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Backaction-evading impulse measurement with mechanical quantum sensors
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The quantum measurement of any observable naturally leads to noise added by the act of measurement.
Approaches to evade or reduce this noise can lead to substantial improvements in a wide variety of sensors, from
laser interferometers to precision magnetometers and more. In this paper, we develop a measurement protocol
based upon pioneering work by the gravitational wave community which allows for reduction of added noise
from measurement by coupling an optical field to the momentum of a small mirror. As a specific implementation,
we present a continuous measurement protocol using a double-ring optomechanical cavity. We demonstrate that,
with experimentally relevant parameters, this protocol can lead to significant backaction noise evasion, yielding
measurement noise below the standard quantum limit over many decades of frequency.
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I. INTRODUCTION

The precision of any measurement is limited by noise. Be-
yond technical sources of noise such as thermal backgrounds,
quantum mechanics imposes a fundamental source of noise:
the act of measurement itself can disturb the system being
observed. However, the noise added by the measurement
depends on how and what we probe, and in some settings
can be reduced or even removed by a judicious choice of
measurement protocol.

In an optomechanical system such as a laser interferometer,
the noise added by measurement can be decomposed into two
parts. The first is shot noise, coming from the finite counting
statistics of the photons used to probe the mechanical system.
The other is measurement backaction noise, which arises be-
cause of fluctuations in the radiation pressure of the light [1,2].
Early on, it was realized that direct momentum measurements
could be used to reduce measurement-added noise [3,4]. In the
context of gravitational wave detection, Braginsky and Khalili
proposed a concrete velocity-meter scheme in 1990 [5], and
this idea has recently been revisited [6–11], with a prototype
experiment in progress [12]. Other recent work has proposed
using a discrete momentum measurement for noise reduction
in sensing of forces [13].

Our approach here is to examine the use of continuous
momentum measurement to evade backaction noise in the
setting of broadband force sensing, i.e., the detection of rapid
impulses. For other approaches to backaction evasion, see,
for example, Refs. [14–18]. We present a treatment from a
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purely quantum optics perspective to demonstrate the benefits
of a “speedmeter” design for application in a wide variety of
sensors beyond gravitational wave detection. The core idea
of our scheme is to monitor the momentum of a mechanical
system by coherently integrating the discrete time derivative
of the position. In the limit of low optical losses, this becomes
equivalent to direct momentum measurement. In the ideal
setting of a free-falling mirror without dissipation or losses,
such a measurement would enable a complete elimination of
all measurement-added noise, since one can further eliminate
shot noise by ramping up the probe laser power. To examine
imperfections and experimental challenges, we study a prac-
tical implementation using a pair of ring cavities, including
loss and mechanical noise, which still allows for significant
reduction of measurement-added noise.

The detection of rapid, small impulses is ubiquitous in
physics, and these ideas should have broad applicability.
In metrology, our broadband approach for optomechanical
sensing enables applications such as detection of individual
low-energy photons or gas collisions with a mechanical el-
ement, which would enable quantum noise-limited pressure
calibrations [19–24] and force sensing [25–29]. In particle
physics, low-threshold detection of energy deposition is of
crucial importance in many contexts, for example, the detec-
tion of light dark matter candidates [30–33] and astrophysical
neutrinos [34–37]. A concrete application which drove this
work is the detection of tiny gravitational forces generated
by transient dark matter particles [38], and this example is
studied in detail in Sec. III B.

II. CONTINUOUS MOMENTUM MEASUREMENT

We begin with a conceptual outline of the advantages that
momentum sensing can provide over position sensing in the

2469-9926/2020/102(2)/023525(14) 023525-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0082-7772
https://orcid.org/0000-0002-4269-8342
https://orcid.org/0000-0002-8249-8070
https://orcid.org/0000-0003-0493-5594
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023525&domain=pdf&date_stamp=2020-08-21
https://doi.org/10.1103/PhysRevA.102.023525


GHOSH, CARNEY, SHAWHAN, AND TAYLOR PHYSICAL REVIEW A 102, 023525 (2020)

context of short signals. Consider the classic argument for
the “standard quantum limit” (SQL) in a position measure-
ment [1,2]. By measuring the system’s position, we reduce
the position uncertainty �x while increasing its momentum
uncertainty �p. Assuming the system Hamiltonian is essen-
tially free between measurements, this state will spread to an
uncertainty �x′ = �x + τ�p/m after a short time τ . Thus a
subsequent measurement of the system will suffer from this
increased uncertainty. One could try to probe the system with
more measurements (decrease the shot noise), but this will
increase the momentum spread �p (increase the backaction).
Position measurement then involves a fundamental trade-off
between these two effects; the optimization leads to the SQL
uncertainty �x2

SQL = h̄τ/m.
Momentum measurement, on the other hand, does not

suffer from this competition. If we first measure the mo-
mentum of the system, this will decrease the momentum
uncertainty �p. The subsequent free evolution of the system
will then preserve this uncertainty, since [H, p] = 0. One
can therefore monitor the momentum with arbitrarily low
noise by increasing the rate or strength of these momentum
measurements. This represents the “quantum nondemolition”
nature of the momentum measurement [3]. If the measuring
apparatus is not truly free but has an external potential, for
example, a harmonic trap, the nondemolition behavior should
hold as long as we perform measurements much faster than
the internal dynamics of the device.

To illustrate this general idea, we now study a concrete op-
tomechanical realization where two ring cavities share a com-
mon mechanical element—a two-sided mirror (see Fig. 1).
The light interacts with the shared mirror twice from opposite
directions with a short time delay td . In the first interaction, the
light picks up a phase shift proportional to the mirror position
x(t ) at the time of interaction t . After being run through an
optical delay line and fed into a second cavity, the same light
then picks up an additional phase shift ∝ − x(t + td ) i.e., the
mechanical position at the time of the second interaction. This
imprints a discrete estimate of the mechanical velocity onto
the phase of the light φ ∼ x(t ) − x(t + td ), which can then be
read out directly through an interferometer. The same basic
setup was proposed in [5,10] as a “speedmeter,” with the goal
of searching for gravitational waves. Here we focus instead
on the use of this protocol for direct sensing of small impulses
(momentum transfers) on a mechanical element.

From this picture, one can see the microscopic mechanism
for evasion of the backaction noise: fluctuations in the laser
radiation pressure are equal and opposite between the two
subsequent light-mechanical interactions, leading to a total
change in the mirror momentum that approaches zero. In a
practical setting, this cancellation is limited by optical losses.
We now study this model using the tools of quantum optics
to understand the roles of imperfections and noise in limiting
this system for momentum measurement.

We remark that a short, sharp force applied to the system
leads to a breaking of the quantum nondemolition condition.
Thus measuring the effect of a sharp force over a short time
would best be done by monitoring the momentum before and
after the event, such as a gas molecule hitting the mirror. How-
ever, here we show that continuous momentum measurement
provides a similar benefit in the free-fall limit.

FIG. 1. Top: concrete realization of a velocity measurement,
using a pair of optical ring cavities separated by a delay line with
a suspended mirror as the detector. Each probe photon imparts a
momentum +k on the central mirror in the first cavity. After going
through a short delay line and into the second cavity, the photon
then imparts a momentum −k on the mirror, and is finally read
out by an interferometer. The net phase picked up by the light is
�φ ∝ x(t ) − x(t + td ) ∝ v. The two impulses cancel and lead to
zero net impulse on the mirror, which amounts to a backaction-
evading measurement. Bottom: quantum measurement-added force
noise (shot noise plus backaction) in typical position sensing and
velocity sensing protocols. Reduction of the backaction noise in
the velocity sensing protocol leads to substantial improvements in
force sensitivity over a broad band at low frequencies. See Fig. 2
for detailed explanations of the behavior in this plot as well as the
relevant detector parameters.

A. Detector configuration and noise

Consider a pair of optical ring cavities which share a com-
mon mechanical element, taken to be a harmonic oscillator
(e.g., a high-quality mirror suspended as a pendulum) with
natural frequency ωm, used here as a resonator. If we monitor
the system much more rapidly than its mechanical frequency,
we can approximate the dynamics as those of a freely falling
system with ωm → 0. While ωm → 0 can be achieved by
simply dropping the system, keeping a mechanical tether and
thus a finite ωm allows us to track corrections from a confining
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potential to the quantum nondemolition benefits that we can
hope to realize.

The combined optomechanical system formed by the cav-
ities, mechanical resonator, and their baths can be character-
ized by the Hamiltonian

Htot = Hcav + Hmech + Hbath,

Hcav = h̄ωa†a + h̄ω′a′†a′,

Hmech = p2

2m
+ 1

2
mω2

mx2. (1)

Here a and a′ denote the annihilation operators for the op-
tical cavities. The frequencies ω and ω′ are the resonance
frequencies of the cavities. These are functions of the lengths
of the cavities, which in turn depend on the mechanical
displacement x of the resonator: ω = ω(x), ω′ = ω′(x). For
small displacements, we can Taylor expand the frequencies,
and obtain

Hsys = h̄ωc(a†a + a′†a′) + Hmech

+ h̄(g0a†a + g′
0a′†a′)

x

x0
. (2)

The first line contains the kinetic terms for the two cavi-
ties and the resonator, where we have taken the two cav-
ities to have the same frequency ωc = ω(0) = ω′(0) when
the mirror is at its equilibrium position. The second line
encodes the optomechanical coupling with strength g0 =
x0

dω
dx = −x0ωc/� = −g′

0, where � is the equilibrium length of
the cavity and x0 is a length parameter which transforms the
coupling strength to a frequency. The key point is that the two
cavity-mechanical couplings differ by a relative minus sign,
corresponding to the fact that displacements of the resonator
generate opposite frequency shifts in the two cavities.

We now examine the system using the input-operator for-
malism [39] (see Appendix A for a review in the case of a
single-sided cavity). To understand the measurement proce-
dure, we consider driving the first cavity with a monochro-
matic laser. This effectively displaces the cavity operators
by a → (α + a)e−iωLt , with ωL being the frequency of the
monochromatic laser and α ∝ √

P/h̄ωLκ being the drive
strength in terms of the laser power P and cavity energy-loss
rate κ . We have factored out the drive-frequency time depen-
dence in the light fluctuations (i.e., we work in the frame co-
rotating with the drive). We assume sufficient driving |α| � 1
so that we can linearize the interaction Hamiltonian around
the drive. We choose a gauge such that α is purely real, and
lock the laser to provide zero detuning � = ωL − ωc = 0. We
then obtain the total Hamiltonian for the system

Hsys = Hmech + h̄GxX − h̄G′xX ′. (3)

Here X = (a + a†)/
√

2 and similarly X ′ are the amplitude
quadratures of the cavity modes. The drive enhances the
effective optomechanical coupling strength G = √

2 g0

x0
α in

the first cavity which has the dimension of a frequency per
length; in the second cavity, we have G′ = −√

1 − LG, where
L represents loss of photons as they traverse the delay line. We
will justify this shortly [see (6)].

The system is subject to dissipation via the bath Hbath. The
cavity bath consists of the cavity photons leaking through

the mirrors and the mechanical bath consists of, at least,
ambient gas molecules in the chamber and phonons in any
support structure. Tracing out the bath with the input-operator
formalism, we can study the evolution of the system in the
Heisenberg picture. The equations of motion of the cavities
and resonator are

Ẋ = −κ

2
X + √

κXin, Ẏ = −Gx − κ

2
Y + √

κYin,

Ẋ ′ = −κ

2
X ′ + √

κX ′
in, Ẏ ′ = G′x − κ

2
Y ′ + √

κY ′
in,

ṗ = −h̄GX + h̄G′X ′ − mω2
mx − γ p + Fin,

ẋ = p

m
. (4)

Here, γ is the mechanical energy damping rate, Fin is the
external force (including noise) incident on the resonator, Y =
−i(a − a†)/

√
2 and similarly Y ′ are the phase quadratures of

the cavities, and Xin,Yin, X ′
in,Y ′

in represent the vacuum fluctua-
tions of the cavities. These satisfy the white noise correlation
functions of the form

〈Xin(t )Xin(t ′)〉 = 〈Yin(t )Yin(t ′)〉 = δ(t − t ′),

〈Xin(t )Yin(t ′)〉 = 0,
(5)

and similarly for the primed correlators. The force noise will
be discussed in detail when needed.

Each cavity has both an input and output field associated
to it. Ultimately we want to read out the phase quadrature
of the second cavity Y ′

out. The output fields are related to
the input fields by the usual input-output relations (again see
Appendix A for a review). Here we also need to model the
delay line. Photons traversing the delay line can be lost, so
we model the line as a beam splitter with a dimensionless loss
coefficient L, leading to the input-output relations

Xout(t ) = Xin(t ) − √
κX (t ), Yout(t ) = Yin(t ) − √

κY (t ),

X ′
out(t ) = X ′

in(t ) − √
κX ′(t ), Y ′

out(t ) = Y ′
in(t ) − √

κY ′(t ),

X ′
in(t ) = √

1 − LXout(t − td ) +
√

LX̃in(t ),

Y ′
in(t ) = √

1 − LYout(t − td ) +
√

LỸin(t ). (6)

Here X̃in, Ỹin are the input noise fields associated with the
loss in the delay line, taken again to satisfy the vacuum
noise correlations (5). The last two equations here justify the
relation G′ = −√

1 − LG between the two driven coupling
strengths.

We are interested in monitoring the external force Fin

acting on the mechanical system. This force is imprinted onto
the mechanical displacement x(t ). Working in the frequency
domain, we can easily solve the equations of motion (4) and
(6) to find the mechanical displacement:

x(ν) = χm(ν)Fin(ν) + xn(ν), (7)

where the term due to measurement noise is

xn = −h̄Gχmχc[(1 + (1 − L)ei(νtd +φc ) )Xin

+
√

L(1 − L)X̃in]. (8)
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Here we defined the cavity and the mechanical response
functions and the phase,

χc =
√

κ

−iν + κ/2
, χm = −1

m
(
ν2 − ω2

m + iγ ν
) ,

eiφc = 1 − √
κχc. (9)

At very low frequency, ν ≈ 0, and with a small amount of loss
L ≈ 0, G′ → −G, and eiφc → −1; thus the term proportional
to the input noise Xin in the position variable vanishes. This
amounts to backaction evasion in the low-frequency part of
the measurement: there is no net force from the fluctuations in
the radiation pressure. The noise from the delay loss X̃in will
also be negligible in this limit.

The mechanical displacement is in turn imprinted onto the
phase quadrature Y of the light through the optomechanical
coupling Hint ∼ GxX . We then read out the output light Y ′

out
from the second cavity, from which we infer the external force
Fin. The equations of motion (4) and (6) yield the output light
phase

Y ′
out =

√
L eiφcỸin + √

1 − L ei(νtd +2φc )Yin

+ G
√

1 − Lχc(1 + ei(νtd +φc ) )x. (10)

Given the measured output light Y ′
out, we estimate the force by

simply dividing through with the appropriate coefficient:

FE = Y ′
out

G
√

1 − Lχcχm(1 + ei(νtd +φc ) )
. (11)

In order to calculate our sensitivity to various signals, we
need the noise in the force estimator. We define the force noise
power spectral density (PSD) in the usual way:

〈FE (ν)FE (ν ′)〉 = N (ν)δ(ν + ν ′) = SFF (ν)δ(ν + ν ′). (12)

We will see later how exactly this is used to determine
sensitivities, but the intuition is that, for a broadband impulse
signal, sensitivities are set by an integral of N (ν) over the
relevant frequency band. Let us assume that the input force
Fin is purely thermal (Johnson-Nyquist) noise, so that

〈Fin(t )Fin(t ′)〉 = NBMδ(t − t ′), NBM = 4mγ kBT, (13)

with T the temperature of the bath coupled to the resonator.
Then the force noise PSD can be computed directly using (10),
(11), (12), and the vacuum noise correlation functions (5):

N (ν) = 1

4(1 − L)|G|2|χc|2|χm|2 cos2
(

νtd +φc

2

)
+ NBM + 2h̄2|G|2|χc|2

[
1 − L

2

+ (1 − L)

ν2 + κ2/4
[νκ sin(νtd ) + (ν2 − κ2/4) cos(νtd )]

]
.

(14)

The first term here is the shot noise arising from the statistical
counting errors of the laser photons. The middle term is the
thermal noise. The last term denotes the backaction noise
arising from the light pushing the mirror around while probing
the system. At low frequency, the term in the bracket is
proportional to L/2 and thus the backaction noise vanishes

FIG. 2. Force noise power spectral densities for position sens-
ing in a standard single-sided optomechanical cavity (top) and our
velocity sensing protocol in a double ring cavity (bottom). See
Eqs. (A16) and (14), respectively. In addition to the spectrally flat
thermal noise, we have shot noise and measurement backaction
curves. One can clearly see that backaction noise in the velocity
sensing protocol is substantially reduced in the range ωm � ν � κ .
The spiky features at high frequency come from resonance effects in
the two-cavity response function ∝ei[νtd +φc (ν )]. Here in both cases the
detector parameters are taken as m = 1 g, ωm = 1 Hz, γ = 10−4 Hz,
and κ = 10 MHz, at bath temperature T = 10 mK. In the position
sensing protocol, optomechanical coupling G is optimized as in
Eq. (A17) with τ = 1 μs. In the velocity sensing protocol, the delay
line parameters are taken as td = 10 μs and L = 10−4, and the
coupling is optimized as in (20).

to the lowest order of the loss coefficient. We plot this noise
PSD in Fig. 2. For comparison, we present the analogous noise
PSD for a standard single-sided cavity force sensor (A16) in
the same figure (see Appendix A for details).

In order to get some intuition about the noise in this
protocol, first consider the high- and low-frequency behavior
of the noise PSD (14). At arbitrarily low frequencies ν, the
noise PSD diverges:

N (ν) −−→
ν→0

m2κ3ω4
m

4|G|2(4 + κtd )2

1

ν2
. (15)

Meanwhile, at very high frequencies we also have a diver-
gence:

N (ν) −−−→
ν→∞

m2

|G|2κ ν6. (16)
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These two limits mean that, for a given broadband force
signal, the very low- and very high-frequency parts of the
signal will not be visible above our noise. Thus our protocol
automatically comes with an effective bandwidth. We will
discuss this in detail in examples.

We will be particularly interested in signals of very short
temporal duration τ . If this is short compared to the natural
period of the mechanical resonator, ωmτ � 1, then the res-
onator is essentially a freely falling body over the time period
of integration. We thus focus on frequencies satisfying

ωm � ν < κ. (17)

In this regime, assuming that the damping of the mechanical
resonator is small (γ � ωm), we can approximate the noise
PSD as

N (ν) ≈ ÑBM + 
ν2. (18)

Here

ÑBM = NBM + 4h̄2|G|2L

κ
,


 = h̄m

[
mκ3

4h̄|G|2(4 + κtd )2
+ 4h̄|G|2(4 + κtd )2

mκ3

]
. (19)

We see that there is a white-noise contribution (i.e., a
renormalization of the thermal noise) as well as frequency-
dependent contributions from both the shot and backaction
terms. Above ν �

√
κ/2td , the shot-noise term begins to

dominate. At these high frequencies, backaction evasion is not
effective, and the shot-noise term is dominated by the cavity
and mechanical response functions.

For small loss L ≈ 0, we can minimize the noise (18)
with respect to the optomechanical coupling strength G, i.e.,
by varying the laser power P. Differentiating, one finds the
optimized coupling

|Gopt|2 ≈ 1

4

mκ3

h̄(4 + κtd )2
. (20)

Using this, the noise PSD (18) becomes

N (ν) ≈ NBM + h̄m

t2
d

(
L + ν2t2

d

)
. (21)

We can compare our results to those of the speedme-
ters being developed for gravitational wave detection, e.g.,
Ref. [10]. Since the force and position noise spectral densities
are related by a simple transfer function, Sxx = |χm|2SFF , it
is clear that the backaction evasion our protocol achieves is
proportionally the same whether reported in position or force
units. We obtain a similar basic pattern of noise reduction
as [10]: sub-SQL noise in a reasonable band of frequencies,
which must be targeted to the desired signal. For gravitational
wave detection, the frequencies of interest are near the audio
band; here, we are focused on much higher-frequency (radio
band) signals, so we have chosen our system parameters
accordingly. Moreover, we are focusing here on substantially
smaller devices—milligram scale, compared to the gravita-
tional speedmeter experiments with up to 200 kg mirrors, and
accordingly smaller cavity lengths. In practice this is a much
easier regime for dealing with issues of loss. The basic ideas

here could potentially be demonstrated in a chip-scale device
as proof of principle before being scaled to macroscopic
devices.

B. Impulse inference

Our goal is to measure the net impulse delivered to the
detector. We interferometrically read out the output light
phase Y ′

out (t ) as a time series, and then process this data to
infer the impulse. The simplest option would be to consider
the observable

I (τ ) =
∫ τ

0
F (t )dt, (22)

where τ is some integration time we can choose, and F (t ) is
estimated from the observed Y ′

out (t ) using (11). The noise in
this signal is characterized by the variance,

〈�I2(τ )〉 =
∫ ∞

−∞
dν

4 sin2 (ντ/2)

ν2
N (ν). (23)

This equation says that the rms net impulse �I (τ ) delivered
to the device purely by noise is calculable from the force
noise PSD. As we have seen above, N (ν) has power-law
divergences at both high and low frequencies. In (23), the
sinc function will provide a cutoff on the high-frequency
divergence, but the low-frequency divergence is still present.
This means that we would naively infer that an infinite random
impulse was delivered to the device. Of course, the actual
physical impulse is finite. The divergence comes from the
shot noise, i.e., counting statistics in our readout photons, and
represents the fact that at low frequency this noise becomes
arbitrarily large.

This suggests that we use a more intelligent observable
than simply the integrated force. Suppose that we are looking
for signals of a known shape in time Fsig(t ). We want to test
for the presence of this signal in our data F (t ). To do this we
construct an observable O(t ) by filtering our data, where the
filter scans over different possible event times te:

O(te) =
∫

f (te − t ′)F (t ′)dt ′. (24)

By the convolution theorem, for a fixed time (without loss
of generality, we can assume te = 0), the variance in this
estimator is

〈�O2〉 =
∫

| f (ν)|2N (ν)dν. (25)

For example, a box filter f (t ) = 
(t − τ ) − 
(t ) reproduces
the simple estimator (23). The signal-to-noise ratio (SNR) is
then defined by

SNR2 = | ∫ f ∗(ν)Fsig(ν)dν|2∫ | f (ν)|2N (ν)dν
. (26)

Now we need a specific filter function which optimizes this
signal-to-noise ratio. One can show (see Appendix B) that the
SNR is optimized by the filter

fopt(ν) = Fsig(ν)

N (ν)
. (27)

This is sometimes referred to as “template matching” [40,41].
It says that the optimal filtering protocol is to scan for the
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expected signal shape renormalized by the noise model. With
this choice of filter, the signal-to-noise ratio is given simply
by

SNR2
opt =

∫ ∞

0

|Fsig(ν)|2
N (ν)

dν. (28)

Here we see a more robust interpretation of the divergences in
our noise PSD: the very low- and very high-frequency parts of
the spectrum make no contribution to the SNR.

III. EXAMPLE SIGNAL-TO-NOISE CALCULATIONS

With our measurement protocol and corresponding noise
PSD, we can now study our ability to detect particular signals.
We begin with an instantaneous force, and then move on to the
case of momentum transfer into a sensor by a passing object
coupled to the sensor through a long-range force, for example,
gravity.

A. Instantaneous force

Consider an instantaneous force signal

Fsig(t ) = �pδ(t − t0). (29)

This is a flat function of frequency, Fsig(ν) = �p eiνt0/
√

2π .
To estimate the signal-to-noise ratio achievable for such a
signal, consider the optimized filter result (28). As discussed
above, our noise PSD starts to diverge for ν �

√
κ/2td . There

is also a low-frequency divergence starting around the me-
chanical frequency ν ≈ ωm. In practice, there can also be
some low-frequency cutoff set by a maximum integration
time; for example, if we are trying to resolve individual im-
pacts to a sensor which occur at some rate τcoll, the signal from
an individual event can only be obtained from frequencies
ν � 1/τcoll. Given these limits, we can then approximate (in
fact, lower bound) the SNR, using (28) and (18), as

SNR2 � �p2

2π

∫ √
κ/2td

τ−1
coll

dν

ÑBM + 
ν2

≈ �p2

4
√


ÑBM

. (30)

The approximation in the last line holds if
√


κ/2ÑBMtd �
1 �

√

/ÑBMτ 2

coll. The first condition says that the detector
can move information between cavities fast and the second
says that the collisions do not occur too rapidly, in comparison
to the typical timescales occurring in the noise.

As an example, consider the following problem: can we use
this protocol to count individual gas collisions with a sensor?
Concretely, imagine that we place our sensor in a vacuum
chamber and continuously monitor it with our protocol. Let’s
assume that the sensor is freely falling, or at least that the
mechanical damping γ is so low that we can ignore phononic
loss into the support, so that the only “thermal noise” comes
from individual gas collisions with the device. We would then
view the noise PSD as coming strictly from the quantum
measurement-added noise, and the gas collisions are actually
the signal we try to detect above the noise. We thus have
N (ν) = h̄m(L/t2

d + ν2), and the SNR for a single gas collision

transferring a momentum �p (taken to occur instantaneously)
is then just the γ → 0 limit of (30),

SNR2 = �p2td√
Lh̄m

. (31)

This simple answer has a satisfying interpretation: the factor
h̄m/td is what one would naively obtain for a standard quan-
tum limit on impulse sensing over a time td (cf. the expression
for SQL position uncertainty �x2

SQL = h̄t/m). We are then
seeing a noise below the SQL by a factor of the delay line
loss L1/4, the limiting factor in our protocol. This represents
the central idea in this paper: inferring force through a direct
measurement of the momentum outperforms use of a position
measurement. In the next section, we will see the same
behavior for a different problem—the detection of impulses
from long-ranged forces.

Numerically, we have in this limit

SNR ≈ 1 ×
(

�p

10 keV/c

)(
1 fg

m

)1/2(10−4

L

)1/4

, (32)

assuming a delay time td ∼ 10−5 s.1 Consider helium gas
at room temperature. If the atoms scatter elastically off the
sensor, the typical momentum transfer should be of the order
�p ∼ √

mgaskBT ∼ 10 keV/c. Thus, with a femtogram-scale
detector (e.g., Refs. [42–44]), we would have the ability to
resolve the individual gas collisions above the measurement
noise.

Qualitatively, this calculation illuminates a fundamental
limitation to momentum sensing. When we look for our
signal, we assume some kind of template fitting, as discussed
in the previous section. Naively, one might have expected that
the best strategy to detect an instantaneous force would be
to use a template that is essentially itself a delta function in
time. But this is not right: if one only integrates the signal
instantaneously, the detection will be limited by shot noise,
and in fact the SNR is strictly zero. Quantitatively, we can see
that our optimal filter (27) has a bandwidth �ν ≈ √

κ/2td ,
and thus finite support as a function of time.

B. Long-range forces

Now we consider detection of some object approaching
the sensor and interacting with it through a long-range force.
Our primary motivation here is the gravitational detection of
passing dark matter [38], but the problem can be phrased more
generally. We consider a 1/r potential between sensor and
incoming particle

V (t ) = β

r(t )
. (33)

Here β is a constant with dimensions of energy × length,
which characterizes the long-range force. For example, β =
Q1Q2/4π for the Coulomb force between two charges or
β = GN m1m2 for the Newtonian gravitational force.

Consider a particle passing by the detector at a high ve-
locity v and impact parameter b interacting with a sensor via

1This would require an extremely long optical fiber, but could also
be achieved, for example, by using a third cavity as the “delay line.”
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md
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b
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FIG. 3. Kinematics of the long-range scattering event. A particle
passes near the sensor, with impact parameter b and velocity v. This
leads to an effective interaction time τ ∼ b/v.

(33), as in Fig. 3. For simplicity, we assume that the particle’s
trajectory is a straight line. Almost all of the momentum is
transferred to the sensor over a timescale τ ∼ b/v when the
particle is nearest to the sensor. The force acting on the sensor
has pieces parallel and perpendicular to the particle track. The
parallel component of the force exerted over this time period
transfers no net momentum to the sensor.2 Thus we focus on
the perpendicular component of the force,

Fsig = βb

(b2 + v2t2)3/2
. (34)

The Fourier transform of this signal is

Fsig(ν) =
√

2

π

β|ν|
v2

K1

(
b

v
|ν|

)
, (35)

where K1 is a modified Bessel function. For the purposes of
estimating a signal-to-noise ratio in (28), we can approximate
(in fact, underestimate) this signal using an exponential

F approx
sig (ν) =

√
2

π

β

bv
e(−τ |ν|/2). (36)

As discussed in the previous section, the noise PSD starts
to diverge at frequencies above ν �

√
κ/2td . We can therefore

approximate the signal-to-noise ratio (28) here as

SNR2 ≈ 2β2

πb2v2

∫ √
κ/2td

0

e−τν

ÑBM + 
ν2
dν

� β2

b2v2τ ÑBM

1

(1 + η)
. (37)

The approximation in the second line is good as long as
τ
√

κ/2td � 1. The dimensionless parameter η is defined as

η =
√


/ÑBMτ 2 � 1, (38)

with this inequality holding in examples, to which we now
turn. We have numerically verified that these approximations

2We note, however, that one could in principle use an
antisymmetric-in-time filter to look for this signal.

FIG. 4. Signal-to-noise ratio (SNR) for long-range force detec-
tion, as a function of fly-by time τ . We see a clear improvement
in the SNR obtained with our velocity sensing protocol (14) com-
pared to the result with position sensing (A16), for fast signals.
For slow signals (here, τ � 1 ms), the measurement-added noise
becomes subdominant to the thermal noise, and our backaction-
evasion scheme does not help. To check our approximate result (37),
we also display the exact SNR calculated using the full noise PSD
(14) and signal (35). Here we use the same detector parameters
as in Fig. 2 and at optimized G for both cases [see Eqs. (20) and
(A17)], and use the gravitational dark matter signal as in (41) with a
very heavy dark matter candidate mχ = 10 mg and impact parameter
b = 1 mm.

to the exact SNR calculated using the full noise PSD (14) and
signal (35) are highly accurate; see Fig. 4.

We now use this formalism to show the central result
of this paper: momentum monitoring outperforms position
monitoring for measuring rapid impulses. Specifically, with
G optimized as in (20) and with small enough loss coefficient
so that ÑBM ≈ NBM = 4γ mkBT , we can write the parameter
η2 = (h̄m/τ )/(NBMτ ). If our measurement protocol had SQL-
level measurement noise (see Appendix A for details), the
variance in our measured impulse would be given by

�p2
noise = NBMτ + h̄m

τ
= NBMτ (1 + η2). (39)

Here the first term comes from thermal noise and the second
from the SQL measurement noise. In contrast, reading off the
denominator of (37), we find with our protocol that the noise
is

�p2
noise = NBMτ (1 + η). (40)

Thus we have a reduction in noise by a factor 1/(1 + η) � 1.
This is the analog in the long-range detection problem to the
noise reduction displayed in (31).

This result could be further improved by including the
benefits of using squeezed light for detection. The noise
above arises from assuming that the X and Y quadrature
noises are uncorrelated, which is an assumption that is broken
for squeezed light. For position monitoring, the appropriate
quadrature and amplitude of light—necessary choices for
using squeezing to improve the measurement—depend sen-
sitively on the bandwidth and target frequency of the signal.
That is, shot noise and backaction in those settings scale
differently with frequency. Here, however, the frequency de-
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pendence from ωm up to ∼κ is the same for both quadratures,
and thus broadband squeezed light suffices.

As a numerical example, we now consider explicitly the
gravitational detection of a passing particle, for example, a
heavy dark matter candidate [38]. The key scaling property
in this problem is that the signal strength scales linearly in
both the sensor mass ms and dark matter mass mχ , and is
enhanced by small impact parameters as 1/b2. In contrast,
the noise scales like

√
ms. In a terrestrial experiment, indi-

vidual dark matter particles pass through the laboratory at the
“wind speed” vDM ∼ 220 km/s. Considering a fiducial impact
parameter on the millimeter scale then leads to a very short
fly-by time τ ∼ 10−8 s. In this setting we obtain an SNR

SNR ≈ GN mχms

bv
√

τNBM

1√
(1 + η)

≈ 10−3 ×
(

mχ

10 mg

)(
ms

1 g

) 1
2 ( τ

10 ns

)(
1 mm

b

)2

,

(41)

where we take the thermal Brownian noise at dilution refrig-
eration temperature T ∼ 10 mK and assumed a very high-
Q, low-frequency resonant detector with γ ∼ 10−4 Hz. The
scaling with τ in the numerical estimate here is valid for
signals fast enough that η >∼ 1, in which case the SQL level
measurement added noise is greater than the thermal noise
in the system h̄m/τ 2 � NBM . In this example, the crossover
occurs around τ ∼ 1 ms, as can be seen from Fig. 4.

From this estimate, we see that this measurement protocol
is not yet sensitive enough for gravitational detection of
Planck scale (mχ ∼ mP ∼ 10 μg) dark matter particles. A
more sophisticated protocol will be necessary to achieve the
goals outlined in [38], for example, using squeezed light.
However, a device with the sensitivity given here could be
used, for example, to exclude dark matter models which
couple through some other long-range force a few orders of
magnitude stronger than gravity, for example, the modified
gravity models in [45] or some composite dark sector models
coupled through a new light gauge boson (e.g., Refs. [46–48]).
Bounds on these types of dark matter models coming from
impulse sensing detectors will be studied in detail in a future
publication.

IV. CONCLUSIONS AND DISCUSSIONS

Detection of a rapidly delivered impulse is a ubiquitous
problem in many branches of physics. Fundamental quantum
measurement noise in such a detection is often the ultimate
limitation to reaching better sensitivities. In this paper, we
have demonstrated that the use of a direct momentum sensing
protocol can significantly reduce this noise in comparison
with the more traditional approach of position sensing.

Here, we have presented a concrete example of this general
phenomenon using an optomechanical system involving a
pair of cavities probed continuously by a laser. This specific
approach is ultimately limited by optical losses in a delay line
which transmits the probe light between the cavities. With
currently available fabrication techniques, these losses limit
the noise reduction in this protocol to around 30 dB below
the standard quantum limit. Other protocols, for example,

involving discrete pulse sequences [13] or direct measurement
of velocity through an inductive coupling [49] could improve
the situation, and require more detailed future study.

Given that momentum measurement or impulse detection
is commonly needed, the results presented here could have
wide applications. We gave a pair of examples, one in metrol-
ogy and the other in particle physics. In the former, we
suggested that our protocol is already sensitive enough [see
Eq. (32)] to monitor all of the individual gas particles colliding
with a femtogram-scale sensor in a room-temperature, high
vacuum environment. This could be used for example in
quantum-limited pressure calibrations. In the latter, we stud-
ied the application of this protocol to the detection of heavy
dark matter candidates purely through their gravitational in-
teraction with a sensor [38]. Although the sensitivity of the
simple protocol presented here [see Eq. (41)] is too limited by
optical losses to achieve the requirements of [38], this study
shows a clear path to straightforward improvements, which
we leave to future work. We hope that the example studied in
this paper serves to guide the way to impulse measurement
schemes reaching the fundamental limits allowed by quan-
tum mechanics, enabling detection of such extremely weak
signals.

ACKNOWLEDGMENTS

We thank N. Aggarwal, A. Clerk, J. Kunjummen, N.
Mavalvala, and K. Srinivasan for helpful conversations. D.C.
thanks the Les Houches school “Quantum Information Ma-
chines” and the Galileo Galilei Institute workshop “Next
Frontiers in the Search for Dark Matter” for hospitality while
a portion of this work was completed. Fermilab is operated by
Fermi Research Alliance, LLC, under Contract No. DEAC02-
07CH11359 with the U.S. Department of Energy. S.G. is
supported by the Physics Frontier Center at the Joint Quan-
tum Institute, which is funded through the National Science
Foundation (Award No. 1430094).

APPENDIX A: CONTINUOUS POSITION MEASUREMENT
IN A SINGLE SIDED CAVITY

In this Appendix, we present a detailed formalism for
detection of forces using a prototypical single-sided optome-
chanical system implementing a continuous position measure-
ment. Our treatment borrows heavily from [50], and we refer
the reader to that review for further details.

The optomechanical system consists of a partially transpar-
ent fixed mirror on one side and another movable or suspended
perfect mirror on the other side as in Fig. 5, forming a cavity
whose frequency is a function of the position x = x(t ) of the
movable mirror. The cavity mode, mirror, and their respective
baths can be characterized by the total Hamiltonian

Htot = Hcav + Hmech + Hbath. (A1)

Both the cavity mode and mirror are modeled as harmonic
oscillators,

Hcav = h̄ω(x)a†a, Hmech = 1

2
mω2

mx2 + p2

2m
. (A2)

023525-8



BACKACTION-EVADING IMPULSE MEASUREMENT WITH … PHYSICAL REVIEW A 102, 023525 (2020)

laser in

FIG. 5. Schematic of a single-sided cavity optomechanics exper-
iment. The cavity is driven by a laser from outside. The light picks
up a phase φ ∝ x(t ) proportional to the mechanical position, which
is then read out through an interferometer after the light exits the
cavity.

Here a denotes the annihilation operator for the optical cav-
ity mode and ω and ωm are the resonance frequencies of
the cavity and resonator, respectively. The cavity resonance
frequency ω = ω(x) is a function of the length of the cavity
and it changes as the mechanical resonator at one end moves.
This interaction couples the cavity and the resonator. For
small displacements of the mirror, we can Taylor expand the
position-dependent cavity frequency

ω(x) = ωc

(
1 − x

�
+ O(x2)

)
, (A3)

where ωc = 2πc/� is the cavity frequency when the mirror is
at rest, � being the equilibrium length of the cavity. Using this
result, the optomechanical interaction can then be character-
ized with the following Hamiltonian:

Hint = h̄g0
x

x0
a†a. (A4)

The interaction strength here is defined as g0 = x0
dω
dx =

−x0ωc/�. Here x0 is an arbitrary length scale which we factor
out so that g0 has units of a frequency. This interaction couples
the cavity photons to the mechanical position and is the key
to prepare and read out the mechanical motion through the
output light.

Both the cavity and the mechanical system have their own
baths. The cavity bath consists of photons which are outside
the cavity and can enter and exit through the fixed mirror. The
mechanical bath includes degrees of freedom like ambient gas
particles which can collide with the mechanics or phonons
in the support structure suspending the movable mirror. Both
baths consist of a large number of modes. In general, we write
the bath Hamiltonian and coupling to the system as

Hbath = �ph̄ωpA†
pAp + �ph̄νpB†

pBp

− ih̄�p[ fpa†Ap − f �
p aA†

p] − ih̄�p[gpb†Bp − g�
pbB†

p].

(A5)

Here the Ap, Bp are the cavity and mechanical bath modes,
indexed by an arbitrary label p, and ωp, νp are the frequencies
of these modes. We have also introduced the mechanical
annihilation operator b and the coupling constants fp, gp.

The bath modes can be integrated out by solving their equa-
tions of motion explicitly in terms of their initial conditions

and the system variables. Within the Markovian approxima-
tion, we can define the bath “input operators” [39,50]

Ain(t ) = 1√
2πρA

�pe−iωp(t−t0 )Ap(t0 ),

Bin(t ) = 1√
2πρB

�pe−iνp(t−t0 )Bp(t0 ), (A6)

where ρA, ρB are the densities of states of the baths. As-
suming the couplings are constant for the modes of interest
fp ≡ f , gp ≡ g, these quantities are related to the cavity and
mechanical energy loss rates via κ = 2π f 2ρA, γ = 2πg2ρB,
respectively. We then define the input mechanical force Fin in
terms of Bin and B†

in. The input force consists of the deter-
ministic signal Fsig(t ) plus random Brownian noise, which we
model as usual thermal (Johnson-Nyquist) white noise (13).

The cavity mode, on the other hand, will be driven by an
external laser. In other words, we take the cavity input modes
to consist of fluctuations around a classical background.
This effectively displaces the cavity operators by a → (α +
a)e−iωLt , with ωL being the frequency of the monochromatic
laser and α ∝ √

P/h̄ωLκ being the drive strength in terms of
the laser power P and cavity energy-loss rate κ . We move
to a frame co-rotating with the drive by applying a unitary
transform U = eiωLa†at to the Hamiltonian. This modifies the
cavity Hamiltonian to

Hcav = −h̄�a†a, (A7)

where � = ωL − ωc is the detuning due to the drive. Here we
will work on resonance when � = 0. For a strong drive, we
can linearize the Hamiltonian in the fluctuations,

Hint = h̄g0α
x

x0
(a + a†) + h̄g0α

2 x

x0
. (A8)

The second term here is just a constant radiation pressure
which shifts the equilibrium position of the mechanical res-
onator. We can reabsorb this into the definition of the con-
stants; thus we drop this term in the following. Defining the
quadratures of the cavity to be X̂ = (â + â†)/

√
2 and Ŷ =

−i(â − â†)/
√

2, we have the commutation relation [X̂ , Ŷ ] =
i, and obtain the effective optomechanical interaction Hamil-
tonian,

Hint = h̄GxX, (A9)

where the effective optomechanical coupling strength is de-
fined as G = √

2g0α/x0, which has the dimension of fre-
quency per length. Here we have chosen a gauge where the
coupling is purely between the mechanical position x and
optical amplitude quadrature X for notational simplicity.

All told, we can now write down the Heisenberg-Langevin
equations of motion for the optical and mechanical quadra-
tures. These read

Ẋ = −κ

2
X + √

κXin, Ẏ = −Gx − κ

2
Y + √

κYin,

ṗ = −h̄GX − γ p + Fin − mω2
mx, ẋ = p

m
. (A10)

Here, the input optical quadratures are defined as Xin = (Ain +
A†

in )/
√

2 and Yin = −i(Ain − A†
in )/

√
2. These represent the

vacuum fluctuations of the light around the classical laser
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drive, and are taken to satisfy white-noise correlation func-
tions of the form

〈Xin(t )Xin(t ′)〉 = 〈Yin(t )Yin(t ′)〉 = δ(t − t ′),

〈Xin(t )Yin(t ′)〉 = 0. (A11)

Note that this assumes the fluctuations are not correlated;
these relations are modified in the presence of nontrivial input
states, for example, squeezed light.

Each input field has a corresponding output field. These are
related by the input-output relations

Xout = Xin − √
κX, Yout = Yin − √

κY. (A12)

The output phase quadrature Yout is what we have experimen-
tal access to via an external homodyne interferometer. Thus
we want to solve for Yout in terms of the various input fields.
This is trivial in the frequency domain since the equations
of motion are linear. In terms of the mechanical and cavity
response functions (9), one finds easily that

Yout = eiφcYin + Gχcχm[Fin − h̄GχcXin]. (A13)

Here we defined the “cavity phase shift”

eiφc = 1 − √
κχc = −iν − κ/2

−iν + κ/2
. (A14)

To estimate the force F on the mechanics given our observed
Yout, we can simply divide through with the appropriate coef-
ficient and define an estimator for the force:

FE = Yout

Gχcχm
. (A15)

As discussed in the main text, the noise in the measurement
protocol is characterized by the noise power spectral density
(PSD), defined as in (12). Here, using (A13) and the various
noise correlation functions, we obtain

N (ν) = 1

|G|2|χc|2|χm|2 + NBM + h̄2|G|2|χc|2. (A16)

The first term here is the shot noise arising from the statistical
counting errors of photons. The middle term is the thermal
noise. The last term denotes the backaction noise arising from
the light randomly pushing the mirror around while probing
the system.

Here, we notice that the shot-noise term is inversely
proportional to G, whereas the backaction term is directly
proportional to G. We can thus optimize these two terms with
respect to the optomechanical coupling strength G, which is in
turn dependent on the laser power. Note that this procedure is
done at some particular fixed frequency. Differentiating with
respect to G one finds the optimum

|Gopt|2 = 1

h̄|χc|2|χm| . (A17)

For a sinusoidal signal of frequency 1/τ and assuming a
small damping coefficient γ in the band of ν � ωm, the noise
spectrum is well approximated by

N (1/τ ) ≈ h̄m

τ 2
+ NBM . (A18)

The variance in the measured impulse with this measurement
protocol would then be given by

�p2
noise = NBMτ + h̄m

τ
= NBMτ (1 + η2), (A19)

where η =
√

h̄m
τ 2NBM

. One can compare this expression to

the one obtained in the momentum-measurement protocol,
Eq. (40). For the parameters of interest in this paper, we have
η � 1, and we see that the momentum measurement protocol
outperforms this SQL-level position measurement protocol by
a factor of η.

APPENDIX B: SIGNAL PROCESSING
AND OPTIMAL FILTER THEORY

Suppose we have some observed force signal F (t ) as a
time series, which we have estimated from our output light.
We want to test the hypothesis that there is a signal Fsig(t ) of
known shape in the data, occurring at some unknown event
time te. We thus need to use a filter f (t − te) (“template”)
to scan through the data through convolution. We define our
estimator for the signal

O(te) =
∫

f (te − t )F (t )dt . (B1)

The noise in this quantity is independent of the event time
te. Taking te = 0 for simplicity and using the convolution
theorem, we have

O(0) =
∫

f ∗(ν)F (ν)dν. (B2)

The variance is thus

〈�O2〉 =
∫

| f (ν)|2N (ν)dν (B3)

using our definition of the noise PSD N (ν). Thus the signal-
to-noise ratio is

SNR2 = | ∫ f ∗(ν)Fsig(ν)dν|2∫ | f (ν)|2N (ν)dν
. (B4)

The question is then as follows: given a particular signal
Fsig(ν) and noise PSD N (ν), what is the optimal choice of
filtering function f (ν) which maximizes the signal-to-noise
ratio? Let us redefine the integration variable

du = N (ν)dν. (B5)

Since N (ν) > 0 is positive everywhere, this change of variable
is a valid transformation. Using this we can rewrite the SNR
as

SNR2 =
∣∣ ∫ f ∗(u)Fsig(u) dν

du du
∣∣2∫ | f (u)|2du

. (B6)

We notice that we have an inner product of f (u) with the
function Fsig(u)dν/du. We want to maximize this inner prod-
uct while keeping the norm of f fixed. This means that
the functions are necessarily going to be parallel. Thus the
optimal choice is

fopt (u) = Fsig(u)dν/du. (B7)
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Inverting this back to frequency domain, we have the simple
result for the optimal filter

fopt (ν) = Fsig(ν)

N (ν)
. (B8)

Using this filter, the signal-to-noise ratio is given by

SNRopt =
∫ |Fsig(ν)|2

N (ν)
dν. (B9)

APPENDIX C: SLIGHT DETUNING

It is experimentally challenging to maintain both the ring
cavities at the same equilibrium resonance frequency. We can
quantify the impact of a slight imperfection by introducing
a small amount of detuning to both the cavities. To get
some intuition in a simple setting, we begin with a single
sided cavity to understand how a slight detuning affects the
quadratures of interest and the noise PSD. Then we move on
to a qualitative discussion on the effects of detuning in our
velocity measurement protocol with a double ring cavity, and
provide some numerical estimates.

1. Slight detuning in a single sided cavity

With the introduction of detuning in the system, the single
sided cavity Hamiltonian gets modified to

H = −h̄�a†a + Hmech + Hint . (C1)

Let us first consider this scenario in terms of the phase picked
up by the cavity field. We are interested in the limit that the
signal is much faster than both the mechanical period and
the delay time. Thus we can consider the phase shifts picked
up in the limit that the mechanical element is stationary. For
a detuned single-sided cavity, the Hamiltonian is given in
(C1), where the interaction term is proportional to h̄g0a†ax/x0

before linearization. The quantum Langevin equation for the
optical field in the cavity is

ȧ = i

(
� − g0

x

x0

)
a − κ

2
a + √

κain. (C2)

We can define an effective detuning parameter

�eff = � − g0
x

x0
. (C3)

Then, for a steady-state solution in the cavity, we obtain the
phase shift of the light

a =
√

κ

−i�eff + κ/2
ain. (C4)

Following the input-output relation for the optical field we
obtain the output field

aout = ain − √
κa = −i�eff − κ/2

−i�eff + κ/2
ain = eiφain. (C5)

This phase-shift formalism will be more important in our
discussion of the double ring cavity in the next section. We
can also use the familiar quadrature formalism to describe our
detuned single sided cavity. The equations of motion from the

above Hamiltonian are

Ẋ = −κ

2
X + √

κXin − �Y,

Ẏ = −Gx − κ

2
Y + √

κYin + �X,

ṗ = −h̄GX − mω2
mx − γ p + Fin,

ẋ = p

m
. (C6)

Note that the optical quadratures are now coupled through this
detuning parameter.

We can solve for these equations of motion and obtain the
following expression for the amplitude and phase quadratures
in the cavity:

(
X
Y

)
= 1

f

(
κ

χcχm
−

√
κ�

χm
G�

√
κ
[
G2h̄ + �

χm

]
κ

χcχm
−G

√
κ

χc

)⎛
⎝Xin

Yin

Fin

⎞
⎠,

(C7)

where

f = 1

G2h̄� + χ−1
m

(
κχ−2

c + �2
) . (C8)

Then we follow the input-output relations given in Eq. (A12)
to find the output quadratures. Since � �= 0 leads to mixing of
the optical quadratures, the force signal Fin is now imprinted
on both Xout and Yout. We can choose an optimal quadrature to
measure by linearly combining these so that the signal is in a
single quadrature. Let us define

a = −G�
√

κ

G2h̄� + χ−1
m

(
κχ−2

c + �2
) ,

b = Gκχ−1
c

G2h̄� + χ−1
m

(
κχ−2

c + �2
) . (C9)

Naively, we would like to consider the quadratures

Qout = aXout + bYout, Pout = bXout − aYout. (C10)

The P quadrature here has no dependence on Fin, so all of
the signal is encoded in the Q quadrature. We would then like
to monitor the Q quadrature, but here the coefficients a, b are
functions of frequency ω, so constructing the appropriate filter
would be exceedingly difficult. Instead, we can just evaluate
these coefficients at our frequency of interest ωsig ∼ 1/τ .
Using a(ωsig), b(ωsig), we define the observed quadrature

Qmeas = a(ωsig)Xout + b(ωsig)Yout. (C11)

To convert this measured output to a force, we divide through
by the appropriate coefficient,

FE = Qmeas

a2 + b2
, (C12)

cf. Eq. (A15). With these choices we can find the force
noise PSD. Finally, we still have the freedom to optimize
the optomechanical coupling G. As before, we can find the
optimized optomechanical coupling strength Gopt by minimiz-
ing the contribution from the measurement-added part of the
noise, at the frequencies of interest around 1/τ . Doing so, and
using the result in the noise PSD, we obtain the optimized
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FIG. 6. Comparison between noise power spectral densities in a
single-sided cavity with detuning and without detuning (A16). Top:
we show that the features of the noise PSD curves are similar when
optimized. Here the detector parameters are the same as in Fig. 2,
and we take detuning � ≈ κ . Bottom: we plot the ratio in between
the noise PSD of detuned and nondetuned scenarios. Note that there
is a frequency regime where the detuned noise PSD gives us lower
noise than the nondetuned case.

noise PSD for the slightly detuned single sided cavity. See
Fig. 6 for a comparison of the resulting noise PSD with the
noise PSD in the case of exact cavity resonance (A16).

2. Slight detuning in double ring cavities

Similar to the single-sided cavity example illustrated
above, we can introduce detuning to both the cavities in the
system and obtain the following equations of motion:

Ẋ = −κ

2
X + √

κXin − �Y,

Ẏ = −Gx − κ

2
Y + √

κYin + �X,

Ẋ ′ = −G′x sin θ − κ ′

2
X ′ +

√
κ ′X ′

in − �′Y ′,

Ẏ ′ = G′x cos θ − κ ′

2
Y ′ +

√
κ ′Y ′

in + �′X ′,

ṗ = −h̄GX + h̄G′(X ′ cos θ + Y ′ sin θ ) − mω2
mx − γ p + Fin,

ẋ = p

m
, (C13)

where the optomechanical coupling strength of the second
cavity is related to that of the first cavity as

G′ = G
√

1 − L

√
κ ′

κ

√
�2 + κ2/4

�′2 + κ ′2/4
(C14)

and the phase θ is defined as

eiθ = −i� − κ/2

−i�′ + κ ′/2

√
�′2 + κ ′2/4

�2 + κ2/4
. (C15)

It is hard to get tractable analytical expressions for the double
ring cavity given the complexity of the coupled equations
of motion. So, we will first qualitatively discuss the effect
of introducing detuning into both of the cavities and then
demonstrate some numerical results.

In standard displacement sensing, the mechanical position
x(t ) is imprinted onto the light. Measurement of the light
then causes backaction on the mechanics. Here, to avoid
this backaction, we have suggested instead that one wants to
monitor the mechanical velocity v(t ), with no measurement

FIG. 7. Comparison between noise power spectral densities in
a double ring cavity with detuning and without detuning. Here the
detector parameters are the same as in Fig. 2, and we take detuning
�′ ≈ κ ≈ −� assuming g′

0 ∼ −g0 and κ ′ ∼ κ . The optomechanical
coupling strength is optimized for the nondetuned scenario as in (20)
and the detuned case has been plotted for the same circulating power
as in the nondetuned case. We see that in the region where we have
optimized for backaction evasion, here for 104 Hz < ν < 106 Hz, the
effects of detuning are minor once we impose our coupling condition
(C19). The ratio plot at the bottom shows the comparison in this
zoomed in region.
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of position. In our two-cavity system, the light picks up a
total phase shift �φ = φ1 + φ2. The condition that we do not
measure position then says that

d

dx
(φ1 + φ2) = 0. (C16)

We will show that this condition can be achieved by satisfying
a simple constraint on the two cavity detunings �,�′ and
couplings g0, g′

0.
Following the phase-shift formalism introduced in the sec-

tion above, the first cavity picks up a phase proportional to

aout = eiφ1 ain. (C17)

Now with a second cavity, in the limit that we can ignore
losses in the delay line and treat the mechanics as stationary,
the output light of the second cavity similarly picks up a phase
shift involving x. We find

a′
out = eiφ2 a′

in = ei(φ1+φ2 )ain. (C18)

The total phase shift φ1 + φ2 is written in terms of the two
effective detunings �eff ,�

′
eff .

For a backaction-evading measurement, our main goal is
to eliminate the position dependence from this total phase.
Mathematically this is just the statement of (C16). Using the
above results for the phase shifts, at zero frequency of the
mechanical oscillator, the phase-matching condition reduces
to

�′2 + κ ′2/4

�2 + κ2/4
= −g′

0

g0

κ ′

κ
, (C19)

which relates the detunings and couplings in the two cavities.
In the final expression we have assumed that for g0 � � ∼

κ: �2
eff ∼ �2 (and similarly �′2

eff ∼ �′2). If this condition is
satisfied, the measurement will evade mechanical backaction,
which is straightforward for g′

0/g0 < 0 as in our double cavity
design and for |ωc − ω′

c| ∼ κ ∼ κ ′.
Thus we can choose detunings in both the cavities to satisfy

the above ratio in order to evade the backaction noise. After
doing this, we solve the equations of motion and choose the
optimal quadrature of the light coming out of the second cav-
ity, similar to the description given for the single-sided case
(C10) to account for the total phase shift given in (C18). This
gives the noise PSD in the force estimator as before. This can
be compared with the noise PSD in the case of zero detuning;
cf. Eq. (21). The resulting formulas are too cumbersome to
write down explicitly, but can be easily evaluated symbolically
on a computer.

In Fig. 7, we provide a numerical example comparing the
noise in the detuned and nondetuned cases. The noise PSD
in the nondetuned case is optimized with the optomechanical
coupling strength given in (20). For simplicity, we use the
same circulating power inside the cavities for both scenarios
which means use of a higher amount of input laser power
in the detuned case than the nondetuned case, although this
choice could potentially be further optimized. From the figure,
we see that, in the frequency regime ωm � ν <∼ κ ∼ �, the ef-
fects of relative cavity differences can be largely compensated
for by optimizing the relative couplings and detunings, though
we pay a price by having higher noise in the lower-frequency
regime of the PSD. As we are interested in signals in the
radio band, we can see that our backaction-evasion strategy
is highly robust to the presence of small mismatches in the
two cavity parameters.
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