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Coherent propagation and amplification of intense wave beams in a deformed multicore fiber
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The transformation of the out-of-phase distribution of the wave field at a structural deformation of a multicore
fiber (MCF), including fiber bending and gain inhomogeneity in different cores, is studied. A nonlinear
supermode is found, which is weakly sensitive to deformations of the MCF in the case of high-power radiation. It
is shown that nonuniformity of the wave field amplitude in different cores decreases with an increase in the total
radiation power. In particular, amplification of the wave beam in the form of the found out-of-phase solution in an
active MCF leads to equalization of the wave field amplitudes in all cores at a power exceeding the found critical
value even in a strongly deformed MCF. Additionally, approximate expressions of spatiotemporal solitons were
found in such MCF, the existence and stability of which is confirmed by direct numerical simulation.
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I. INTRODUCTION

The problem of constructing fully fiber laser systems for
generation of high-power laser beams is still relevant today.
The interest in replacing high-power solid-state lasers by
equivalent fiber laser systems is due to their small sizes, ease
of control, reliability, and stability. However, an obvious draw-
back of fiber systems is the operation with low-power laser
beams. This limitation is associated with both a change in
the spatial structure of high-power radiation due to the media
nonlinearity or the development of filamentation instability
and nonlinear absorption in the medium, which leads to fiber
damage.

To obtain laser pulses with an extremely high-power level,
it is feasible to use an array of independent active optical fibers
and then combine laser pulses from many fibers coherently
[1,2]. The method of coherent combining of laser beams
requires maintaining a constant phase difference between
the fibers under conditions of random changes in the beam
phase. This idea was demonstrated experimentally for several
channels at a rather high peak power [3], and for several tens
of channels at a low power [4,5]. A further increase in the
number of synchronized optical fibers requires a significant
financial and technological effort. The fundamental difficulty
is the need to create a feedback system to maintain the phase
in each channel.

Multicore fibers (MCFs) with weakly coupled cores draw
a considerable interest. The presence of even weak linear cou-
pling between cores can significantly reduce the sensitivity to
phase fluctuations of the injected beams within the problems
of coherent transport and combining of laser radiation.

Intensive work has been done related to the study of the
nonlinear wave dynamics in discrete systems [6–8]. Discrete
solitons are found in both conservative systems, within the
framework of the discrete nonlinear Schrödinger equation

*balakin@appl.sci-nnov.ru

[8–16], and in active systems, within the framework of the
discrete Ginzburg-Landau equation [17–20]. The main dif-
ference between nonlinear dynamics in discrete media and
the continuum case is the possibility of a discrete collapse
(localization on the scale of the lattice period) of the ini-
tially wide distribution of the wave field even in the one-
dimensional case [11,21]. Such a regime was demonstrated
experimentally in Ref. [12], and the corresponding critical
power Pd [21] was analytically found, which differed from
the critical power of self-focusing in a homogeneous medium
Pcr. If the power of the injected beam is significantly higher
than the critical power, the wave field stratifies into a set of
incoherent structures [22].

In the case of smooth wave field distributions, the presence
of the intrinsic critical power Pd < Pcr does not allow coher-
ent propagation of radiation in most of the MCF cores due to
the discrete self-focusing process. Nevertheless, the effects of
nonlinear pulse propagation, which are usually undesirable in
many applications, can be used advantageously for nonlinear
summation and pulse compression [22–32], the formation of
light bullets using MCF [15,30–36].

Recently, the research focus has shifted to MCF made of
a small number of cores, e.g., MCF consisting of a central
core and an even number 2N of cores located around a ring
[24–26,37–39]. For such MCF, stable inhomogeneous station-
ary nonlinear wave field distributions with a total power being
much larger than the critical self-focusing power [29,39] were
found. Of greatest interest is the strongly rugged out-of-phase
distribution (± mode), in which the total radiation power
can be many times higher (up to 2N times) than the critical
self-focusing power in a homogeneous medium.

Along with the beam problem, stable spatiotemporal soli-
ton solutions were found [29]. The existence of these nonlin-
ear solutions made it possible to generalize the well-known
methods of compression of laser pulses in a single fiber for
MCF, which will make it possible to take a significant step
in solving the problem of the formation of high-energy and
short-duration laser pulses in fully fiber systems.
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A very important question is the kind of transformation of
the ± mode upon deformation of the MCF structure, including
its bending and gain inhomogeneity in different cores. In
this paper, we determine the conditions, under which the
inhomogeneity of the amplitude of the out-of-phase distri-
bution remains small. It is shown that the nonuniformity of
the wave field amplitude in different cores decreases with an
increase in the total radiation power. In particular, wave beam
amplification in an active MCF even with a strong difference
in the refractive indices of its cores leads to equalization of the
wave field amplitudes in the cores at a power exceeding some
critical value determined for the parameters of a specific MCF.

Along with the beam problem, the presence of coherent
solitonlike optical pulses in MCFs, that can propagate along
extended paths without change, is of interest. This is the
three-dimensional spatiotemporal solutions that retain their
shape due to the balance of diffraction, group velocity disper-
sion, and nonlinear phase modulations. Similar solutions were
found in Refs. [29,32]. In this regard, the question arises as to
the existence of such solutions in a strongly deformed MCF.

The paper is structured as follows. In Sec. II, the basic
equations are formulated. Section III analyzes the mode sta-
bility in the case of small deformations. In Sec. IV, stability
analysis of the ± mode with respect to the linear amplification
process in MCF is performed for the case of a nonuniform
gain across cores. In Sec. V, the out-of-phase distribution is
found in the case of strong MCF bending. In Sec. VI, the
wave field amplification is analyzed in the active MCF in order
to obtain a laser pulse with a total power that is many times
higher than the critical self-focusing power in a homogeneous
medium. Approximate solutions for spatiotemporal solitons
in strongly bent MCFs are presented in Sec. VIII. Section VII
contains the results of direct numerical simulation within the
framework of a more general model. In conclusion, the main
results of the work are formulated.

II. PROBLEM FORMULATION

Let us consider the wave field self-action in a multicore
fiber (MCF) made of an even number of cores (2N) arranged
in a ring. We assume that the fundamental guided modes are
oriented in parallel to the z axis of optical single-mode light-
guides weakly coupled to each other. Then the propagation of
electromagnetic radiation in the MCF can be approximately
described as a superposition of modes localized in each core,

E (z, x, y, t ) �
∑

n

En(z)ψ (x − xn, y − yn)eiκz−iωt + c.c.,

(1)

where ψ (x, y) is the structure of the fundamental mode in
a core, En is the envelope of the electric field strength in
the nth core, which slowly changes along the z axis. The
evolution of En during the wave field propagation along the z
axis can be affected by the Kerr nonlinearity, amplification in
the active medium, and interaction with the neighboring cores
arising from weak overlapping of the wave modes directed by
them. Assuming that the core coupling is weak and does not
perturb the structure of the fundamental mode, we obtain the
following equations for the envelope of the electric field En in

the nth core:

i
∂En

∂z
=

2N∑
m=1

χmnEm + βn|En|2En + i�nEn. (2)

Here, the index n varies from 1 to 2N , χmn = χnm determines
the coupling strength between the mth and nth cores, and
kn = χnn, βn, and �n are the wave number, the nonlinearity
coefficient, and the gain in the nth core, respectively.

We assume that all cores are almost identical, i.e., the
nonlinearity coefficients βn ≡ β, gain �n = � + δ�n, and
coupling coefficients χnm = χδm,n±1 + knδmn + δχnm are al-
most identical for all cores (|δ�n| � � and |δχnm| � χ ). The
propagation constants kn = k + δkn in different cores may
differ stronger, which corresponds to structural defects (for
example, bending). The system of equations (2) is conve-
niently rewritten in the dimensionless form,

i
∂un

∂z
= |un|2un + un+1 + un−1 + ζnmum + (hn + iγn)un. (3)

Here, the evolutionary coordinate z is normalized to the
coupling coefficient χ , un = e−ikzEn/

√
β is the complex am-

plitude of the wave field envelope in the nth core, ζnm =
δχnm/χ � 1, hn = δkn/χ , and γn = �n/χ . The effect of
temporal dispersion will be considered in Sec. VIII. During
evolution, the system of equations (3) with γn = 0 preserves
the total power of the wave beam,

P =
2N∑

n=1

|un|2 = const. (4)

Equation (3) was obtained in the framework of the approx-
imation of the single-mode wave field propagation in each of
the core. It is violated when the radiation power in any core
Pn = |En|2

∫∫
ψ2dxdy is close to the critical self-focusing

power Pcr in homogeneous media.
In the case of ideal cores (ζnm = hn = 0) without amplifi-

cation (γn = 0), stable exact solutions for intense wave beams
in MCF were found in Ref. [39], which allowed coherent
transport of laser beams over long distances. The total beam
power in this case can exceed significantly the critical self-
focusing power in homogeneous media. Of greatest interest is
the solution in the form of “± mode”:

un = (−1)n fN , (5)

in which the total power can exceed the critical power of self-
focusing in homogeneous media significantly (by up to 2N
times). Moreover, this solution is stable and exists at all wave
field amplitudes.

Indeed, let us study solution (5) with respect to filamenta-
tion instability. For N � 2 and a wave field with perturbations
having the form (κs = πs/N),

un = [(−1)n fN + δse
iλsz+iκsn]ei(2− f 2

N )z,

we get real eigenvalues assuming |δs| � fm and κs �= π ,

λ2
s = 4[1 + cos κs]

[
1 + cos κs + f 2

N

]
> 0. (6)

Below in this paper, we find similar solutions and analyze their
stability with respect to the deformation of the MCF structure
(ζnm, hn �= 0) and gain (γn �= 0).
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III. WEAK DEFORMATIONS (ζnm, hn � 1, γn = 0)

A deformation of the MCF structure leads, first of all,
to differences in the refractive indices in cores. A typical
example of a linear change in the refractive indices is

hn = D sin
πn

N
, ζnm = 0, (7)

resulting from bending of optical fibers. Here, D is the per-
turbation amplitude. This is also a leading term of the Fourier
expansion of an arbitrary perturbation of the refractive index.

The appearance of large-scale fluctuations means, as a rule,
that all linear eigenmodes of the MCF are excited, which
makes the problem difficult for analytical consideration. How-
ever, if the value of D is not too large, the perturbations of
the mode (−1)n remain small. In this case, an approximate
solution of Eq. (3) for N � 2 can be sought for in the form,

un = fN ei(2− f 2
N )z[(−1)n + δn], |δn| � 1. (8)

Substituting (8) into Eq. (3), we find the following for the
stationary solution in the first order of smallness in δn ∝ ξn =
hn + ∑

m(−1)m−nζnm:(
f 2
N − 2

)
δn ≈ ξn(−1)n + δn+1 + δn−1 + 3 f 2

Nδn,

⇒ δn ≈
∑

m

∑
k �=N

ξm(−1)meiκk (n−m)

2N
(
4 cos2 κk

2 + 2 f 2
N

) , (9)

where κk = kπ/N . Here, we have taken into account that for
real ξn we can assume, without loss of generality, that fN

and δn are also real. For perturbations of the form of (7), the
solution is simplified:

δn ≈ − D

4 sin2 π
2N + 2 f 2

N

(−1)n sin
πn

N
. (10)

These formulas show that the perturbations remain small
(|δn| � fN ), as far as the perturbation of the refractive index
is small: either |ξn| � 4 sin2 π

2N � 2, or |ξn| � 2 f 2
N = P/N .

Note that the power fraction in the perturbation is a quantity
of the following order of smallness due to the orthogonality of
any perturbations and the variety of solutions (−1)n:

δP =
∑

n

|un|2 − 2N f 2
N =

∑
n

|δn|2. (11)

The similarity of cores results in equal weights of 1 when cal-
culating the orthogonality of the distributions. In the particular
case of perturbations (7), the expression for the power fraction
in the perturbations becomes simpler:

δP

P
≡ 1 − η± = D2

4
(
4 sin2 π

2N + P/N
)2 . (12)

Next, we turn to the results of numerical simulation of
Eq. (3) under perturbations having the form of Eq. (7). The
relative phase difference of the field in neighboring cores
was preserved in numerical simulations and amounted to π .
Figures 1(a) and 1(b) shows two surfaces of different colors,
which represent the dependence of the power fraction η± =
1 − δP/P in the ± mode on the amplitude perturbations of
D of the refractive index hn and of the total power P for
different numbers of cores in a passive MCF: six cores (N =
3) and 20 cores (N = 10) [Figs. 1(a) and 1(b), respectively].

FIG. 1. (a) and (b) Dependence of the power fraction η± in the ±
mode on the amplitude of deformations D and on the total power P
for different number of cores 2N in a passive MCF (γn = 0). Black
lines are the results of numerical simulations of Eq. (3). Red (gray)
lines correspond to approximation (12). The blue dash line shows
boundary (13). (c) Dependence of the power fraction η± in the ±
mode in the active MCF on the number of cores 2N and on the
amplitude of the gain perturbations G at D = 0 and γ = 0.01. Blue
(gray) lines correspond to estimate (19).

Here, the black lines are based on the results of numerical
simulations of Eq. (3), and the red (gray) lines correspond to
the found approximation (12). It can be seen that an increase
in the amplitude D leads to an increase in the fraction of
the perturbation power δP/P and, thereby, to a decrease in
the maximum transported radiation power in the out-of-phase
mode via MCF. The power fraction η± in the linear case P �
4N sin2 π

2N � 4 is close to unity only when the perturbation
amplitude D lies in the narrow range of D � D∗ ≡ 4 sin2 π

2N .
Moreover, this range narrows rapidly with an increase in the
number of cores [see Figs. 1(a) and 1(b)]. On the contrary,
most of the power is contained in the ± mode when powerful
radiation is transported:

P � Pth ≡ DN. (13)
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For example, in the case of six cores (N = 3), the threshold
power at D = 5 is Pth = 15, and for 20 cores (N = 10) we get
Pth = 50. Thus, in general, the found approximation (12) is in
good agreement with the results of numerical simulation of
Eq. (3) [see Figs. 1(a) and 1(b)].

IV. ACTIVE MCF (ζnm = hn = 0, γn � 1)

Let us analyze stability of the ± mode with respect to
the process of weakly inhomogeneous linear amplification in
active MCF. An approximate solution of Eq. (3) in the case of
|δn| � fN will be sought in the form,

un = [(−1)n + δneiκsn] fN eγ z+2iz−i exp(2γ z)/2γ . (14)

Substituting (14) into Eq. (3), we find

i
∂δn

∂z
− 2δn = f 2

N (δn + δ∗
n )

+ 2δn cos κs + i
∑

δγm(−1)me−iκnm, (15)

where γ = ∑
γn/2N and δγn = γn − γ . We first analyze the

stability of the out-of-phase mode in the case of the same gain
in all cores (δγn = 0). Obviously, the field growth is small on
the scale of the coupling length (∼1) in the case of γ � 1. So,
one can find the local dispersion relation for δn ∝ eiλz,

λ2(z) ≈ 8 cos2
(

κn

2

)[
2 cos2

(
κn

2

)
+ f 2

N (z)
]
� 0,

from which it follows that the perturbation amplitudes grow
no faster than the ± mode.

Next, we consider the field amplification in MCF in the
case of a spread of the gain δγn �= 0 over cores. The forced
solution of Eq. (15) has the form,

δn ≈ − i fN

2N

∑
m

∑
k �=N

δγm(−1)meiκk (n−m)

4 cos2 κk
2

. (16)

For example, let us consider the most dangerous case of
δγn = G sin πn

N . As a result, we obtain an approximation of
the amplitudes of the field perturbations in the active MCF,

δn ≈ − iG(−1)n sin πn
N

4 sin2 π
2N

. (17)

It follows that the perturbations remain small (|δn| � fN ), in
so far as the gain perturbation is small,

G � 4 sin2 π

2N
. (18)

The expression for the power fraction in perturbations
takes the form similar to (12),

δP

P
≡ 1 − η± = G2

64 sin4 π
2N

. (19)

Thus, the effects of gain inhomogeneity will be noticeable
only for a large number of cores:

N � Nlim ≡ π/
√

G, G � γ � 1. (20)

Next, we turn to the results of the numerical simulation
of Eq. (3). Figure 1(c) shows the dependence of the power
fraction η± in the ± mode in the active MCF as a function of

the number of cores 2N and the amplitude of the gain pertur-
bation G. The calculation was performed for the average gain
γ = 0.01 and D = 0. Black lines correspond to the results
of the numerical simulation of the initial equation, Eq. (3).
Blue dash lines correspond to the estimate (19). The gain
inhomogeneity across the cores affects weakly the radiation
amplification in the MCF (most of the radiation power is
contained in the ± mode) in the case of N � Nlim [Fig. 1(c)].
For example, a significant power fraction (η± ≈ 0.9) can be
produced in an MCF of 40 cores (N = 20 � Nlim) in the case
of a small gain spread, G = 0.01. However, it is necessary to
use MCF with a smaller number of cores with an increase in
the coefficient G. For example, the power fraction η± ≈ 0.8
at G = 0.3 is realized only in the case of 10 cores (N = 5 �
Nlim). The significant drop in the power fraction in the ± mode
takes place for N > Nlim [see Fig. 1(c)]. Note that the strong
ruggedness of the power fraction η± on G and N (black line
surface) is associated with strong radiation scattering from the
± mode to other eigenmodes and further amplification of the
scattered radiation. Thus, estimate (19) for the power fraction
in the ± mode and the limiting number of MCF cores (20) are
in good agreement with the results of the numerical simulation
[see Fig. 1(c)].

V. STRONG MCF BENDING (ζnm = γn = 0)

Section III shows that a small MCF deformation changes
the ± mode (5) weakly during radiation transportation
(η± ≈ 1) in the case of weak bending of the MCF (D � D∗)
and in the case of strong radiation (P � Pth). Otherwise, the
spatial distribution of the out-of-phase wave distribution in
the deformed MCF differs significantly from the ideal case
[mode uD=0

n ∝ (−1)n]. This means that the distribution uD=0
n

is not a stationary solution and, accordingly, will be split up
into eigenmodes of an arbitrarily strongly deformed MCF.
Obviously, the power fraction in the distribution of uD=0

n will
decrease with increasing difference between this distribution
and the out-of-phase stationary solution in curved MCF.

In this section, we find stationary solutions of the deformed
MCF. The complexity of finding analytical solutions increases
quite rapidly with an increase in the number of cores. There-
fore, we restrict ourselves to the case of six cores (N = 3) in
the analytical calculations presented in the paper, when per-
turbations of the form (7) in out-of-phase solutions of Eq. (3)
generate a small number of eigenmodes: (−1)n, cos πn

3 , and
sin 2πn

3 . Then, the use of the total power conservation law (4)
allows us to search for the solution in the form,

un = C

√
P

6
(−1)neiσ + B

√
P

3
eiσ+iφ sin

2πn

3

+ A

√
P

3
eiσ+iθ cos

πn

3
, (21)

where C2 = 1 − A2 − B2 is the power fraction in the mode
(−1)n, A2 and B2 are the power fractions in the sin 2πn

3 and
cos πn

3 modes, respectively, and φ and θ are relative phase
differences. Substituting field distribution (21) to Eq. (3), we
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obtain a system of Hamiltonian equations for changing the
parameters of the wave field {A2, B2, φ, θ},

dθ

dz
= − ∂H

∂A2
,

dφ

dz
= ∂H

∂B2
, (22a)

dA2

dz
= ∂H

∂θ
,

dB2

dz
= ∂H

∂φ
, (22b)

with the Hamiltonian,

H

P
= −AB2C

3
√

2
cos(2φ − θ ) + A2B2

12
cos(2φ − 2θ )

+ ABD cos(φ − θ ) −
√

2CBD cos φ

+ C2

6
(A2 cos 2θ + B2 cos 2φ)P

+ (A2 − 2B2)
APC

3
√

2
cos θ + B2 + 3A2

− P

8
(B4 + A4) + P

6
(A2 − 2A2B2 + B2). (23)

Note that the equation for the evolution of the common
phase σ is split off from the dynamics of other wave beam
parameters due to the conservation of the total power P.

Resulting equations (22) describe the dynamics of the wave
beam parameters in the four-dimensional phase space, and the
dynamics themselves can be quite complex. Fortunately, we
are only interested in stable stationary solutions, which are
determined by the equilibrium states of Eq. (22).

Note that Eq. (22) are written not for canonically conjugate
variables. For this system, the canonically conjugate coordi-
nates are {θ, A2} and {φ, B2}. However, we introduced the
quantities A and B specially, because they allowed the whole
variety of equilibrium states θk = πk, φl = π l of Eq. (22) to
be reduced to the only case of θ = φ = 0. At this, the sign of
the quantities A and B will determine the indices k = 0, 1 and
l = 0, 1. At the same time, we avoided singularities at A = 0
and B = 0, which are present when canonically conjugate
variables are used.

So, in order to find stationary solutions, it is sufficient
to find the minima and maxima of Hamiltonian (23) for
θ = φ = 0,

H0 ≡ Hθ=0,φ=0

P

= ABD + B2 + 3A2

−
√

1 − A2 − B2
3AB2P − A3P + 6BD

3
√

2

+ (B2 + A2)P

3
− 7(B2 + A2)2P

24
, (24)

and determine their stability. The search for equilibrium states
is a rather difficult task from the analytical point of view, since
it is necessary to solve the transcendental equation. The form
of the Hamiltonian H0 and the numerically found equilibrium
states for various values of P and D are shown in Fig. 2.

There is only one equilibrium state (Fig. 2), which is
close to the ± mode (A, B ≈ 0), for a small bending of D =
0.1 � D∗ = 3 and for a total power of P = 1 � Pth = DN =
0.3. This equilibrium state is marked with the symbol ± in

the figure. With increasing power, the following equilibrium
states appear (see the top row in Fig. 2). The asterisks indicate
the position of the equilibrium states of Eq. (22). For example,
there are four equilibrium states for P = 10, and there are
already six equilibrium states for P = 100. It can be seen that
the position of the equilibrium state corresponding to the out-
of-phase solution shifts weakly from the point (A ≈ B ≈ 0) in
the large range of the total power P (see Fig. 2). This means
that solution (21) corresponding to the equilibrium states (A ≈
B ≈ 0, C ≈ 1) is slightly different from the distribution of the
solution (−1)n of nondeformed MCF, i.e., the power fraction
in the ± mode is close to unity, which agrees with the results
of numerical simulation (see Fig. 1).

The insets in Fig. 2 show the typical spatial distribution
of the wave field in the MCF corresponding to different
equilibrium states. Note that injection of a wave beam with
a spatial distribution corresponding to the equilibrium states
at the MCF input yields no beating of the wave field during its
propagation.

It is possible to find an approximation of equilibrium states
only for small perturbations of the refractive index D � D∗
or for high powers P � Pth. Of greatest interest is the out-of-
phase solution:

B± ≈ 3
√

2D

2P + 6
+ O(D3), (25a)

A± ≈ 9(P − 6)D2

4
√

2(P + 3)2(P + 9)
� B±. (25b)

It can be seen that strong bending of MCF leads first of all
to an increase in the coefficient B [according to (10)], and
only in the second order of smallness, to an increase in the
coefficient A (see Fig. 2). This, together with the orthogonality
of the eigenmodes sin 2πn

3 and cos πn
3 , makes the range of

applicability of Eq. (10) rather wide.
It is also possible to find approximations of the remaining

six equilibrium states at high powers P � Pth (Fig. 2):

A1 ≈
√

2

3

(
1 + 2

P
− 8

P2

)
, B1 ≈ 2

√
6D

P2
,

A2,3 ≈
√

2

3

(
1

2
− 2

P
− 5 ± 2

√
3D

P2

)
, B2,3 ≈ ±1√

2
∓ 3

√
2

P2
,

A4 ≈ −2
√

2

3

(
1 − 1

P

)
, B4 ≈ 3D√

2P
,

A5,6 ≈
√

2

3

(
1 − 5 ± 3

2

√
3D

P

)
, B5 ≈ ±

√
2

3

(
1 + 1

P

)
.

These approximations show that equilibrium states 1, 2, and
3 have a weaker dependence on the deformation amplitude
(∝D/P2) than equilibrium states 4, 5, and 6 (∝D/P). In other
words, only three (4, 5, and 6) of the six equilibrium states
are sensitive to bending. This is due to the symmetry of
equilibrium states 1, 2, and 3, which suppresses the effect of
curvature. Formal stability analysis of these solutions,

(
∂2H

∂θ∂φ

)2

< 4
∂2H

∂θ2

∂2H

∂φ2
,

∂2H

∂θ2

∂2H

∂A2
� 0, (27)
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FIG. 2. Form of the Hamiltonian (24) for various P and D. Asterisks indicate the position of the equilibrium states of Eq. (22). Insets show
the field distribution at these equilibrium states. Unstable field distributions are marked with dashed circles.

yields the stability of solutions 1, 2, and 3. Solutions 4, 5,
and 6 lose stability at D → 0. The most interesting out-of-
phase mode (25) is always stable, since it has the largest
propagation constant. Therefore, its decay into other modes
is energetically unprofitable [29].

Further analysis will be limited to only the ± equilibrium
state, which is of the greatest practical interest. Figure 2 shows
that the position of this point shifts quite strongly in the plane
(A, B) with the increasing coefficient D at a small value of
the total power P � Pth. Figure 3(a) shows the dependencies
of the parameters A, B,C of the out-of-phase solution (21)
depending on the power P and the bending coefficient D.

Unlike weak bending (D � D∗ or P � Pth), the parame-
ters A and B of the solution of Eq. (21) change at approxi-
mately the same rate as an increase in the bending coefficient
D. As a result, solution (21) differs significantly from the

distribution of the ± mode (5) in a nondeformed MCF. This
is confirmed by the spatial distribution of the wave field
corresponding to the ± equilibrium state shown in the insets
of Fig. 2 for (P = 1 � Pth = 3, D = 1), (P = 1 � Pth = 30,
D = 10), and (P = 10 � Pth = 100, D = 10). It follows from
the given inserts that the wave field is predominantly localized
out-of-phase only in two neighboring MCF cores, where
the amplitude of the perturbation of the refractive index is
minimal (hn ≈ −D). In this case, the fraction η± decreases
[Fig. 3(c)], but not as much as the approximation (12) (red
lines).

In the case of high-power radiation (P � Pth), the position
of the equilibrium state ± shifts again towards A, B ≈ 0
(Fig. 2). For example, consider the following cases: (i) P =
10 � Pth = 3, D = 1, (ii) P = 100 � Pth = 3, D = 1, and
(iii) P = 100 � Pth = 30, D = 10. This corresponds to the
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FIG. 3. (a) Form of the out-of-phase solution depending on the
parameters P and D. (b) Dependence of the maximum intensity
P/ maxn |un|2 (black) on this solution and its approximation (29)
(green). The blue curve with an arrow shows the change in the maxi-
mum intensity with a smooth increase in power. (c) The dependence
of the power fraction η± = 1 − δP/P in the ± mode (black) on the
out-of-phase solution and its approximation (12) (red).

almost uniform wave field distribution in all MCF cores (C ≈
1), and the power fraction becomes η± ≈ 1. This conclusion
is in good agreement with Fig. 3. Therefore, the nonlinearity
of the medium “straightens” the out-of-phase mode of the
deformed MCF to the form of (−1)n in the case of high-power
radiation P � Pth.

As noted in the Introduction, the interest in MCF is related
to the ability to split the total high-power P into channels
with powers below any undesirable nonlinear effects that
can lead to fiber damage. However, as shown above, strong
deformations of the six-core MCF lead to strong localization
of radiation in only two cores. This means that the maximum
intensity in the cores at a fixed total power P will be much
higher than in the case of the uniformly distributed wave field
over all the cores (5). At this, the power in a separate core is
determined by only the dimensionless intensity In = |un|2. In
dimensional units, this is Pn = |En|2

∫∫
ψ2dxdy.

Knowing equilibrium states (21) allows us to find the
maximum value of the field intensity for a fixed power: Imax =
maxn |un|2. The maximum intensity Imax is the important char-
acteristic that allows one to estimate the maximum transported
power before any damage to MCF occurs. Indeed, no more
power than the critical self-focusing power Pcr can be placed
in each core. Then, the maximal total power can be estimated
as

P � P

Imax
Pcr. (28)

Obviously, the minimum Imax is reached at solution (25),
which is close to the ± mode, where the field intensity is
distributed uniformly over all the kernels In = P/2N . Nev-
ertheless, an increase in the bending amplitude D leads to a
skew of the wave distribution and a decrease in the maximum
transported power. Moreover, the maximum intensity depends
mainly on the ratio D/P and is approximated well by the
formula,

6

P
Imax ≈ 1 + 3

√
3D

P + 3
, D � P + 3. (29)

At its maximum, the value of Imax reaches 3, which corre-
sponds to a field concentrated only in two of the six cores.
Figure 3(b) shows the dependence of the maximum intensity
P/Imax on the out-of-phase solution (black surface) and its
approximation (29) (green surface) versus the bending co-
efficient D and the total power P. Comparison of the exact
solution and the approximation shows good agreement up to
Imax � 2.

Let us discuss the case of MCF with a large number
of cores (N > 3). The formally presented procedure for ob-
taining stationary solutions is easily generalized to the case
of arbitrary N . However, the search for analytical solutions
becomes difficult with an increase in the number of cores,
since perturbations of the form of (7) generate a large number
of linear eigenmodes in the out-of-phase solution even for odd
N = 5, 7, . . .. Therefore, we do not give similar expressions
of the Hamiltonian and asymptotic solutions for N > 3 due to
their excessive cumbersomeness. In what follows, we restrict
our consideration to the solution describing the skew of the
out-of-phase solution due to the deformation of the MCF.

Figures 4(a), 4(c), and 4(e) show the dependence of the
power fraction in the distribution of (−1)n in a deformed
MCF for a different number of cores: 10 (N = 5), 14 (N = 7),
and 30 (N = 15). The black surface is plotted on the basis
of the found analytical out-of-phase solutions. The red (gray)
surface corresponds to the found approximation, Eq. (12). It
can be seen that the approximation found is in good agreement
for powers P � Pth = DN .

It is possible to generalize analytically approximation (29)
of the maximum intensity Imax to the case of a large number
of cores,

2N
Imax

P
≈ 1 + 2D cos π

2N

4 sin2
(

π
2N

) + P
N

. (30)

Figures 4(b), 4(d), and 4(f) show the dependence of the
maximum intensity P/Imax on P and D for a different number
of cores. The black surface is plotted on the basis of the exact
solution corresponding to the ± equilibrium state. The green
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FIG. 4. Dependencies of the power fraction in the ± mode (a), (c), and (e) and the maximum intensity P/Imax (b), (d), and (f) on D and
P for different number of cores: 10 (N = 5), 14 (N = 7), and 30 (N = 15). Black surfaces are plotted on the basis of the found out-of-phase
solutions. Red and green (gray) surfaces correspond to the approximations (12) and (30), respectively. Blue dash lines shows the boundary
(13). Dash-dotted lines in (b), (d), and (f) show the level P/Imax = 2.

surface corresponds to approximation (30). One can see a
good agreement between them. When the MCF is strongly
bent (D � D∗, P � Pth), the field is localized only in a small
number of cores, as in the case of the six-core MCF (N =
3). Therefore, the maximum power that can be transported
through MCF, taking into account Eq. (28), is Pmax � 2Pcr. In
the case of high-power radiation P � Pth, the media nonlin-
earity weakens the influence of the MCF deformation on the
wave field dynamics, and the wave beam tends to a uniform
distribution over the cores and the maximum power becomes

P � 2N

1 + 2Pth/P
Pcr � 2NPcr. (31)

VI. AMPLIFICATION IN A STRONGLY BENT MCF

Let us consider the wave field amplification in an active
MCF in order to obtain a laser pulse with a total power that is
many times greater than the critical self-focusing power in ho-
mogeneous media. Obviously, the MCF deformation (D �= 0)
and the gain spread across the cores (G �= 0) can significantly
limit maximum achievable power (31). The negative effects

associated with the gain inhomogeneity can be weakened
significantly if the number of cores in the MCF satisfies the
condition (20).

In the case of weak bending of MCF (D � D∗ =
4 sin2 π

2N � 2), the out-of-phase solution is close to the ±
mode un ∝ (−1)n, and it is possible to ensure coherent am-
plification in all cores for γ � 1. The difference between
the out-of-phase solution and the ± mode is determined by
the value δn in accordance with Eq. (10). However, with
an increase in the number of cores 2N , its applicability
threshold decreases rather quickly and, for example, for 30
cores (N = 15) it is only D∗ = 0.04. In the case of strong
bending, the out-of-phase solution is skewed and the wave
field distribution is strongly inhomogeneous, and only a small
part of the cores is involved in radiation transport (see Fig. 4).
Accordingly, injection of a wave beam with the distribution
un ∝ (−1)n is undesirable, since it is far from a stationary
solution.

Therefore, an initial distribution close to the desired out-
of-phase solution should be used. It is easy to find it if we
neglect the nonlinearity of the medium in the case of a small
initial power P � Pth. Then, the problem becomes linear and
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FIG. 5. Dependence of the wave field intensity |un|2 in 30-core MCF (N = 15) on the evolutionary coordinate z for D = 4 (a), D = 1 (b),
and various γ . The vertical lines show the position of the field distributions in the cores. The horizontal dotted lines denote the level, when the
distribution becomes close to the ± mode.

is reduced to finding the eigenvalues λ and the eigenvectors
en,

Anme(k)
n = λ(k)e(k)

n ,
∑

e2
n = P, (32a)

det(Anm − λ(k)δnm) = 0, (32b)

where An,m = δhnδn,m + δn,m−1 + δn,m+1. The out-of-phase
solution will be the eigenvector corresponding to the minimal
(most negative) eigenvalue.

To clarify the process of wave field amplification in a
deformed MCF, we consider the six-core MCF, for which
analytical relations can be found easily. In Fig. 3(b), the blue
curve with the arrow shows the change in the maximum
intensity with a smooth increase in the total power. The
field is concentrated in several cores for small total powers
(Fig. 5), and the intensity is distributed almost uniformly over
all the cores for large powers P � Pth = DN . Consequently,
knowledge of the equilibrium states allows one to predict
the nonlinear dynamics of the wave field in the active MCF,
when the wave power slowly increases at γ � 1 due to the
gain being small on the scale of the coupling length. As
the wave beam power increases exponentially, an adiabatic
rearrangement of the out-of-phase mode is expected.

Numerical simulations of Eq. (3) in an active MCF of
30 cores (N = 15) with a gain of γ = 10−2 and G = 10−3

confirm this conclusion clearly. For a given value of the
coefficient G, the gain nonuniformity over the cores should
not affect the adiabatic rearrangement of the out-of-phase
mode, since Nlim = 100 � 15. Figure 5 shows the evolution

of the field intensity in the cores for different coefficients
D: D = 0.05 � D∗, D = 0.3, D = 1, D = 5. The insets show
the typical wave field distributions in different MCF cross
sections.

The case of D = 0.05 corresponds to weak bending of the
MCF. The wave field at the input is distributed quasiuniformly
over the cores (Fig. 5). In this case, the initial spread in the
field amplitudes is well determined by Eq. (10). At a power of
P = 10Pth, the intensities in different cores are equalized.

The initial distribution of the wave field becomes more and
more anisotropic as the coefficient D increases. Despite this,
field intensities become equalized in all the cores again at
P � 10Pth � Pth. In this case, the value Pth = ND grows with
an increase in the bending coefficient D and, thus, the tran-
sition length to the distribution (5) increases logarithmically.
Consequently, the results of numerical simulations confirm
the possibility of adiabatic transition to the ± mode in the
process of wave beam amplification.

VII. COMPARISON WITH DIRECT SIMULATIONS

To verify the stability of the analytic solutions found above
in the frame of the single-mode approximation, we performed
numerical simulation of the wave field dynamics described by
the nonlinear unidirectional wave propagation equation [39],

i
∂E
∂z

=
√

k2
0n2

0 + �⊥ E + k0n2|E |2E + k0U (x, y)E, (33)
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FIG. 6. Distributions of |u|Reu of the wave fields corresponding to different powers P/Pcr = 0.2 (a)–(d), P/Pcr = 2 (e)–(h), P/Pcr = 5
(i)–(l). The inhomogeneoity lengths are L = 0 (a), (e), and (i); L = 1.5 mm (b), (f), and (j); L = 0.75 mm (c), (g), and (k); L = 0.5 mm (d),
(h), and (l).

with the potential,

U = y/L + δn
∑

n

exp

(
−

[
(x − xn)2 + (y − yn)2

r2
n

]4
)

.

Here, xn, yn, rn are the position and radius of the cores, n0

is the refractive index of the cladding, δn is the difference
between the refractive indices of the cores and the medium, n2

is the nonlinear refractive index, and L is the length of media
inhomogeneity. The operator

√
k2

0n2
0 + �⊥ can be easily cal-

culated in Fourier space, and allows one to properly describe
wave fields with transverse scales being of the order of the
wavelength with spherical aberrations taken into account.

Numerical simulations were carried out at the wavelength
2π/k0 = 1.03 μm for a silica fiber, similar to that available to
our group. The refractive index of the cladding was taken to
be n0 = 1.45. The difference in the refractive indices between
the cores and the cladding was δn = 0.002. The nonlinear
refractive index was n2 = 3×10−16 cm2/W. The radii of the
cores were equal to rn = 7 μm, and the distance between them
was 20 μm. The simulation was performed on a grid with
the number of points 256×256 in a plane perpendicular to
the propagation direction. The calculation step along the fiber
axis was chosen to be �z = 1 μm. We have confirmed that

reducing the step by half (with a corresponding increase in
the number of points along any coordinate) does not lead to a
change in numerical results.

The initial wave field distributions were chosen as the
found analytic solution for un multiplied by ψ (x, y) =
1/ cosh(

√
x2 + y2/7 μm). The fields ψ (x, y) in each core are

close to the fundamental mode of an individual core. This
simplified form of the initial distribution introduces appre-
ciable noise up to the level of 3% of the amplitude of the
exact solution. Since the presented solutions are stable, such
simplification did not lead to a noticeable distortion of the
wave field structure, but gave only small amplitude and phase
oscillations.

Direct numerical simulation of Eq. (33) showed good sta-
bility of most of the found solutions (Fig. 6). Moreover, direct
numerical simulations confirm the conclusion made within the
framework of the discrete model that an increase in the total
power of the wave beam leads to more uniform distribution of
the wave amplitudes across the MCF cores.

VIII. SPATIOTEMPORAL SOLITONS

In the previous sections, stable stationary nonlinear so-
lutions were found, which ensures the coherent propagation
of wave beams in strongly deformed MCF. Further interest
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here is related to the possibility of coherent propagation of
solitonlike laser pulses in strongly bent MCF, i.e., the ability to
transmit laser pulses without changing the temporal structure
along an extended path.

Equation (3) must be supplemented by the dispersion term
to describe the dynamics of the spatiotemporal soliton. In this
section, we restrict ourselves to media with γn = 0 and with
the simplest form of deformations (7). As a result, we arrive
at the equation

i
∂un

∂z
= ∂2un

∂τ 2
+ |un|2un + un+1 + un−1 + D sin

(
nπ

N

)
un,

(34)

where the longitudinal coordinate τ is normalized by√|k2|/2χ , k2 = ∂2κ
∂ω2 . Equation (34) conserves total energy,

W =
2N∑

n=1

∫
|un|2dτ = const. (35)

The exact analytical solution was found for ideal MCF
(D = 0) in the form of a spatiotemporal soliton [29],

un = (−1)n

√
2b

cosh(bτ )
ei(2−b2 )z, (36)

with out-of-phase distribution in the transverse direction. Its
stability is proved both with respect to small perturbations of
the wave field, including azimuthal ones, and with respect to
small deformations of the MCF structure.

The method developed in Sec. V for finding exact station-
ary solutions for wave beams in strongly bent MCFs can be
generalized to the case of pulsed radiation. Next, we analyze
the simplest case of six cores (N = 3). A solution can be
sought in factorized form, similar to (21)

un =
√

W

6τp

eiσ+iατ 2

cosh(τ/τp)

[
C

(−1)n

√
2

+ Beiφ sin
2πn

3

+ Aeiθ cos
πn

3

]
, (37)

where C = √
1 − A2 − B2, W and τp are the total energy (35)

and the duration of the spatiotemporal soliton, α is a param-
eter of the frequency chirp, and φ and θ are relative phase
differences. Such approximation is applicable if the dispersion
length is larger than the coupling one: τ 2

p � 1.
Using the variational approach to the distribution (37)

along the coordinate τ , we obtain equations for the parameters
of the wave packet. Its stationary solution is located at φ =
θ = α = 0 and the soliton duration,

τp = 48/W

2 − 4
√

2(3B2 − A2)AC − 7(A2 + B2)2 + 8(A2 + B2)
.

(38)

Thus, the dispersion length τ 2
p ∝ 1/W 2 is essentially a nonlin-

ear length for spatiotemporal solitons. The stationary values of
the coefficients A and B correspond to the minimum point of
the Hamiltonian, similar to (24):

Hs = ABD + B2 + 3A2 −
√

2DBC

+ (3B2 − A2)ACW 2 7(A2 + B2)2 − 8(A2 + B2) − 2

632
√

2

FIG. 7. (a) Dependence of the energy fraction η± of the spa-
tiotemporal soliton solution in the ± mode on the perturbations
amplitude D and on the total energy W . Here the black surface is built
on the basis of the found minima of Eq. (39); the red (gray) surface
corresponds to the estimate (43). (b) The dependence of τp/τNSE on
D and W is shown by the black surface; the magenta (gray) surface
corresponds to the estimate (42). The green (light gray) curve shows
the stability boundary of the solution τp = 1.

+ [7(A2 + B2)2 − 8(A2 + B2) − 2]2 W 2

6332

+ W 2

63
(B2 + A2 − 1)(3B2 − A2)2. (39)

The most uniform energy distribution over MCF cores
corresponds to the out-of-phase mode, for which the value
A2 + B2 is closest to 0. The asymptotic behavior of this
solution at high energies W has the form,

B± ≈ 1√
2

D

1 + W 2/63
+ O(D3/W 6), (40)

A± ≈ 1

4
√

2

D2(
7
2 + W 2/63

)2 + O(D4/W 8). (41)

The knowledge of these asymptotics allows one to find expres-
sions of the spatiotemporal soliton duration τp and the fraction
of energy η± = 1 − δW/W in the ± mode,

τp

τNSE
≈ 1

1 + 4B2±
≈ (1 + W 2/63)2

(1 + W 2/63)2 + 2D2
, (42)

η± = 1 − δW

W
= C2 ≈ 1 − D2/2

(1 + W 2/63)2
. (43)

Here τNSE = 4/WNSE is the duration of the NSE soliton in the
case of uniform distribution of energy over the cores: WNSE =
W/6.
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FIG. 8. The evolution of the wave packet amplitude in a de-
formed six-core MCF with D = 1. The initial distribution of the wave
packet corresponds to the found solution (37) for different values of
the total energy W : (a) W = 5 with the dispersion length equal to 8;
(b) W = 15 with the dispersion length equal to 1.

Let us compare the exact solution and the found asymp-
totics (42) and (43). In Fig. 7(a), the black surface shows
the dependence of the fraction of energy η± of the found
solution on the total energy W and on the amplitude of the
perturbations D. The red (gray) surface corresponds to the
asymptotic (43). This figure shows that the fraction of energy
in the ± mode tends to unity with increasing total energy W
of the wave packet. In Fig. 7(b), the black surface shows the
dependence of τp/τNSE on D and W , and the magenta (gray)
one shows the asymptotic (42). This figure shows that the
duration τp of the found solution tends to the duration τNSE

of the NSE soliton with an increase in the total energy W .
The green curve in Fig. 7 shows the applicability boundary
τp = 1. Found approximations are in good agreement with
exact solutions for deformation amplitudes D � 1 + W 2/63.

We check the stability of obtained approximate solutions
in the framework of the numerical simulation of Eq. (34).
Figure 8 shows the evolution of the wave packet in a deformed
MCF of six cores in the case D = 1. The initial distribution
of the wave packet corresponds to the found solution (37) for
different values of the total energy W . For a small energy W =
5, the dispersion length exceeds the coupling length, which is
a necessary condition for the existence of the found solution.
The results of numerical simulations confirm the stability of
the found solution [Fig. 8(a)]. The fraction of energy in the
η± mode is 77%. The case of the total energy W = 15 is on
the boundary of the solution applicability, since the dispersion
length becomes approximately equal to the coupling length.
Nevertheless, the wave structure as a whole isn’t destroyed

[Fig. 8(b)], but beats are observed. The fraction of energy in
the ± mode is about 90%. A further increase in energy leads
to stronger beats that destroy the wave packet structure both
in the longitudinal and transverse directions.

Thus, a substantial equalizing of the energy distribution
over MCF cores cannot be achieved, since it is limited to the
region of existence of the solutions τ 2

p � 1. In dimensional
units, this condition corresponds to pulses with durations
longer than

√|k2|/(2χ ). For the typical coupling coefficients
χ ≈ 0.1 . . . 1 cm−1 and the dispersion k2 ≈ −15 ps2/km, the
limiting durations are 9...27 fs and lie obviously outside the
range of applicability of the original equation (34).

IX. CONCLUSION

In this paper, we examined the propagation of laser pulses
in MCF consisting of an even number 2N of cores located
around a ring. Main attention was paid to the transformation
of the out-of-phase wave field distribution during structure
deformations of the multicore fiber, including fiber bending
and gain inhomogeneity in different cores.

In the case of small deformations leading to a small
perturbation of the propagation constant in comparison with
the coupling coefficient, approximate solutions are obtained.
Moreover, the power fraction in the perturbations is a quantity
of the next order of smallness in the deformation amplitude.
The reason is the orthogonality of the ± mode un ∝ (−1)n

to all other fiber eigenmodes. A similar conclusion can be
made for the active fiber, including ones with a small gain
inhomogeneity. The analytical analysis is confirmed by the
results of numerical simulations.

An increase in the deformation amplitude leads to an
increasing deviation of the out-of-phase distribution from the
ideal case of the ± mode. A complete analysis of resulting
equations is difficult. The situation is greatly simplified when
searching for stationary solutions in the case of odd N : It
is enough to solve the system of N − 1 nonlinear algebraic
equations for the amplitudes of linear eigenmodes, and then
check the stability of the resulting solution. Thus, the task,
although technically difficult, becomes quite accessible for
modern computer algebra systems (Fig. 4). As an example,
the simplest case N = 3, when the stationary solution is de-
termined by only two real coefficients, is considered in detail.

An analysis of the obtained solutions showed that the
nonuniformity of the wave field amplitude in different cores
decreases with an increase in the total radiation power. This
means that the total transported power can be 2N times
higher than the critical self-focusing power in a homogeneous
medium even in a strongly deformed MCF. In particular, wave
beam amplification, which has the form of the found out-of-
phase solution in an active MCF even with a strong difference
in the refractive indices in the cores, leads to equalization of
the wave field amplitudes at powers larger than the found
critical value. This result is confirmed by direct numerical
simulations (Fig. 6).

A generalization of this technique to the case of wave
packets allowed us to find a stable approximate stationary so-
lution in the form of spatiotemporal solitons. Their existence
and stability is confirmed by direct numerical simulation.
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Unfortunately, the condition for the stability of found solu-
tions (a smallness of coupling bond length in comparison
with the dispersion one) makes it impossible to substantially
equalize the energy distribution over MCF cores.
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