1364/OE.14.008247
https://doi.org/10.1126/science.1108759
https://doi.org/10.1038/s41467-018-07030-2
https://doi.org/10.1126/science.1244303
https://doi.org/10.1038/s41467-017-00166-7
https://doi.org/10.1038/nphys3699
https://doi.org/10.1038/ncomms12533
https://doi.org/10.1103/PhysRevLett.110.013902
https://doi.org/10.1126/science.1210713
https://doi.org/10.1103/PhysRevLett.81.4136
https://doi.org/10.1002/lpor.200910006
https://doi.org/10.1103/PhysRevLett.84.4345
https://doi.org/10.1109/JQE.2009.2030147
https://doi.org/10.1103/PhysRevLett.104.183901
https://doi.org/10.1038/nphoton.2009.95
https://doi.org/10.1038/s41566-018-0240-2
https://doi.org/10.1038/nphoton.2015.17
https://doi.org/10.1038/nmat4214
https://doi.org/10.1103/PhysRevLett.100.063902
https://doi.org/10.1103/PhysRevLett.113.163902
https://doi.org/10.1364/OL.36.003015
https://doi.org/10.1364/OL.37.002136
https://doi.org/10.1103/PhysRev.127.1918
https://doi.org/10.1063/1.1754454
https://doi.org/10.1364/OL.23.000661
https://doi.org/10.1063/1.1557326
https://doi.org/10.1364/OE.16.018457
https://doi.org/10.1016/j.optcom.2012.07.090
http://link.aps.org/supplemental/10.1103/PhysRevA.102.023529

