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Parametric instability in coupled nonlinear microcavities
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We report the observation of a parametric instability in the out-of-equilibrium steady state of two coupled Kerr
microresonators coherently driven by a laser. Using a resonant excitation, we drive the system into an unstable
regime, where we observe the appearance of intense and well-resolved sideband modes in the emission spectrum.
This feature is a characteristic signature of self-sustained oscillations of the intracavity field. We comprehensively
model our findings using semiclassical Langevin equations for the cavity field dynamics combined with a
linear stability analysis. The inherent scalability of our semiconductor platform, enriched with a strong Kerr
nonlinearity, is promising for the realization of integrated optical parametric oscillator networks.
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I. INTRODUCTION

Nonlinear photonic systems, being inherently lossy, have
been proposed as a natural playground for the exploration of
out-of-equilibrium lattice models [1–4]. One example is the
driven dissipative Bose-Hubbard (DDBH) model, describing
interacting bosons hopping on a lattice in presence of pump
and loss, where the emergent physics of dissipative phase
transitions was recently investigated [5–11]. A minimal real-
ization of this model is represented by two coupled nonlin-
ear Kerr-type resonators. Despite its apparent simplicity, this
paradigmatic system presents a rich phenomenology includ-
ing spontaneous symmetry breaking [12], self-trapping and
Josephson oscillations [13,14], periodic squeezing [15], and
a nonlinear hopping phase [16]. Moreover, the interplay of
fluctuations with nonlinearities is known to seed self-pulsing
instabilities [17–20], which can be exploited to realize effi-
cient integrated optical parametric oscillators [21–26].

Interestingly, the presence of such parametric instabilities
was theoretically predicted for a DDBH dimer [27], finding
a possible implementation in coupled microcavities hosting
polariton excitations [28]. The mechanism responsible for
the instability relates to the opening of a resonant scatter-
ing channel from the pump toward two modes, namely, the
bonding and antibonding modes of the dimer, as their en-
ergy gets renormalized by the nonlinearity. Unlike previously
demonstrated triply resonant schemes involving microcavity
polaritons [29–33], in this paper the parametric instability
involves just two polariton modes, the pump at threshold
not being in resonance with any of them. This configuration
not only prevents dephasing of the pump mode in the cavity
via parametric luminescence [34], but also ensures excellent
spatial overlap of the modes participating in the process. A

large parametric conversion efficiency is thus expected. In
coupled microcavities, such instability has not been observed
yet and when generalized to a lattice is expected to originate
peculiar steady-state correlation properties [35].

Here we report the observation of a multimode para-
metric instability occurring within a hysteresis cycle of the
population of two nonlinear coupled microresonators. This
instability feeds sustained parametric oscillations, which we
detect in energy-resolved measurements. Imaging the emis-
sion pattern of signal and idler modes in the instability regime,
we evidence their opposite spatial symmetry. This feature
is reminiscent of the bonding and antibonding linear modes
from which they originate, supporting the description of the
instability mechanism proposed in Ref. [27]. Our findings are
supported by calculations based on a semiclassical coupled-
mode description of the intracavity fields including vacuum
fluctuations. As expected, the energy transfer from the pump
to the parametrically excited modes is very efficient, with a
sideband to pump intensity ratio as large as 0.38 for a submil-
liwatt threshold power. These figures of merit, combined with
the scalability of a semiconductor platform, set a favorable
ground for the exploration of few-photon chaotic instabilities
[36,37] and dissipative time crystals [38–40] in lattices of
microresonators and their relation with ergodicity in open
systems [41].

II. LINEAR SPECTROSCOPY AND
THE COUPLED-MODE MODEL

The coupled microcavities are fabricated starting from a
planar semiconductor heterostructure grown by molecular-
beam epitaxy. Two Al0.10Ga0.90As/Al0.95Ga0.05As distributed
Bragg reflectors separated by a GaAs λ spacer and embedding

2469-9926/2020/102(2)/023526(8) 023526-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2898-6401
https://orcid.org/0000-0001-8124-7643
https://orcid.org/0000-0003-1892-9726
https://orcid.org/0000-0003-1746-5245
https://orcid.org/0000-0002-2508-8315
https://orcid.org/0000-0001-7823-8420
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023526&domain=pdf&date_stamp=2020-08-21
https://doi.org/10.1103/PhysRevA.102.023526


N. CARLON ZAMBON et al. PHYSICAL REVIEW A 102, 023526 (2020)

FIG. 1. (a) Scanning electron microscope image of the coupled
micropillar cavities composed by two distributed Bragg reflectors
(DBR), a λ spacer, and a quantum well (QW), shaded in blue, green,
and purple, respectively. (b) Schematic representation of the hy-
bridization of the two bare pillar modes into molecular bonding (B)
and antibonding (AB) photonic modes. (c) Measured transmission as
a function of the laser detuning relative to the uncoupled cavity reso-
nance �. The dashed line is a fit with the Eq. (1) steady-state expec-
tation value. The left and right insets show the transmission pattern
measured at each resonance. The dashed lines indicate the edge of the
microstructure and the half-maximum contour of the incident laser
spot.

a single 15-nm In0.05Ga0.95As quantum well form a Fabry-
Pérot cavity operating in the strong light-matter coupling
regime [28]. In order to avoid spurious Fabry-Pérot effects
in the double polished substrate wafer, a silicon-oxynitride
quarter-wave antireflective coating is deposited on its back
face. At 4 K, the measured cavity finesse is F ≈ 7 × 104,
limited by residual absorption. The polariton dispersions in
the as-grown sample are measured via energy and angle-
resolved photoluminescence [42]. A coupled-mode model
fit to the dispersion allows us to extract the Rabi split-
ting h̄�R = 3.39(4) meV and the bare exciton energy Ex =
1454.78(3) meV. The wafer is finally processed with electron-
beam lithography and inductively coupled plasma etching
to fabricate microstructures consisting of two overlapping
cylindrical resonators [see Fig. 1(a)]. In this paper the two
resonators have a radius of 2.0 μm and a center-to-center
distance of 3.6 μm. When two micropillars overlap, their
discrete eigenmodes hybridize, forming photonic molecular
modes [43], as illustrated in Fig. 1(b). The energy separation
between the two lowest eigenmodes (often called bonding and
antibonding) is directly related to the spatial overlap between
the pillars and can thus be adjusted by tuning their relative
distance [44].

In transmission spectroscopy experiments, the sample is
held at 4 K in a cryostat and probed using a single-mode
tunable Ti:sapphire laser stabilized in power and frequency.
The linear polarization of the excitation beam is aligned
parallel to the long symmetry axis of the photonic molecule. A
0.55 NA microscope objective focuses the laser (≈2 μm full
width at half maximum) on one of the two micropillars. The
transmitted intensity is collected with a second microscope
objective and imaged on the entrance slit of a monochromator
coupled to a CCD camera. The spectral resolution of the
system is ≈40 μeV.

The linear response of the coupled microcavities is first
characterized by shining a weak pump laser and recording
the transmitted intensity as a function of the laser detuning
� = h̄ωp − h̄ω0, where ωp indicates the laser frequency and
ω0 the frequency of the fundamental mode of each (identical)
pillar. The result is shown in Fig. 1(c). We observe two sharp
resonances corresponding to the bonding and antibonding
modes of the structure. The insets show an image of the trans-
mission measured at each of the two resonances. The even
(odd) spatial symmetry of these patterns indicates the bonding
(antibonding) character of the modes.

In order to fit these results and extract the relevant param-
eters of the system within a coupled-mode description, we
introduce a set of two Langevin equations for the complex
amplitudes α1,2 of the polariton fields in each micropillar
[45–47]. In the frame rotating at the pump frequency and
setting h̄ = 1, the equations read

idα1,2 = (K1,2 − Jα2,1)dt + dχ1,2(t ),

K j = [−� + U (|α j |2 − 1) − iγ j/2]α j + i
√

γ /2Fj . (1)

� is the laser detuning relative to the bare cavity resonance,
Fj is the on-site laser amplitude, γ is the polariton linewidth,
U is the Kerr nonlinearity, J is the intercavity coupling
constant, and χ j (t ) is a complex-valued Gaussian noise of
variance 〈χ∗

j (t )χ j′ (t ′)〉 = δ j, j′δ(t − t ′)γ /2. Only one cavity
is driven in all the experiments: in this way, the excitation
couples both to the linear B and AB modes of the coupled
resonators. However, to model a slightly different coupling of
the excitation spot with the dimer modes, we set F2 = ηF1,
where η = −0.08 and F1 can be chosen real, without loss of
generality. The dashed line in Fig. 1(c) is a fit of the stationary
expectation value of Eq. (1) in the case of a weak drive
(where the nonlinear terms are neglected). From the fit we
obtain the polariton linewidth γ = 27.4(8) μeV, the coupling
strength J = 154.1(6) μeV, and the fundamental mode energy
h̄ω0 = 1450.64(1) meV.

III. NONLINEAR RESPONSE

To probe the nonlinear response of the coupled microcavi-
ties, we tune the frequency of the laser at the antibonding res-
onance (� = J). In Figs. 2(a) and 2(b) we show the measured
polariton number ni = |αi|2 in each microcavity as a function
of pump power. Hereafter subscript 1 (2) refers to the driven
(undriven) cavity. Each data point has been extracted by imag-
ing the transmitted intensity and integrating the counts over a
region of interest corresponding to each of the micropillars
[see the inset of Fig. 2(a)]. The count rates (φ1,2) are corrected
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FIG. 2. (a, b) Symbols, measured polariton occupation number
of the (a) driven and (b) undriven cavity, as a function of pump
power; dashed line, steady-state prediction deduced from Eq. (1)
with U being the only adjustable parameter. (c) Left panels: Intensity
patterns measured at the five different pump powers indicated in
panel (a). Right panels: Calculated intensity patterns obtained as
time-averaged solutions of Eq. (1), multiplied with a Gaussian spatial
profile. The spatial patterns in panels (c1) and (c5) correspond
to near-resonant driving conditions of the linear antibonding and
nonlinear bonding modes. (d, e) Imaginary and real parts of the
stability matrix eigenvalues as a function of pump power, along the
lower branch of the hysteresis cycle.

for detection efficiency and converted to a population using
the relation ni = 2τ
i|cp|−2 where τ ≈ 24 ps is the polariton
lifetime and |cp|2 = 0.86(1) is the polariton photonic fraction
at the frequency ω0. We observe [Figs. 2(a) and 2(b)] that the
coupled cavity population exhibits a hysteretic behavior as
the pump power is cycled between 40 and 400 μW. Dashed
lines correspond to the steady-state mean-field predictions
(i.e., neglecting noise terms and setting α̇i = 0) derived from
Eq. (1) with U being the only adjustable parameter. We
find the best agreement between experiments and theory for
U ≈ 0.1 μeV, corresponding to an exciton-exciton interaction
constant gxx ∼ 30 μeV μm2, a result consistent with recent
weak polariton blockade experiments [48,49]. Importantly, for
P > 200 μW along the lower branch of the hysteresis, the
predictions of a steady-state model are inaccurate: this signals
the onset of a dynamical feature investigated in detail in what
follows.

The left column of Fig. 2(c) shows measured transmission
patterns for five representative values of the pump power
across the hysteresis cycle. At low power (1), since � = J ,
the emission closely resembles the linear AB mode. Darkening
of the driven cavity is observed in (2), due to an interference
effect between the driving field and intracavity field of the
coupled cavity. The phase of the undriven cavity depends on
the pump power because of the coherent coupling (J) and
the Kerr nonlinearity [16]. A small power increase (above
Pthr ≈ 240 μW) produces an abrupt jump in the driven cavity
population, as shown in (3). By further increasing the pump

power, we observe in (4) another jump in the transmitted
intensity and a change to a bonding-type spatial profile, that
persists throughout the upper branch of the bistability (5).
The right column of Fig. 2(c), presents the corresponding
theoretical predictions obtained by time averaging the long
term dynamics of Eq. (1) after having adiabatically ramped
the power to a specified value. Notice that in this simulation
the effect of fluctuations of the intracavity field is included.
The amplitudes 〈αi〉t are multiplied by a Gaussian spatial pro-
file approximating the uncoupled pillar modes. The resulting
intensity maps are in excellent agreement with the experimen-
tal observations, showing that, when including fluctuations,
we can fully reproduce the data in Fig. 2(a).

To further understand the behavior of the system along
the lower bistability branch, we address the linear stability
of the stationary solutions [27]. The imaginary and real parts
of the eigenvalues of the stability matrix corresponding to the
lower branch of the bistability are plotted in Figs. 2(d) and
2(e), respectively. The imaginary part indicates whether small
perturbations around the stationary solutions are damped
[Im(E ) < 0] or amplified [Im(E ) > 0]. When the pump power
reaches ≈200 μW, the imaginary part of the eigenvalues
bifurcates with two of them becoming positive for P > Pthr,
signaling the onset of an instability. Correspondingly, their
real part collapses around ±J indicating an oscillating behav-
ior of the perturbations. These are both characteristic features
of a parametric instability [20]. Points fulfilling this condition
in Figs. 2(a) and 2(b) are marked with a lighter dot.

To clarify the mechanism underlying this parametric in-
stability, we present in Fig. 3(a) the total interaction energy
U (n1 + n2) as a function of pump power, deduced from the
measured polariton occupation along the lower branch of
the bistability. This quantity represents the energy shift of
the eigenmode energies induced by interactions. Interestingly,
when approaching the instability region starting around Pthr

this energy shift becomes close to J . A resonant two-polariton
scattering channel thus opens from the pump into the non-
linear bonding and antibonding modes, now symmetrically
spaced in energy with respect to the pump.

IV. PARAMETRIC INSTABILITY:
SPECTRAL SIGNATURES

The spectrally resolved transmission of the coupled mi-
crocavities while scanning forward and backward the input
power across the bistability is shown in Figs. 3(b) and 3(c),
respectively. In these measurements, the imaging system has
been coupled to the entrance slit of a monochromator spatially
aligned with the dimer axis [see inset in Fig. 3(b)]. For three
power values, we display in Figs. 3(d)–3(f) the spatially and
spectrally resolved measured patterns. For a pump power
below the instability region P < Pthr, the spectrum in Fig. 3(b)
is single toned. Since the pump is closer in energy to the
antibonding resonance, it couples preferentially to this mode
through its finite linewidth. Therefore, the corresponding spa-
tial profile has an antibonding symmetry, clearly indicated
by the intensity node at the center [see Fig. 3(d)]. As the
pump power reaches Pthr, two well-resolved sidebands dis-
placed by δE = ±0.14(1) meV about the pump energy (Ep)
appear. This is a clear signature of the sustained parametric
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FIG. 3. (a) Total interaction energy U ntot deduced from the experiment as a function of the incident pump power along the lower
bistability branch. Horizontal dashed lines correspond to Untot = (J − γ , J, J + γ ). Inset: Schematics of the parametric instability mechanism
occurring as the bonding (B) and antibonding (AB) modes are blueshifted by interactions. (b, c) Integrated spectrally resolved emission of
the microstructure measured while (b) increasing or (c) decreasing the pump power PFw (PBw), expressed in units of Pthr . (d–f) Position and
energy resolved emission patterns (d) below, (e) within, and (f) well above the instability region. As schematized in panel (b), the spatial profile
corresponds to a cut through the long symmetry axis of the structure, while the laser drives the right microcavity. (g) Measured (purple) and
simulated (gray) emission spectrum of the coupled cavities at 1.1Pthr. (h) Calculated trajectories of the cavity field amplitudes α1,2 showing a
limit cycle behavior in the instability region (2.5-ns evolution).

oscillations triggered by the instability, with the pump co-
herently exciting signal and idler fields. The corresponding
spatially resolved pattern in Fig. 3(e) demonstrates that the
lower (higher) energy sideband has a bonding (antibonding)
symmetry, thus supporting the intuitive picture presented in
Fig. 3(a). When the input power exceeds 1.7 Pthr , the micro-
cavity mode switches to the upper branch of the bistability.
Along this branch the emission is monochromatic, as evi-
denced by the measured spectra in the backward power scan
[Fig. 3(c)] and confirmed by a stability analysis of the upper
branch solutions. The emission pattern is characterized by a
bonding-type symmetry [see Fig. 3(f)]. Notice that a para-
metric instability was also theoretically predicted in Ref. [16].
However, in this experiment, the branches of the multistability
could be continuously and reversibly explored, a behavior
which is only possible if parametric processes are strongly
suppressed. In this sense, we suspect that dephasing induced
by slight heating of the sample played a key role.

Figure 3(g) presents in log scale the spatially integrated
spectrum measured at 1.1 Pthr . In addition to the bright signal
and idler peaks, additional sidebands arising from higher-
order scattering processes are clearly resolved; the width of all
sideband peaks is resolution limited. The simulated spectrum
(gray line), faithfully reproducing the sideband magnitudes,
is the power spectral density of the cavity field dynamics
computed via Eq. (1). Note that in order to match the spectral
position of the peaks we have to rescale the energy axis of the
simulation by a factor 0.86. This discrepancy can be ascribed
to the fact that the coupling strength J , proportional to the
overlap of the bare pillar eigenmodes, is slightly reduced
when increasing the pump power, as interactions can modify
their spatial profiles [27]. The presence of sidebands implies
that the cavity fields (α1,2) display limit cycle dynamics in
phase space, as shown by simulations in Fig. 3(h), with period

h/δE = 29(3) ps. Importantly, the energy fraction stored in
the main sidebands is found to be as large as Isb/Itot = 0.38.
Such an efficient parametric process is possible despite the
absence of a triply resonant condition in our experimental
scheme, because the parametric gain (≈ Untot) at threshold,
i.e., when Untot ≈ � ≈ 5.5γ [see Fig. 3(a)], is more than five
times larger than the losses. The combination of a moderate
oscillation threshold (Pthr ≈ 240 μW, or nthr ≈ 1.5 × 103 po-
laritons) with a large sideband intensity evidences the poten-
tial of a polariton-based platform for the implementation of
integrated optical parametric oscillator networks.

V. CONCLUSION

We demonstrate a multimode parametric instability within
the hysteresis cycle of two coupled microresonators operating
in the exciton-photon strong-coupling regime. The mecha-
nism at the heart of the instability, namely, the opening of a
resonant scattering channel from the pump towards a bonding-
like signal and antibonding-like idler modes, is experimen-
tally confirmed by individually resolving their spatial profile.
All the observations are comprehensively modeled using a
coupled-mode description of the intracavity fields including
vacuum fluctuations. Given the generality of the instability
mechanism and profiting from the inherent scalability of
a semiconductor platform, we envisage the observation of
similar parametric instabilities in lattices of microcavities
presenting modes with a macroscopic degeneracy [50], chiral
circulation [51], or nontrivial topological features [52–55].
Moreover, thanks to the hybrid light-matter nature of polari-
ton excitations the system is endowed with a strong Kerr
nonlinearity allowing us to observe the instability at few
hundred microwatt threshold powers. In this direction, recent
works demonstrating an order-of-magnitude enhancement of
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U [56–58] encourage the investigation of optical parametric
oscillators operating in the few photon regime [59]. Inter-
estingly, dynamical instabilities also develop when two or
more polariton condensates present simultaneously coherent
and dissipative coupling terms [60,61]. The recent demon-
stration of an optical control over the coupling amplitudes in
condensate lattices [62] offers a complementary playground
for the investigation of synchronization and pattern formation
[63]. In this context, our results may provide a simple rule
of thumb to predict the presence of instabilities based on the
energetic landscape and coupling strengths in condensate net-
works. Finally, as GHz phonons are also confined in AlGaAs
based micropillar structures [64,65], one could exploit these
parametric processes to excite and probe acoustic modes in
polariton microcavities.

ACKNOWLEDGMENTS

The authors acknowledge stimulating discussions with
Iacopo Carusotto and Alejandro Fainstein. This work was
supported by the French National Research Agency (ANR)
project Quantum Fluids of Light (Grant No. ANR-16-CE30-
0021), the H2020-FETFLAG project PhoQus (Grant No.
820392), the French RENATECH network, the QUANTERA
project Interpol (Grant No. ANR-QUAN-0003-05), the CPER
Photonics for Society P4S, and the Métropole Européenne
de Lille via the project TFlight. S.R.K.R. acknowledges the
Netherlands Organisation for Scientific Research (NWO), a
Marie Curie individual fellowship, and a NWO Veni grant
(Project No. 680-47-457).

APPENDIX: LIMIT CYCLE DYNAMICS AND THE
INFLUENCE OF FLUCTUATIONS

Here we present the complementary time-domain evolu-
tion of the intracavity field within the parametric instability
region and address the influence of intrinsic vacuum fluctu-
ations on the parametric oscillations. The starting point is
the coupled Langevin Eq. (1). Notice that in absence of the
the noise terms χ j (t ) these Langevin equations reduce to
the driven-dissipative Gross-Pitaevskii equation (DDGPE) for
two coupled polariton modes [47]. In the following we use
Eq. (1) to calculate the temporal dynamics of the coupled
microcavity system for a monochromatic driving at a detuning
� = J , i.e., at the linear antibonding resonance of the system.
The system is always initialized in the vacuum state: a 1.5-ns
adiabatic power ramp brings the system into the parametric
instability region, stabilizing at P = 1.1Pthr (Pthr is the in-
stability threshold). In order to compare time and frequency
domain results, we calculate the temporal dynamics of the
site-resolved cavity population, the associated power spectral
density and trace the dynamics of the complex amplitudes
α1,2(t ) in phase space.

In Figs. 4(a)–4(c) we show the results corresponding to
the DDGPE evolution, that is, neglecting the noise terms in
Eq. (1). Figure 4(a) shows the dynamics of the driven (red
lines, n1 = |α1|2) and undriven (blue lines, n2 = |α2|2) cavity
population. Notice that in absence of noise we need to trigger
the instability adding a weak perturbation to the adiabatic
power ramp (gray line) in the form of a 2-ps pulse (see the

inset). After the arrival of the perturbation, n1 and n2 start to
oscillate with growing amplitude: following a short transient
the system reaches a self-pulsing dynamical steady state (t >

2.5 ns). In Fig. 4(a) we also present a 200-ps snapshot of the
evolution of n1 and n2, from which we infer the period of
the oscillations T ≈ 24 ps. When we calculate in Fig. 4(b)
the normalized power spectral density associated to the t >

2.5 ns dynamics of α1,2, the oscillating behavior manifests in
well-resolved contrasted sidebands separated by δE = h/T ≈
0.17 meV. Such oscillation frequency corresponds to the real
part of the parametrically unstable eigenvalues of the linear
stability matrix at P = 1.1Pthr [see Fig. 2(e) in the main text]
and is roughly equal to the intercavity coupling constant
J . In Fig. 4(c) we plot the evolution of the complex field
amplitudes α1,2 in the dynamical steady state (t > 2.5 ns). As
expected, we observe that in the frame rotating at the pump
frequency the coherent parametric oscillations are associated
to a limit cycle dynamics of α1,2. As we deal with a large but
finite number of excitations at the instability threshold 〈ntot〉 =
〈n1 + n2〉 ≈ 1.5 × 103 ∼ �/U , the role of fluctuations cannot
in principle be neglected. Indeed, intrinsic fluctuations in the
system not only seed the instability but might affect the co-
herent oscillating dynamics of the intracavity fields. In order
to address this question, we repeat the simulations presented
in Figs. 4(a)–4(c) using Eq. (1) (including noise terms). This
corresponds to the calculation presented in Figs. 3(g) and 3(h)
in the main text.

The results are presented in Figs. 4(d)–4(f). Panel (d)
shows the dynamics of the driven (red lines) and undriven
(blue lines) cavity population. Here, there is no need to add
any perturbation to the power ramp, as intrinsic fluctuations
trigger the instability. Once the dynamical steady state of the
system has set in, we observe again an oscillating behavior of
n1,2. The period of the oscillation is the same as in panel (a),
but now the amplitude randomly oscillates from cycle to cy-
cle. Figure 4(e) shows the normalized power spectral density
associated to the last 2.5 ns of the stochastic evolution (gray
line). As a reference we overlay the corresponding spectrum
(red line) obtained for the DDGPE in panel (b). We see that
the position of the sidebands is the same, confirming that
the oscillation period is preserved, but the sideband height is
slightly reduced. This is because fluctuations induce random
phase shifts from cycle to cycle, leading to a dephasing of the
oscillations over time [40]. The dynamics of α1,2 obtained via
Eq. (1) is sampled every ps and shown as a scatterplot (gray
dots) in Fig. 4(f). For comparison, we trace the corresponding
limit cycle dynamics obtained via the DDGPE with solid
lines. We can see that the stochastic dynamics associated to
Eq. (1) produces a wandering of the limit cycle dynamics
about the DDGPE predictions.

Since the noise term in Eq. (1) has constant variance γ /2
we can expect that, for smaller expectation values 〈α1,2〉 in
the dynamical steady state, the effect of fluctuations becomes
relatively more important. As the parametric instability is
triggered when ntot ∼ �/U , we can verify this intuition by re-
peating the simulation presented in Figs. 4(d)–4(f) for a factor
10 larger value of U ′ = 10U = 1 μeV and correspondingly
rescaling the input power P′ = P/10. The results of this anal-
ysis are shown in Figs. 4(g)–4(i). Overall, from Figs. 4(g)–
4(i), we conclude that the self-pulsing behavior is preserved
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FIG. 4. Self-pulsing dynamics. (a–c) Simulations obtained using the generalized Gross-Pitaevskii equation for the coupled polariton
modes, i.e., Eq. (1) in the absence of noise terms. (d–i) Simulations obtained via the coupled Langevin equations Eq. (1). (a, d, g) Dynamics
of the driven (red line) and undriven (blue) cavity populations obtained with (a) the DDGPE for U = 0.1 μeV, (d) Eq. (1) for U = 0.1 μeV,
and (g) Eq. (1) for U ′ = 10U = 1 μeV. The first 1.5 ns of the dynamics are used to adiabatically ramp the pump power to 1.1Pthr , [see gray
line in panel (a)]. In the insets of panels (a), (d), and (g), we show a 200-ps snapshot of the dynamics, showing a self-pulsing behavior with
period T ≈ 24 ps. (b, e, h) Normalized power spectral density associated to the last 2.5-ns evolution of the cavity field dynamics shown in
panels (a), (d), and (g), respectively. In panels (e) and (h) we keep plotting the DDGPE results obtained in panel (b) for comparison (solid
red line). We can observe that the energy spacing of the sidebands (δE ≈ 0.17 meV) remains unaffected by fluctuations; however, the relative
height of the peaks decreases for larger fluctuations of the intracavity field (i.e., increasing U ). (c, f, i) Phase-space limit cycle dynamics
of the intracavity fields associated to the last 2.5-ns evolution shown in panels (a), (d), and (g), respectively. In panels (c), (f), and (i) the
red and blue lines correspond to the driven and undriven cavity field dynamics computed via the DDGPE. Gray dots in panels (f) and (i)
correspond to the stochastic dynamics obtained via Eq. (1) sampled every ps for U = 0.1 and 1 μeV, respectively. As U increases the number
of excitations in the cavity at the threshold decreases; thus the relative amplitude of the fluctuation increases, as shown by the scatterplot of the
dynamics. The random phase shifts induced by fluctuations tend to dephase the parametric oscillations, thus reducing the temporal coherence
of the process as the reduced sideband contrast in panels (e) and (h) indicates.
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when decreasing the number of excitations at threshold and
that the period of the oscillations remains constant. However,
random phase shifts between the oscillation cycles become

more important; as a result the sideband contrast in the nor-
malized power spectral density is progressively reduced [see
Fig. 4(h)].
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