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Recent observation of black hole and gravitational wave has stirred up great interest in Einstein’s general
relativity. In an optical system, the “optical black hole” has also been a key topic in mimicking black holes.
Another good way to study or mimic general relativity effects is based on transformation optics. In this paper, we
propose a way by utilizing transformation optics theory to directly obtain the equivalent isotropic refractive index
profiles which are the analogies of some static spaces of general relativity, such as de Sitter space, anti–de Sitter
space, and Schwarzschild black hole. We find that the analog of de Sitter space is the Poincaré disk, while anti–de
Sitter space is equivalent to Maxwell’s fish-eye lens. In particular, we prove that the optical black hole actually
has infinite number of photon spheres, while our black hole only has a single one, which is closer to the real black
hole. We study the effect from both geometric optics and wave optics. It can also be generalized to mimic any
kind of metrics. Furthermore, with the isotropic refractivity index profile, we visualize the gravitational lensing
effect of black hole from our software Dr TIM. The image not only recovers the donutlike halo of black hole,
but also shows other phenomena.

DOI: 10.1103/PhysRevA.102.023528

I. INTRODUCTION

Einstein’s general relativity [1] is actively recalled recently
as it well predicted gravitational wave [2] and black hole [3]
that were lately observed. Besides, it would be fantastic if
the celestial mechanics could be mimicked in laboratories.
A novel method is called general relativity in electrical en-
gineering [4], which could be used to mimic similar cosmic
phenomena by complicated electromagnetic material param-
eters, like that from transformation optics [5–7]. Transfor-
mation optics, thanks to its convenience and flexibility on
manipulating electromagnetic waves, has a great many appli-
cations, including, but not limited to invisibility cloaks [5,6],
rotators [8,9], concentrators [10,11], perfect lenses [12,13],
and electromagnetic cavities [14]. In addition, as mentioned
before, optical analogs of general relativity effects demon-
strated by four-dimensional (4D) metrics have been designed.
For example, a simulation of a derived permittivity tensor
profile and a permeability has been proved to be equivalent
to a Schwarzschild black hole [15]. A generalized analytical
formalism for developing analogs of spherically symmetric
static black holes was discussed [16]. The equivalent time-
dependent material parameters can be used to achieve the
cosmological redshift [17]. Other works, such as to mimic de
Sitter space [18,19], time travel effect [20], have also been
proposed based on this electrical general relativity [4]. How-
ever, this method requires complicated material parameters,
thereby making experiments difficult to implement. Although
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uniaxial medium for Schwarzschild–(anti-)de Sitter space-
time could be obtained by constructing the Tamm medium
which constitutes simple homogenized component parame-
ters, there still exist many restrictions and tedious processes
[21]. Nevertheless, by performing transformation optics [22],
the complicated parameters could be simplified into isotropic
refractive index profiles [23], which not only make calculation
simpler [24], but also make experiment more feasible, such
as the black holes in microwave [25] and visible frequencies
[26]. Other general relativity effects, such as Einstein’s ring
[27] and cosmic string [28], have also been mimicked for
visible frequencies.

On the other hand, the topic of mimicking black hole has
been studied for a long time. The “optical black hole” [23] has
a good absorption efficiency. Finite-difference time-domain
calculation method has been used to prove the absorption

property [24]. The corresponding experiment results [25]
also show great agreement with the theoretical work [23].
However, we will prove that this optical black hole actually
contains infinite number of photon spheres. It is exactly rather
a light absorber than a black hole, while our black-hole model
which carries only one photon sphere shows more similarity
with the realistic black hole.

In this paper, we come up with some spatial mappings,
combining the metric formulas, to get the isotropic material
parameters. We will show the analog spaces (de Sitter space
and black hole) both in geometric optics and in wave optics.
We will prove that the equivalent spaces of de Sitter space
and anti–de Sitter space are exactly the Poincaré disk and
Maxwell’s fish-eye lens, respectively. Moreover, visualization
of black hole will be demonstrated. It reveals the details
outside the event horizon and gives us a more intuitional
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FIG. 1. A point source inside the de Sitter profile [Eq. (5)]: (a) the ray trajectories; (b) the field pattern.

image of gravitational lensing effect around the event horizon.
Our black-hole model has only one photon sphere, so that
we could see the donutlike halo of black hole. It should be
noted that our model contains only spatial transformation
without considering the time dimension. That is, we are just
concerned about the space change of three-dimensional (3D)
optical metric. Therefore, we do not need to worry about
the causal structure’s swapping in 4D manifold of space-
time [29,30]. Furthermore, we believe that, compared with
anisotropic material parameters, the isotropic refractive index
profiles can be easier to fabricate. For instance, the geodesic
lenses give us some hints on investigating light propagation on
curved surfaces that can be connected to this kind of refractive
index profile [31,32].

II. CALCULATION AND RESULTS

We start from a general metric form of

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�2. (1)

In this paper, we will show that such a metric form could
be equivalent to a refractive index profile by transformation
optics. With this method, experimental realization becomes
much easier and simulations of ray-optical phenomena can be
performed in custom ray tracers, e.g. Dr TIM [33].

We perform a mapping in the radial direction r = r(R) (or
R = R(r)); the metric is then transformed into the following
form:

ds2 = − f (r(R))dt2 + dr2/dR2

f (r(R))
dR2 + r2

R2
R2d�2. (2)

To obtain a spacial isotropic metric, we should let [22]

dr2/dR2

f (r(R))
= r2

R2
, (3)

which could be used to obtain the required mapping by
considering suitable boundary condition. After that, it would
be easy to get the equivalent refractive index profile [22],

n(R) = (g/g00)1/2 = |dr(R)/dR|
f (r(R))

= r(R)

R
√

f (r(R))
. (4)

The inverse process is also very interesting. Given the
refractive-index profile, one can solve Eq. (4) for f (r) to get
a corresponding space-time metric, whose form is given by
Eq. (1), although such a metric is not exactly a solution of
Einstein’s field equations.

For example, when f (r) = 1 − r2

a2 (r � a, the horizon), the
metric is for de Sitter space. After the mapping of r = 2R

1+ R2

a2

,

according to Eq. (4), the equivalent refractive index profile
should be

n(R) = 2

1 − R2

a2

(for R � a, the transformed horizon). (5)

Using the commercial software COMSOL MULTIPHYSICS as
the simulation tool, Fig. 1(a) shows light rays emerging from a
point source, situated at an arbitrary point inside the space. All
the emitted rays become perpendicular to the horizon R = a.
Actually, Eq. (5) is exactly the Poincaré disk metric. The ge-
ometry of the Poincaré disk is limited in a unit disk, in which
straight lines consist of all circular arcs that are orthogonal to
the boundary of the disk [34,35]. It means that light will never
reach the boundary and anyone, wherever he or she is in such
a space, will always be the center of the universe. This is an
inverse effect of a black hole, which will be further analyzed in
a later section. We also plot the field pattern in wave optics in
Fig. 1(b). For simplicity, we performed the above simulations
in two-dimensional cylindrical coordinate system, because it
has the same optical behaviors as that in three dimensions and
is easier to simulate or realize in table-top devices. It should
be noted that in wave-optics perspective we set the boundary
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radius a little bit smaller than a (here it is 1) to avoid reaching
the singularity of the horizon and to better perform the field
pattern. A perfectly matched layer was added to truncate the
space. This profile will change the cylindrical wave front from
any point into a cylindrical wave front with its center at the
origin when approaching the horizon, which is also similar to
the zero index lens [36].

When f (r) = 1 + r2

a2 , the metric is for anti–de Sitter space.
After the mapping of r = 2R

1− R2

a2

, the equivalent refractive index

profile should be

n(R) = 2

1 + R2

a2

, (6)

which is the famous Maxwell’s fish-eye lens [37], a per-
fect lens with positive refraction. Similar process could be

performed for any f (r), which is very promising to study
various metrics in laboratories. In the paper, we hope to
recall the black hole in Ref. [15], where f (r) = 1 − L

r (r � L,
the horizon). A similar trick suggests the mapping of r =
(R+ L

4 )
2

R , which was also called an isotropic radial coordinate
transformation [38], and the equivalent refractive index profile
should be

n(R) =
(
R + L

4

)3

R2
(
R − L

4

) (
for R � L

4
, the transformed horizon

)
.

(7)
Here, similar to the previous work [15,23], we take the

following parameters for the inner core. The imaginary part
works as a loss term to absorb the fields at the event horizon.

n(R) =
(
R + L

4

)3

R2
(
R − L

4

) (1 + i)

(
for R <

L

4
, the transformed horizon

)
. (8)

It reminds us of the interior of black hole [39,40], which
is exact solution of Einstein’s field equation. It could help
us better understand the black hole with a viewpoint of an
observer inside the event horizon, and make the research
more complete. In this paper, we will pay more attention to
the studies outside the black hole and not go into details of
the inner core; we use Eq. (8) above as an absorber for our
black hole. Nevertheless, the interior of black hole is still an
interesting topic for future research, as the interior structure of
realistic black holes have not been satisfactorily determined,
and are still open to considerable debate, as stated in Ref. [39].

We will prove that the profile of Eq. (7) indeed mimics
a Schwarzschild black hole. Before we get into the details,
let us recall the isotropic black hole that is usually used in
metamaterials [23]. The profile is

n(R) = 1

R
(for R � L0, the horizon). (9)

This could also be obtained from conformal transformation
optics [5,41], with nz = nw| dw

dz | for nw = 1 and w = ln z [42],
where R = |z| and nz = n(R). For any R � L0, light will travel
in circles, as it is mapped to the real coordinate of w. In other
words, such a profile will have infinite numbers of photon
spheres. However, for the profile in Eq. (7), the unique photon
sphere is at R = (2+√

3) L
4 , which is mapped from r = 3L

2
(see Appendix A). In Fig. 2(a), we put a point source at
the photon sphere. We find that part of the rays will escape
from the black hole, and part will be trapped by the photon
sphere and approach the horizon perpendicularly. In fact, for
the rays that emit to the left direction, which is under the
photon sphere, they will all be trapped and incident on the
event horizon perpendicularly, while for the rays that emit to
the right direction, which is outside the photon sphere, they
will all be bent and escape the event horizon. We also plot
the field pattern in wave optics for a point source in Fig. 2(b).
The waves will interfere with each other at the opposite site
of the source. The same trick was used here that we make

the radius of horizon slightly larger in wave simulations than
L
4 (here L is 1) to better present the field pattern and prevent
wave approaching the singularity of the event horizon. The
same way is applied to Fig. 2(d).

It is because of the photon sphere that we could see the
donutlike halo from the earth [3]. We therefore study the case
of parallel light rays incident to the black hole in Fig. 2(c).
For rays outside the photon sphere, they will be bent due to the
gravitational lens effect of the black hole. For the rays incident
almost tangential to the photon sphere, they will propagate
in a U-turn trajectory, just like the Eaton lens [43,44]. For
the rays impinging at the photon sphere, they will all be
trapped and approach the horizon perpendicularly. We also
study the case for wave optics, i.e., an incident Gaussian beam
interacts with the black hole. The field pattern is plotted in
Fig. 2(d), where we can see that the wave will be absorbed in
the middle part, while those outside the photon sphere could
escape and will interfere with each other at the opposite site.
For simplicity, the above simulations are performed in two
dimensions. Obviously, our model could, at least in the optical
system, commendably mimic the real effects of general rela-
tivity. It is because our equivalent isotropic refractive index
profile is calculated directly from the metric formula of the
corresponding space that the property of the analog space can
be well maintained.

To visualize the appearance of the refractive-index profile
given in Eq. (7), we have added to our scientific ray tracer Dr
TIM [33] the capability to trace rays in transformation-optics
media. A fourth-order Runge-Kutta algorithm is used to solve
the Hamilton-type equations, derived in Ref. [45], describing
ray propagation in inhomogeneous transformation-optics me-
dia. Note that we can use a slightly modified refractive index
profile with a same photon sphere to a Schwarzschild black
hole (see Appendix B).

After confirming that Dr TIM correctly simulated a ray on
the photon sphere [Fig. 3(a)], we simulated the appearance of
objects, in our case small spheres, located behind the black
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FIG. 2. A point source at the photon sphere of a black-hole lens: (a) the ray trajectories; (b) the field pattern. (c) Parallel light rays incident
to the black-hole lens. (d) Gaussian beam incident to the black-hole lens.

hole [Fig. 3(c)]. In complete analogy to the Einstein rings,
these small spheres become distorted into rings [Fig. 3(b)].
Finally, Fig. 3(d) shows the appearance of a scene containing
a 3D lattice partially seen through a sphere filled with the
refractive index distribution. The image of the lattice and
the space around it shows a strong rotation and distortion,
which not only reveals the gravitational-lensing effect but also
leaves us some hints on investigating the objects near the black
hole. This gravitational-lensing effect for an approximation of
a refractive index profile in the infinity is also discussed in
Appendix C.

III. CONCLUSION

In conclusion, based on general relativity in electrical
engineering and transformation optics, we propose a series
of radial spatial mappings to get the equivalent isotropic
refractive index profiles directly from the metric formulas

of some static spaces in general relativity. We find that the
equivalent lens of de Sitter space is exactly Poincaré disk
and also similar to a zero index lens, while that of anti–de
Sitter space is simply Maxwell’s fish-eye lens. In particular,
we analyze a previous version of optical black hole and find
that it has infinite photon spheres, while our black hole only
has a unique photon sphere, which is the reason for the famous
donutlike halo of a realistic black hole. We study the light
behavior and wave pattern in the de Sitter space and outside
the black hole both from geometrical optics and wave optics.
We could realize the black-hole halo by 2D figures with the
source of a point or some parallel light rays (Gaussian beam).
Most importantly, with the isotropic refractive index profile
in hand, we utilize our Dr TIM to visualize the black hole.
The scenes not only indicate the ray trajectories outside the
event horizon and that on the photon sphere, but also present
the gravitational-lensing effect and Einstein’s rings around the
event horizon. Moreover, we can see the image of a 3D lattice
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FIG. 3. Visualization using rendering ray tracing of the appearance of the artificial black hole. (a) Two orbits of a ray trajectory (red line)
on the photon sphere. The event horizon is indicated by a gray sphere in the center. (b) Small spheres placed behind the black hole appear as
rings. The geometry of the setup is shown in (c), with the event horizon indicated as a small gray sphere inside a semitransparent red sphere
that indicates the photon sphere. (d) Simulation of a scene containing a 3D lattice seen through a sphere of radius 1 filled with the refractive
index distribution. The horizon radius is 0.2 in (a) and 0.01 in (b)–(d). In (b), the refractive index distribution was simulated in a sphere of
radius 5 (n = 1.008 on the edge).

through the black-hole lens intuitively as a viewpoint of an
observer opposite the lattice. These images could enhance
our understanding of black hole and maybe we could find
some new objects around the black hole according to the
images. Hence, by further combining transformation optics
and electrical general relativity, we could visualize a series
of spaces, cosmic phenomena, or some hypothetical concepts
using Dr TIM for future research, such as artificial wormholes
[46,47]. This effect can be considered as electromagnetic phe-
nomena (lensing effect). In fact, we exactly mimic the famous
spaces by using their equivalent materials in the framework of
electromagnetism based on the transformation optics method.
The similar effects of 4D space-times are also worth studying
in the future.
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APPENDIX A: THE UNIQUE PHOTON SPHERE OF THE
REFRACTIVE INDEX PROFILE, EQ. (7)

Consider a light ray in a medium described by isotropic
metric gi j [expressed in spherical coordinates (r, θ, φ)]

gi j = n2(r) × diag(1, r2, r2sin2θ ). (A1)

Since the space described by such a metric is isotropic,
the problem is effectively two dimensional, which en-
ables us to make a choice θ = π/2. The light-ray trajec-
tory (r(λ), π/2, φ(λ)), parametrized by λ, then satisfies the
geodesic equations

�
φ = L

n2(r)r2 , (A2)

��
r =

[
1 + r

n(r)

dn(r)

dr

]
L

2

n4(r)r3
−

�
r2 1

n(r)

dn(r)

dr
, (A3)

where
�
φ = dφ/dλ,

�
r = dr/dλ, and L is a constant. Light-ray

trajectories in a medium with refractive index profile n(r)
given by the formula

n(r) = (r + RKB)3

r2(r − RKB)
(A4)
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follow similar geodesic equations to those around a
Schwarzschild black hole, i.e., a black hole described by
Schwarzschild metric and RKB = L

4 in the main text [Eq. (7)].
One of the features of a Schwarzschild black hole is the
photon sphere, a location where the light rays can travel in
circles. The radius q of a “photon sphere” in a medium n(r)
can be found as following: on the photon sphere, ṙ = r̈ = 0.
This is satisfied if and only if the square bracket in Eq. (A3)
equals zero for r = q, i.e.,

1 + q

n(q)

dn

dr

∣∣∣∣r=q = 0. (A5)

If one inserts refractive index profile n(r), given by
Eq. (A4), into Eq. (A5), the following equation is obtained:

q2 − 4qRKB + RKB
2

q2 − RKB
2 = 0 (A6)

when solved for q,

q = RKB(2 +
√

3) (A7)

APPENDIX B: A MODIFIED REFRACTIVE INDEX
PROFILE TO OBTAIN A SAME PHOTON SPHERE OF A

SCHWARZSCHILD BLACK HOLE

The radius of a photon sphere around a Schwarzschild
black hole equals 3R/2. This discrepancy can be
fixed by inserting a parameter j to formula (A4) as
follows:

nKB(r) = (r + jR)3

r2(r − R)
. (B1)

For such a distribution, the radius q of a photon sphere
equals

q = R( j + 1 +
√

( j + 1)2 − j) (B2)

To satisfy a requirement q = 3R/2, one can solve Eq. (B2)
for j, yielding a value j = −3/8.

APPENDIX C: GRAVITATIONAL-LENSING EFFECT FOR
AN APPROXIMATION OF REFRACTIVE INDEX PROFILE

IN INFINITY

At distance r much larger than the Schwarzschild radius
RS, i.e., if r � RS, the space-time around a Schwarzschild
black hole can be approximated by a refractive index distri-
bution nS (r),

nS (r) = 1 + 2
RS

r
(C1)

If a light ray, traveling from infinity, passes around the
black hole at distance b, it will be deflected by an angle �θ (b),

�θ (b) = 2
RS

b
. (C2)

If a light source is placed exactly behind the lensing black
hole at distance DSL from that black hole, an observer at
distance DL will observe a ring around the black hole of an
Einstein’s radius, with a characteristic angle θE :

θE =
√

2RS
DSL

(DSL + DL )DL
. (C3)

Very similar results can be obtained with our index profile
given by Eq. (B1). For r � R, the refractive index profile can
be approximated:

nKB(r) ≈ 1 + 2
3 j+1

2 R

r
. (C4)

This implies that one can simply substitute RS → (3 j +
1)R/2 to the formulas well known for weak gravitational
lensing and obtain the correct values.
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