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Exploring entanglement in open cavity parametric oscillators:
From triply to doubly resonant cavities
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We use a versatile model to evaluate the multipartite entanglement and the nonclassical light generation in
optical parametric oscillators, exploring the differences between doubly and triply resonant cavity configurations.
We demonstrate the entanglement of the pump mode with converted fields in both situations, and the fundamental
differences of oscillators using parametric down conversion and four wave mixing processes as the intracavity
amplification technique. The strong correlations involving the sidebands of the pump and converted fields give
the signatures of a rich dynamic of multipartite entanglement.
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I. INTRODUCTION

Initially presented as a frequency converter that produces
tunable coherent radiation [1], the simplest configuration of
an optical parametric oscillator (OPO) was shown to be a
source of multiple nonclassical states of light. The long list in-
cludes squeezed states [2,3], quantum correlated beams [4,5],
entangled thermal states [6], and multicolor entanglement
for two [7,8], three [9], and up to six modes of the field
[10]. This versatile source has found applications in quantum
metrology [11] and quantum communication protocols, such
as quantum key distribution [12] and quantum teleportation
[13]. Moreover, extensions over the basic configuration al-
lowed the generation of cluster states with arbitrarily large
number of modes [14,15] as a possible resource for quantum
computation [16].

The usual configuration consists of a nonlinear medium
inside an optical cavity. The nonlinear medium will couple
the pump field to a pair of modes named signal and idler,
often through a second- (χ (2)) or third- (χ (3)) order nonlin-
earity. Energy exchange among these three fields will follow
both energy and momentum conservation [17]. The nonlinear
medium acts as a parametric amplifier and, if amplification
matches the cavity losses, the oscillation threshold is reached
and we have the generation of intense output fields. Even for
this simple case we may have distinct cavity configurations
[18]. The cavity may be either resonant for all three modes
[triply resonant OPO (TROPO)], for both converted fields
[doubly resonant OPO (DROPO)], or just for one of them
[singly resonant OPO (SROPO)].

Quantum treatment of a TROPO using a χ (2) medium was
extensively done in both operation regimes (below [19,20]
and above threshold [21,22]). This treatment applies for the
DROPO as well, as far as the pump depletion is negligible.
That is the case far below the oscillation threshold, where
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pump is treated just as a classical field. To the best of our
knowledge, a full quantum treatment for the DROPO and the
effects of pump depletion on the quantum noise is missing.
Here we use the multimode analysis of the cavity evolution
[23] to compare the noise and the quantum correlations of
DROPO and TROPO in above threshold operation, demon-
strating that multipartite entanglement and the squeezing of
the pump noise are present even in a single pass regime.

The model has the advantage of being applicable to open
cavities, beyond the closed cavity regime adopted in typical
input-output formalism [24,25]. That is particularly interest-
ing for the study of χ (3) OPOs, and we compare their behavior
to the usual χ (2) oscillator above threshold. The small gain,
typically found in χ (2) amplifiers based on parametric down
conversion (PDC), leads to high reflectance mirrors (typically
greater than 95%) for continuous operation even for the
best available crystals. On the other hand, although many
oscillators based on four wave mixing (4WM) will present a
closed cavity [26], this process can be much stronger in atomic
vapors [27], where the χ (3) process is enhanced close to the
atomic transitions. This enables the development of OPOs
with higher transmittance mirrors (open cavity) [28,29].

We begin by a description of the classical behavior of an
OPO considering the DROPO and the TROPO case without
any approximation for the reflection coefficients of the cavity
(Sec. II), accounting for the evolution of the mean fields along
the gain medium (both χ (2) and χ (3)). We go beyond the
studies of the classical behavior of χ (2) [30] that accounts only
for the first order of the expansion to compute the mean fields,
which is not appropriate to simulate a χ (3) OPO with a higher
gain [29]. Afterwards, we provide a quantum description of
the systems considering the quantum treatment of the fluc-
tuations in terms of the symmetric and antisymmetric basis
of the electromagnetic field yielding a full description of the
state of the fields in terms of a covariance matrix (Sec. III).
Next, we evaluate the quantum features generated by different
types of OPO (Sec. IV), squeezing, bipartite, and multipartite
entanglement, showing the main differences that appear on
each configuration.
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II. CLASSICAL APPROACH

We evaluate the evolution of the mean field during the
parametric amplification in both cases, PDC and 4WM, be-
fore considering the steady-state conditions inside a cavity.
The cavity feedback will lead to a dramatic effect of gain
saturation, completely modifying the response of the free
propagating process.

Using a medium with second- (third-) order nonlinearity,
one (two) photon(s) of the pump beam (of frequency ω1)
might be converted into two photons, signal and idler (with
respective frequencies ω1 and ω2). The interaction Hamiltoni-
ans Ĥ (2), which represent the PDC, and Ĥ (3), representing the
4WM, are given by

Ĥ (2) = ih̄χ (2)â0(t )â†
1(t )â†

2(t ) − H.c., (1)

Ĥ (3) = ih̄χ (3)â2
0(t )â†

1(t )â†
2(t ) + H.c. (2)

in the interaction picture. Here ân, with n = {0, 1, 2}, repre-
sents the annihilation operators of the pump, signal, and idler
modes, respectively, and the parameter χ (m) with m = {2, 3}
is associated with the nonlinear susceptibility coefficient of
each gain medium.

In order to determine the mean amplitudes of the output
fields as a function of the system parameters, the opera-
tors evolution ân(t ) through the gain medium are evaluated
through the Heisenberg equations for the field operators,
d
dt ân(t ) = (i/h̄)[Ĥ (m), ân(t )]. Linearizing the field operators
as ân(t ) = αn + δân(t ), where αn is the mean-field amplitude
and δân(t ) is the field fluctuations, the set of expressions that
describe the mean value evolution of the fields αn through the
gain medium can be written as

dα0

dt
= −(m − 1)χ (m)α

∗(m−2)
0 α1α2, (3a)

dα1

dt
= χ (m)α

(m−1)
0 α∗

2 , (3b)

dα2

dt
= χ (m)α

(m−1)
0 α∗

1 , (3c)

where α∗
n is the complex conjugate of αn. The mean value of

the field is a complex number that can be explicitly written
in terms of real amplitude and phase: αn = √

Pneiθn . The
parameter Pn = αnα

∗
n is proportional to the photon number in

the field n and hence to the field power. Differentiating Pn in
time we have

d

dt
Pn = αn

dα∗
n

dt
+ α∗

n

dαn

dt
(4)

and, with the help of Eq. (3), we have a set of differential
equations that describe the evolution of Pn

dP0

dt
= −2(m − 1)χ (m)

√
P(m−1)

0 P1P2 cos θ,

dP1

dt
= 2χ (m)

√
P(m−1)

0 P1P2 cos θ, (5)

dP2

dt
= 2χ (m)

√
P(m−1)

0 P1P2 cos θ,

depending on a global phase θ = θ1 + θ2 − (m − 1)θ0. In
practice, the exact value will depend on the phase-matching

condition, involving the value of χ (m) and on the reflection
coefficient of the mirrors [30], but the general effect will
be the modulation of the coupling. Therefore, we will chose
θ that maximizes the coupling; thus cos(θ ) = 1. A detailed
evaluation of the field evolution for the case of a χ (2) medium
is given in [31].

As the fields propagate along the gain medium, we may
evaluate the power transfer from the pump to the converted
modes. The number of photons of the pump will be reduced,
leading to P0(t ) = P0(0) − (m − 1)p(t ). This photon deple-
tion leads to a change in the photon number of the converted
fields as P1(t ) = P1(0) + p(t ) and P2(t ) = P2(0) + p(t )(t ).
Considering a balanced power for converted modes, P1(t ) =
P2(t ); therefore, the set of Eqs. (5) can be used to obtain the
evolution of p(t ), related with the power transfer along the
path. For convenience,

d p

dt
= 2χ (m)[P0(0) − (m − 1)p]

1
2 (m−1)[P1(0) + p]. (6)

The total power variation of signal field, �P(m)
1 , for each

gain medium m, will be computed integrating Eq. (6) in
the limits of the entrance [t1, p(t1)] = (0, 0), and the end
[t2, p(t2)] = [L/(nc),�P(m)

1 ] of the gain medium of length L,
where c is the velocity of light in the vacuum and n is the
refractive index. Considering the χ (2) gain medium we have

�P(2)
1 = P0(0) − [P0(0) + P1(0)]

× tanh2

[
κ (2)

√
P0(0) + P1(0)

− arctanh

(√
P0(0)

P0(0) + P1(0)

)]
, (7)

with κ (m) = χ (m)L/(nc). Although this equation is not sim-
ple, in the limit of a weak coupling we have �P(2)

1 =
κ (2)/P1(0)

√
P0, recovering the situation observed in [30]. For

a χ (3) gain medium we obtain

�P(3)
1 = P0(0)P1(0)

(
e2κ (3)[P0(0)+2P1(0)] − 1

)
2P1(0)e2κ (3)[P0(0)+2P1(0)] + P0(0)

. (8)

In the χ (3) scenario, it is interesting to evaluate the signal
(and idler) relative gain G(3). From Eq. (8) we have

G(3) = �P(3)
1

P1(0)
= g(3) − 1

1 + 2g(3)P1(0)/P0(0)
, (9)

where g(3) = exp {2κ (3)[P0(0) + 2P1(0)]} corresponds to the
unsaturated amplification. For a completely open cavity and a
weak seed [P1(0) � P0(0)], Eq. (9) simplifies as

G(3) + 1 = e2κ (3)P0(0) = g(3). (10)

The amplification then increases exponentially with the pump
power and the medium length, which is proportional to κ (3).
This is the typical situation of the unsaturated parametric
amplifier as used in [27]. The role of an increasing seed also
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FIG. 1. OPO model using a ring cavity with two highly reflective
mirrors (M1 = M2 = 1), an output coupler MPT, and a gain medium
with length L. The MPT reflectant coefficient for the pump beam is
R0 and for both, signal and idler beams, R1.

becomes evident: it will lead to a saturation of the power
transfer process, and therefore a reduction of the gain in
Eq. (9).

From Eqs. (7) and (8), we can relate the added power on
the converted fields to the coupling coefficients κ (m), and the
field power at the input of the amplifier, P0(0) and P1(0). This
result is used now to evaluate the intracavity steady state. First,
we compare the solutions for both gain media in a doubly
resonant cavity in Sec. II A, where the pump beam makes a
single pass through the cavity while the signal and idler beams
are resonant. Next, in Sec. II B, we consider a triply resonant
OPO, exploring different reflections of the input mirror for the
pump field.

A. Doubly resonant optical parametrical oscillator

The first system being studied is a DROPO (Fig. 1). For
convenience, we will label the power at the input and the
output of the medium by the positions 0 and L. In this case, the
pump beam makes a single pass through the cavity; therefore,
the pump power injected in the cavity defines P0in = P0(0).
When it leaves the cavity, the output power is given by P0out =
P0(L) = P0in − (m − 1)�P(m)

1 .
In the steady state, we can relate the input power of the

signal on the amplifier to the output of the amplifier using the
reflectance R1 on the output coupler MPT as P1(0) = R1P1(L).
The output of the OPO will be related to the output of the am-
plifier as well as P1out = (1 − R1)P1(L). From the definition
of �P(m)

1 = P1(L) − P1(0) we can calculate the output power
P1out as

P1out = (1 − R1)P1(0)

R1
= �P(m)

1 . (11)

This result is already expected from a cavity in equilibrium
due to energy conservation: the energy added to a given mode
will match the losses through the output coupler.

Numerical solution of Eq. (11), combined with Eq. (7)
(for χ (2)) and Eq. (8) (for χ (3)) gives the value of P1(0) as
a function of the pump power P0in. Evaluation of the output
power P1out is immediate. The result is presented in Fig. 2(a),
for the χ (2) gain medium, giving an output power close to
the parabolic curve deduced in [31]. On the other hand, in
Fig. 2(b), for the χ (3) gain medium, we can observe that
the curve approaches a proportional response for sufficiently
high pump power. Even close to the threshold, as shown

(a)

(b)

FIG. 2. DROPO: P1out as a function of P0in for different reflec-
tivity coefficients R1 = {75%, 85%, 95%}. Simulations considering
(a) a χ (2) gain medium with κ (2) = 0.5W −1/2 and in (b) a χ (3) gain
medium with κ (3) = 3W −1.

in the inset, the evolution could be closely approximated
by a linear response when the cavity coupling is higher, as
observed in [29]. The asymptotic behavior is similar for the
distinct couplings, and very different from the one observed
with χ (2). The insets put in evidence the reduction of the
threshold power for a reduction of the cavity losses. The
chosen value of the nonlinearity κ (3) = 3W −1 is based on the
observed amplification in [27]. The value of κ (2) = 0.5W −1/2

is chosen to match the threshold power for both media with
R1 = 0.85. We will adopt this value for the simulations along
the remainder of the article.

Although the power has some dramatic changes for distinct
coupling, a better comparison can be done using the conver-
sion efficiency

η = h̄ω1P1out + h̄ω2P2out

h̄ω0P0in
. (12)

The efficiency is shown in Fig. 3, with the pump power
normalized to the threshold power. The conversion efficiency
increases monotonically in both cases, but the most relevant
difference between χ (2) and χ (3) amplifiers comes from the
fact that a maximum (unitary) efficiency is observed at a pump
power �4 times above threshold for χ (2) oscillators, while
χ (3) oscillators evolve asymptotically to unitary efficiency.
Notice as well that while the unitary efficiency for χ (2) is
reached at σmax � 4 for a closed cavity, the position of the
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(a)

(b)

FIG. 3. DROPO: conversion efficiency η as a function of
pump power (normalized by the threshold power) σ for R1 =
{75%, 85%, 95%}. Simulations with (a) a χ (2) gain medium and (b) a
χ (3) gain medium.

maximum is reduced when cavity losses are increased, as
observed in [31].

B. Triply resonant optical parametrical oscillator

We have now a cavity for the pump that enhances its power,
which makes this system a pump enhanced DROPO as well.
The self-consistency equation for the converted field, Eq. (11),
is still valid. However, the self-consistency equations will
differ for the pump field that now includes a beam splitter
transformation for the input coupler:√

P0(0) = t0
√

P0in − r0

√
P0(L), (13)

√
P0out = t0

√
P0(L) + r0

√
P0in, (14)

where r0 = √
R0 is the reflection coefficient and t0 =√

1 − R0 = √
T0 is the transmission coefficient.

The output pump power in terms of the input pump power
P0in and the intracavity pump power P0(0) is obtained by
combining Eqs. (13) and (14):

P0out = P0in − 2t0
√

P0inP0(0) + T0P0(0)

R0
. (15)

We would like to evaluate the behavior of P1out in terms of
P0in. A numerical solution for this quantity can be obtained by

evaluating the intracavity fields P0(0) and P1(0) as a function
of the input power, the coupling constant κ (m), and the mirror
reflectances R0, R1 = R2. As an example, a detailed evalu-
ation of the output power for χ (3) TROPO is performed in
Appendix A.

For the moment we will consider that the cavity mirrors
have the same reflectance for pump, signal, and idler beams,
R0 = R1 = R2 = R. While this situation is quite unusual for
χ (2) OPOs, it is common for the χ (3) condition, when all the
resonant fields may be nearly degenerate in frequency, leading
to balanced losses. In this situation a direct equation for the
intracavity fields and the pump power can be obtained.

In a steady state the total intracavity power, PT 0, is constant
at any point inside the cavity, resulting in the relation PT 0 =
P0 + (m − 1)P1. Due to energy conservation, the relation be-
tween the input pump field and the output fields of the cavity is
P0in = P0out + (m − 1)P1out, where P1out is given by Eq. (11).
Now it is possible to rewrite the intracavity fields, P0(0) and
P1(0), in terms of the input pump power P0in, and the total
intracavity pump power, PT 0. From the above description,
combined with Eqs. (13) and (15), we obtain

P0(0) = 1 − R

4

(P0in + PT 0)2

P0in
, (16)

P1(0) = R − 1

4(m − 1)

(P0in − PT 0)2

P0in
+ RPT 0

m − 1
, (17)

where Eq. (16) and Eq. (17) describe the behavior of P0(0)
and P1(0) as a function of PT 0 and P0in.

The problem now becomes writing PT 0 as a function of
the input pump power, P0in. In the χ (2) TROPO configuration,
equaling Eq. (7) and Eq. (11) results in

(1 − R)(P0in − PT 0)2

4RP0inPT 0

= tanh2

⎡
⎣κ (2)√PT 0 − arctanh

⎛
⎝

√
(1 − R)

(P0in + PT 0)2

4P0inPT 0

⎞
⎠

⎤
⎦,

(18)

which is used to find a numerical solution to PT 0 as a function
of P0in. Considering the χ (3) TROPO, the treatment consists of
equaling Eq. (8) to Eq. (11). Rearranging the terms we obtain
P1(0)
P0(0) = R e2κ3PT 0 −1

2(1−R)e2κ3PT 0
and substituting Eq. (16) and Eq. (17) in

the later expression results in

(1 − R)(P0in − PT 0)2 − 4RP0inPT 0

= (e−2κ3PT 0 − R)(P0in + PT 0)2, (19)

enabling a numerical solution for PT 0 as a function of P0in.
Using Eq. (18) and Eq. (19) as an input in Eq. (17) we
have P1(0) as a function of P0in for χ (2) and χ (3) TROPO,
respectively. In order to evaluate the behavior of P1out as a
function of P0in we just replace P1(0) in Eq. (11).

The behavior of P1out as a function of P0in is shown for a
χ (2) gain medium in Fig. 4(a) and for a χ (3) gain medium
in Fig. 4(b). The behavior of both systems is analyzed for
three different reflection coefficients and the increase in the
threshold power can be observed when R changes from R =
95% to R = 75%. Furthermore, the converted fields’ power
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(a)

(b)

FIG. 4. TROPO: P1out in function of P0in for different reflectivity
coefficients R1 = {75%, 85%, 95%}. Simulations considering (a) a
χ (2) gain medium and in (b) a χ (3) gain medium.

increases with the input pump power, but different from the
DROPO; both curves present a paraboliclike shape.

A better comparison of the curves can be obtained from
the conversion efficiency, as shown in Fig. 5. The maximum
conversion efficiency occurs approximately in σ = 4, de-
creasing from this point on to approximately 50% for σ � 4.
The behavior for the different reflectivity coefficient is very
similar in all σ analyzed for both χ (2) and χ (3) TROPO in the
presented range.

These results are similar to those obtained for χ (2) OPOs,
as presented in [30,31]. The main point of the present treat-
ment is to obtain a detailed evolution of the mean fields inside
the gain medium. That is a fundamental part of the evaluation
of the noise for a cavity in the open limit, beyond the first-
order approximation for the mean field, as we demonstrate
now.

III. THEORETICAL DESCRIPTION OF THE FIELD
QUANTUM FLUCTUATIONS

In order to evaluate the quantum fluctuations as a function
of the oscillator parameters in the spectral domain, we follow
the formalism described in [23]. We begin by writing the time-
dependent annihilation operator in terms of the annihilation
operators acting on the modes of the sideband frequencies of

(a)

(b)

FIG. 5. TROPO: η in function of σ for R1 = {75%, 85%, 95%}.
Simulations with (a) a χ (2) gain medium and (b) a χ (3) gain medium.

the central carrier frequency ωn

ân(t ) =
∫ ∞

−ωn

e−i�t â�d�, (20)

where â� is the photon annihilation operator in the mode
of frequency � = (ω − ωn), � represents the sideband fre-
quency, and ωn is the carrier frequency of mode n. Con-
sidering a narrow optical spectra for the carrier, ωn �
|�|, the integral limit can be approximated as ωn → ∞.
In the linearized form, the annihilation operator can be
rewritten as

ân(t ) = 〈ân〉 + δân(t ) = αn +
∫ ′

e−i�t â�,nd�, (21)

where αn represents the mean value of the carrier at frequency
ωn and the symbol ′ in the integral represents the integration
limits between −∞ and ∞ relative to sideband frequency
disregarding the carrier term. This integral will give rise to
the fluctuation term δân(t ).

The interaction Hamiltonian of each interaction process,
Eqs. (1) and (2), can now be rewritten with the help of
Eq. (21). Higher-order terms in fluctuation and rapidly os-
cillating terms, that don’t satisfy energy conservation, are
neglected. The constant part having only the mean fields is
removed as well. We are left only with the contributions of
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the sidebands, given by

Ĥ (m) =
∫ ∞

ε

d� Ĥ (m)(�), (22)

where the sum is taken from a lower-frequency com-
ponent ε defined by the bandwidth of the pump field.
The contributions of the sidebands add linearly, and are
described by

Ĥ (m)(�) = ih̄χ (m)�
[
α

∗(m−1)
0 (â�,1â−�,2 + â−�,1â�,2)

+ (m − 1)α∗(m−2)
0 α1(â†

�,0â�,2 + â†
−�,0â−�,2)

+ (m − 1)α∗(m−2)
0 α2(â†

�,0â�,1 + â†
−�,0â−�,1)

+ (m − 2)α1α2(â†
�,0â†

−�,0 + â†
−�,0â†

�,0) − H.c.
]
.

(23)

A convenient form of writing this Hamiltonian is using
a symmetric and antisymmetric combination of sideband
modes, defined as

âns = [â�,n + â−�,n]/
√

2, (24)

âna = [â�,n − â−�,n]/
√

2, (25)

where the annihilation operators are formed by Hermitian
operators associated with the quadratures of the field (p̂ns/a,
q̂ns/a): âns/a = p̂ns/a + iq̂ns/a. One advantage of the use of
this symmetrized-antisymmetrized space, instead of the space
involving detailed sidebands, lies in the fact that these
quadratatures are directly accessed in the usual homodyne

measurement, or in the self-homodyne measurement involv-
ing auxiliary cavities [32,33].

The interaction Hamiltonian is conveniently separated in
two terms, Ĥ (m)(�) = Ĥ (m)

s (�) + Ĥ (m)
a (�), given by

Ĥ (m)
s/a (�) = ±α

∗(m−1)
0 â1s/aâ2s/a + (m − 1)α∗(m−2)

0 α1â†
0s/aâ2s/a

+ (m − 1)α∗(m−2)
0 α2â†

0s/aâ1s/a

±(m − 2)α1α2â†2
0s/a + H.c. (26)

As shown in detail in Ref. [23], this Hamiltonian represents
a two-mode squeezing process on the twin beams in the
presence of an intense pump field, and a pair of beam splitter
processes between the pump and one of the generated fields
in the presence of an intense mean field related with the
conjugated mode. In the case of the Hamiltonian, related to the
χ (3) medium, one additional term is present, which is related
with a squeezing process in the pump field in the presence of
a pair of intense converted fields.

We can use the Heisenberg equation dân(s/a)(t )/dt =
−i/h̄[Hχ (m) (s/a), â†

n(s/a)(t )] to evaluate the transformation of the
field operators from the input to the output of the amplifier.
Calculation can be performed using an auxiliary variable ξm =
χ (m)t giving a compact form for the Heisenberg equation

d �A(s/a)

dξm
= M(s/a)(ξm) �A(s/a), (27)

where �As/a = (â0(s/a)â
†
0(s/a)â1(s/a)â

†
1(s/a)â2(s/a)â

†
2(s/a) )

T . The
evolution matrix has an explicit dependence on the amplitude
of the fields inside the crystal, that evolve along the propaga-
tion, as evaluated in the previous section,

M(s/a) = ξm

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ∓2(m − 2)αω1αω2 −(m − 1)α∗(m−2)
ω0 αω2 0 −(m − 1)α∗(m−2)

ω0 αω1 0
∓2(m − 2)αω0α

∗
ω2 0 0 −(m − 1)α(m−2)

ω0 α∗
ω2 0 −(m − 1)α∗(m−2)

ω0 α∗
ω1

(m − 1)α(m−2)
ω0 α∗

ω2 0 0 0 0 ±αm−1
ω0

0 (m − 1)α∗(m−2)
ω0 αω2 0 0 ±αm−1

ω0 0
(m − 1)α(m−2)

ω0 α∗
ω1 0 0 ±α

∗(m−1)
ω0 0 0

0 (m − 1)α∗(m−2)
ω0 αω1 ±α

∗(m−1)
ω0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)

Solving the differential Eq. (27), the result can be written as

�A(s/a) |ξm=κ (m)= Gm(s/a) �A(s/a) |ξm=0, (29)

with

Gm(s/a) = exp

(∫ κ (m)

0
dξmMm(s/a)(ξm)

)
. (30)

Most of the works until now considered that the evolution
of the field inside the crystal is negligible due to the low
total power variation of the signal of this system [30], a valid
situation for a small gain, and a typical situation found in
closed cavities. The integration of Eq. (30) allows us to study
the behavior of the fields inside two different gain media
without this consideration enabling the accurate study in the
open cavity regime [29].

In order to evaluate the behavior of the field fluctuations in
a round trip inside the cavity (Fig. 6) the procedure described
in [23] was adapted to a format that can be used considering

both χ (2) and χ (3) as the gain medium inside the cavity (see
Appendix B for further details). The output field ÂR from
the cavity is directly related to the incident field Âin and the
additional vacuum field Âv, associated to spurious losses of

FIG. 6. Representation of the fields inside the cavity with a gain
medium χ (m). M1 and M2 are the input and output mirrors, with
reflectivity (transmissivities) coefficients R (T) and R′ (T′).
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the cavity, by the relation

�AR = Rκ �Ain + Tκ �Aν, (31)

where Rκ and Tκ are the effective reflection and transmission
matrices of the OPO cavity, accounting for all the mirror
coupling and the gain transformation described by Eq. (30).

Knowing the OPO output fields, the correlation between
the output quadratures can be analyzed. Following the anal-
ysis in Ref. [23] we performed a complete description of the
covariance matrix of the Hermitian operators p̂ωn and q̂ωn of
pump, signal, and idler modes that satisfies the commutation
relation [ p̂ω, q̂′

ω′ ] = 2iδ(ω − ω′) and are related with the oper-
ators âω and â†

ω by p̂ω = (âω + â†
ω )/2 and q̂ω = i(âω − â†

ω )/2.
The covariance matrix of the reflected field is given by

VR = R̃κVinR̃−1
κ + T̃κVνT̃−1

κ , (32)

where Vin is the input covariance matrix of the pump, signal,
and idler fields, and Vν is the covariance matrix related
with the input vacuum modes. We considered that the input
covariance matrix represents a coherent state, Vν = Vin = I.
Details of the calculation procedure can be found in [23].

IV. ANALYSIS OF THE COVARIANCE MATRIX

The covariance matrix VR gives a unique description of
the system, and for a Gaussian state is equivalent to the
determination of the density operator [34]. It gives all the
possible information about the system, including squeezing
and entanglement of the fields. In what follows, we will make
a detailed analysis of the quantum features that can be found
in the different configurations, DROPO and TROPO, χ (2) and
χ (3).

It is important to notice that the covariance matrix given
by Eq. (32) is expressed in the sideband modes. While this
situation is convenient for the calculations, the measure-
ment often involves a balanced combination of the upper
and lower sidebands [32], and therefore the transformation
into the symmetric-antisymmetric combination of the modes,
described in Eq. (25), can be more convenient to relate the
theoretical description of the system with the experimental
results.

We will begin by the analysis of the covariance matrix of
the symmetric modes. As it was shown [32], in a station-
ary regime the covariance matrices of both symmetric and
antisymmetric modes have equivalent information. We will
compare DROPO and TROPO configurations, and χ (2) and
χ (3) nonlinear media acting as amplifiers. We will first demon-
strate the use of the OPO as a squeezer for individual modes.
Next, a detailed study of the bipartite entanglement shows
the differences in twin-beam generation of these distinct
configurations. That is very important, since below threshold
the response of all four configurations are essentially similar.
Then we demonstrate that tripartite entanglement is present
even for a DROPO, showing that the pump is entangled with
the converted fields even in a single pass. Nevertheless, we
can observe that entanglement can be lost in the three mode
description, even though we are always working with unitary
operations. The reason for this loss of entanglement becomes
clear if we look at the complete covariance matrix. That is

(a)

(b)

FIG. 7. DROPO: diagonal terms of Vs in terms of σ for R1 =
85% and � = 0.5BW . Considering in (a) a χ (2) gain medium and in
(b) a χ (3) gain medium.

what we perform in the study of the hexapartite entanglement
in the final part of this section.

In order to give a general view, we have chosen a re-
flectance of R = 85% for the output coupler, and no additional
loss in the cavity. Analysis frequency is chosen to be half
of the cavity bandwidth BW : � = 0.5(1 − R)/τ , where τ is
the round trip time of the wave inside the cavity. TROPO is
chosen to be identical with all the reflectances.

A. Source of squeezed states

If we want to observe the noise compression, as evaluated
for instance in [3], we may restrict the study to the covariance
of the symmetric variables [32]. From the symmetry between
signal and idler modes, only the presentation of the variances
of one of these fields is necessary. The quadratures associated
to the amplitude and phase are represented by �psi and �qsi,
with i = {0, 1, 2} for pump, signal, and idler fields.

Individual variances for the DROPO are presented in
Fig. 7, for χ (2) and χ (3) gain medium. Equivalent results for
the TROPO are presented in Fig. 8. There are many common
features on these curves. The compression of the phase noise
of the pump, �2qs0, as observed in [3], is verified not only in
Fig. 8(a), but in all the distinct configurations. It is interesting
to notice that, while the compression is limited to 0.5 in
the χ (2) TROPO [22], the χ (2) DROPO can beat this value.

023522-7



BÁRBARA ABIGAIL FERREIRA RIBEIRO et al. PHYSICAL REVIEW A 102, 023522 (2020)

(a)

(b)

FIG. 8. TROPO: diagonal terms of Vs in terms of σ for R1 = 85%
and � = 0.5BW . Considering in (a) a χ (2) gain medium and in (b) a
χ (3) gain medium.

On the other hand, while compression of this quadrature in
presented in χ (3) OPO, they are not so effective as squeezers
for the pump. In fact, for the χ (3) DROPO, noise compression
is even limited to the range of σ < 2.2. But then we have
a curious feature: for σ < 2.3, the pump amplitude �2 ps0

becomes squeezed. This difference in behavior between χ (2)

and χ (3) OPOs can be explained by the additional term in
Eq. (26), giving the compression operator acting on the pump,
associated to the mean converted fields inside the cavity. This
effect should compete with the usual dynamics of the phase
noise compression provided by the back conversion of the
signal and idler fields into the pump mode described in [3].
For a strong field, it should beat the phase compression. As
for the converted fields, they present a nearly perfect thermal
state right above the threshold. For an increasing pump power,
phase noise �2qs1 grows smoothly while the amplitude noise
�2 ps1 presents a strong peak, that is much more pronounced
for the TROPO, and almost coinciding with the peak noise
for the pump amplitude �2 ps0. On the other hand, above a
certain value, the noise drops and we eventually have noise
compression for this field. This effect was already predicted
in the literature for the χ (2) TROPO, but its experimental
observation is delicate. A good reason could be the fact that
it should appear above σ = 3, a situation where the thermal
effects will become dramatic in optical crystals, and the
intense fields that are produced will elude the usual homodyne

techniques for noise measurement. It would be necessary
to use self-homodyning, as done in [8], for its observation.
Nevertheless, the use of χ (3) gain medium on a DROPO
reduces the value of the necessary pump power for reaching
the squeezed output. In fact, as it was recently observed in
a DROPO χ (3) [29], the noise of each converted field can
be limited to the shot-noise level, while they still present
quantum correlations associated to twin beams. As we will see
next, this may lead to a signature of entanglement between the
output fields. The strong compression for the amplitude noise
of pump, signal, and idler field is a dramatic demonstration of
the role of pump depletion even in a single pass of the beam
through the crystal.

B. Bipartite entanglement

Two mode entanglement, the basic resource for quantum
information processing, can be directly observed from the
second-order momenta [21,35]. In fact, noise compression in
the Einstein-Podoslky-Rosen type operators criteria [35] is a
sufficient condition for a successful teleportation of a quantum
state between two sites [13]. This DGCZ criterion can be
expressed as an inequality of the form

�2 p− + �2q+ > 2, (33)

where the EPR-type variables are �2 p− = (ps1 − ps2)/
√

2
and �2q+ = (qs1 + qs2)/

√
2. If the variances of these line

combinations of quadratures violate the inequality, the bipar-
tition {1, 2} is necessarily entangled.

Twin beams produced by OPOs are a regular source of
entangled states [6,8]. In what follows, we will evaluate
the noise compression of the correlated intensities and the
anticorrelated phases of the fields generated in distinct cavity
configurations. Figure 9 presents the behavior of Eq. (33)
considering the DROPO, while Fig. 10 present the results for
the TROPO. An outstanding result is the robustness of the
twin beam correlation [4]. The subtraction of the amplitudes
for all four configurations is the same, and directly related
only to the cavity bandwidth and detection efficiency—the
squeezing level depends on the fraction of the twin photons,
that are generated by the parametric conversion, that is de-
tected. Therefore, this variance is independent of the pump
power, even though the variance of each field may change
dramatically, from excess noise to squeezing, as seen in the
previous section.

On the other hand, phase anticorrelation, associated to the
noise compression in �2q+, is more fragile, and depends
strongly on the pump power [8]. Starting from the same
level as the �2 p− close to the threshold, it had a mono-
tonic increase. Here the effect of the gain medium is very
relevant: while χ (2) OPOs have a limit where this variance
asymptotically reaches the vacuum level for increasing pump
power (�2q+ < 1), χ (3) OPOs will cross this limit at very
low pump power, σ � 1.5. Moreover, the loss of noise com-
pression for growing pump power is more pronounced in the
DROPOs, when compared to TROPOs, for both gain medium,
and should be considered on the development of entangled
bipartite sources.

As a result, DGCZ inequality is violated for all the value
range for the χ (2) OPOs, but it is satisfied only up to a certain
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(a)

(b)

FIG. 9. DROPO: EPR inequality (continuum, orange), �2 p−
(dashed, purple), and �2q+ (dashed, green) in terms of σ for R1 =
85% and � = 0.5BW . Considering in (a) a χ (2) gain medium and in
(b) a χ (3) gain medium. The gray solid line represents the limit value
of the inequality given by Eq. (33).

level of pump power for χ (3) OPOs. This is a main limitation
of this system for bipartite entanglement, but since we are
dealing here with pure states, the loss of entanglement in
this two mode partition can be understood as their coupling
to other modes of the system, as we should see in the next
subsection.

Another important analysis is related with the behavior
of the noise spectrum in terms of the analysis frequency
normalized by the cavity bandwidth �BW . As an example, we
focus on the substraction of the signal and idler fields. It is
very well known that in χ (2) OPOs the behavior of the phase
(�2qs−) and amplitude (�2 ps−) is insensitive to the pump
power and depends only on the analysis frequency. Noise
compression in �2 ps− will follow a Lorenztian, of width
given by the cavity bandwidth, and for a lossless system we
have �2 ps−�2qs− = 1. The same situation is verified for the
DROPO, as can be observed in Fig. 11.

The Lorenztian dependence of �2 ps− on frequency was
already studied on the dynamics of pair production inside
a cavity [36]. The generation of these twin beams is the
first signature of quantum features in intense beams gen-
erated by a χ (3) DROPO with an atomic vapor as a gain
medium [29]. In that paper, it was also observed that the
squeezing is independent of the pump power up to four times

(a)

(b)

FIG. 10. TROPO: EPR inequality (continuum, orange), �2 p−
(dashed, purple), and �2q+ (dashed, green) in terms of σ for R1 =
85% and � = 0.5BW . Considering in (a) a χ (2) gain medium and in
(b) a χ (3) gain medium. The gray solid line represents the limit value
of inequality Eq. (33).

above the threshold, consistent with the present calculations,
which paves the path for its use as a source of entangled
states.

C. Tripartite entanglement

While DGCZ criterion is a useful test for bipartite en-
tanglement, it is not both necessary and sufficient in its
usual form [Eq. (33)]. On the other hand, positivity under
partial transposition (PPT) was shown to be a necessary and
sufficient criterion not only for bipartite Gaussian states [34],
but for 1 × N bipartitions as well [37]. Partial transposition
operation in a CV system is like a mirror reflection in the
phase space, acting only in a partition. When a transposition
operator is applied on the density operator, the corresponding
Wigner function transforms as W (x) → W (�x), with x =
(p1, q1, p2, q2); we have the substitution of x → �x, with
� = diag(1, 1, 1,−1). If the new Wigner function does not
correspond to the physical density operator, the system is en-
tangled. On the other hand, if it does and the Wigner function
is Gaussian, then we know that the bipartition is separable;
PPT can be immediately verified by the covariance matrix.
Writing the set of commutation rules as [x̂i, x̂ j] = i�i, j , where

� = ⊕N
k=1 J and J = ( 0 1

−1 0), the uncertainty relation can be

023522-9



BÁRBARA ABIGAIL FERREIRA RIBEIRO et al. PHYSICAL REVIEW A 102, 023522 (2020)

(a)

(b)

FIG. 11. DROPO: �2 ps− and �2 pq− in terms of � (normalized
by the cavity bandwidth BW ) for R1 = 85% and �BW = 0.5. Con-
sidering in (a) a χ (2) gain medium and in (b) a χ (3) gain medium.

expressed as V + i� � 0. Partial transposition implies in the
transformation V →PT Ṽ = �V�. Physicality of the partially
transposed covariance, Ṽ + i� � 0, can be verified by the
evaluation of the symplectic eigenvalues νk of Ṽ [38–40]:

νk =
√

[Eigenvalues(V )]k, (34)

where V = −(Ṽ�)2. When νk � 1 ∀ k the transformed matrix
Ṽ is physical. It follows from this condition that, if the
minimum symplectic eigenvalue ν < 1, the covariance matrix
V corresponds to an entangled state, and the minimum sym-
plectic eigenvalue is an entanglement witness for the given
bipartition. The treatment can be extended to multipartite
states, and for a 1 × N bipartition, this is a necessary and
sufficient condition to demonstrate entanglement for Gaussian
states [37].

For this subsection, we will keep our analysis on the
subspace of the symmetric covariance matrix, as it will reflect
the kind of entanglement usually observed when each beam
issued from the OPO is treated as a single mode [9]. For
three modes, we have three possible bipartitions 1 × 2 and
the tripartite entanglement is verified if ν < 1 for all of them.
Since the Simon-PPT criteria is necessary and sufficient, we
will apply it as well to the subsystems formed by pairs of the
beams, comparing the conclusions to those inferred from the
DGCZ criterion.

(a)

(b)

FIG. 12. DROPO: minimum symplectic eigenvalues νk obtained
from Vs in terms of σ for R1 = 85% and � = 0.5BW . Considering
in (a) a χ (2) gain medium and in (b) a χ (3) gain medium. The gray
solid line represents the limit value of Eq. (34).

In Figs. 12 and 13 the behavior of the symplectic eigen-
values for the DROPO and TROPO are presented. For three
modes, we have the eigenvalue for the transposition of the
pump, ν0, and for signal or idler, ν1 = ν2. We plot the trans-
position for the possible two mode subsystems, for pump
and signal (or idler) ν01 = ν02 and the pair formed by the
converted fields ν12.

It is evident that entanglement of each converted mode to
the rest of the system is always verified (ν1), but the violation
is reduced for increasing pump power. It is consistent with the
fact that the converted fields are strongly entangled, as can be
seen by ν12. If you compare this situation with those observed
in Figs. 9 and 10, it is clear that Eq. (33) fails in identifying
some entangled states: as stated in [35], the condition is both
necessary and sufficient only if the covariance matrix is in one
of the standard forms that they propose in the article. But a
feature is common in both witnesses: the violation for the χ (3)

DROPO is rapidly reduced for a growing pump power.
The situation is more peculiar when we look at the pump

mode. Entanglement of the pump with the pair of the con-
verted fields ν0, or with just one of the fields ν01, is weaker
than that observed for each of the down converted beams.
Moreover, it can vanish in the region where we observe
the peak in the amplitude fluctuations in Figs. 7 and 8.
This apparent loss of entanglement is not observed in other
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(a)

(b)

FIG. 13. TROPO: minimum symplectic eigenvalues νk obtained
from Vs in terms of σ for R1 = 85% and � = 0.5BW . Considering
in (a) a χ (2) gain medium and in (b) a χ (3) gain medium. The gray
solid line represents the limit value of Eq. (34).

configurations of the TROPO [9,41], where it remains entan-
gled over the entire span of the pump power. The main differ-
ence in this case is the fact that all the modes have the same
loss for the cavity. This loss of entanglement would be ex-
pected if we have loss of purity in the tripartite state [42], but
as we have found, the situation is more subtle, and looking in
the details of the sideband modes, we have in fact hexapartite
entanglement on the system [10]. As for the χ (3) DROPO, we
can see that for sufficiently high pump power the pump is ap-
parently disentangled from the twin pair. That is not necessar-
ily true, if we consider now the correlation between the sym-
metric and the antisymmetric part of the covariance matrix.

D. Multipartite entanglement

So far, we have limited our analysis only to the symmetric
combination of the sidebands, that was shown to be equivalent
to the antisymmetric part [32] in the OPO. As we have shown
in [10], in the TROPO all the possible 31 bipartitions are
entangled. Therefore, we will restrict the current analysis to
the relevant features involving bipartitions in the symmetric-
antisymmetric basis.

For the six modes involved, we will explore the bipartition
involving all the modes of the pump (νs0a0) and all the modes
of the signal or idler (νs1a1 = νs2a2). It will also be relevant to

(a)

(b)

FIG. 14. DROPO: minimum symplectic eigenvalues νsa,k con-
sidering Vs/a in terms of σ for R1 = 85% and �BW = 0.5. k =
{0, 1, 01, 12} represent the subsystems of pump, signal, pump and
signal, signal and idler fields, respectively, and νsa is obtained by
the transposition of antisymmetric pump, signal, and idler fields.
Considering in (a) a χ (2) gain medium and in (b) a χ (3) gain medium.

explore the ×3 partition, which involves all the symmetric ×
all the antisymmetric modes (νsa).

As we can see in Figs. 14 (for the DROPO) and 15 (for the
TROPO), entanglement for the pump is completely recovered
once we account for the complete description of the state.
The same is true for signal or idler modes. The reason for
this effect is clear when we consider the shared information
between the symmetric and antisymmetric case: entanglement
is maximized, with a particularly strong violation for νsa in the
TROPO (Fig. 15). We have a minimum of νsa in the region
where we have a peak in the noise of the amplitudes (Figs. 7
and 8). This peak is associated with a strong correlation
between the symmetric and antisymmetric modes, as is shown
in Appendix C. This effect is dramatically enhanced in the
TROPO when the three modes have balanced losses, and is
less dramatic (yet still recognizable [32]) for the usual χ (2)

TROPO, where the coupling of the cavity for the pump is ≈5
times that of the down converted modes. On the other hand,
for the χ3 OPO, we have a unitary value for νsa, at σ = 2 for
the DROPO and σ = 4 for the TROPO. That is associated to
a vanishing correlation between the partitions, as can be seen
in Appendix C.
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(a)

(b)

FIG. 15. TROPO: minimum symplectic eigenvalues νsa,k con-
sidering Vs/a in terms of σ for R1 = 85% and �BW = 0.5. k =
{0, 1, 01, 12} represent the subsystems of pump, signal, pump and
signal, signal and idler fields, respectively, and νsa is obtained by
the transposition of antisymmetric pump, signal, and idler fields.
Considering in (a) a χ (2) gain medium and in (b) a χ (3) gain medium.

Finally, instead of considering the bipartite case of pump
and idler, or signal and idler, we may now consider the whole
symmetric and antisymmetric combination for the pair of
beams. We may compare now νsa12 in Figs. 14 and 15 with
νs12 in Figs. 7 and 8. We cannot observe any difference,
which is consistent with the absence of correlation between
the symmetric and antisymmetric parts for signal and idler
subsystems. That is not true for the pump mode that presents
relevant correlations involving the symmetric and antisym-
metric part of the signal (or idler) modes as can be observed
from νsa01 in Figs. 14 and 15 compared to νs01 in Figs. 7
and 8. Entanglement between pump and signal in this case
is recovered once the correlation between symmetric and
antisymmetric parts is taken into account.

V. CONCLUSION

We can see clearly that the versatility of the OPO as a
source of nonclassical states in the continuous-variable regime
is not an exclusivity of the PDC process, but is also present
in the case of χ (3) media. Moreover, even for an extremely
open cavity, reaching the limit of a single pass of the pump
through the amplifier, as is the case of the DROPO, noise
compression and pump entanglement are also present. The

method presented in [23] that we have successfully employed
reproduces these features observed in the TROPO, and puts in
evidence the similarities of the DROPO in comparison with
the TROPO.

Our analysis here is quite distinct from the one performed
for the TROPO in [10,23] that focuses on the role of individual
sidebands of each one of the beams. In our current approach,
we kept the analysis for six modes, but heading back to
the symmetric-antisymmetric basis of these sidebands. The
reason is twofold: that is the usual measurement basis, leading
to the image of entanglement involving individual beams
(considered as carrier plus sidebands), and giving a greater
evidence of the role of the correlations between the symmetric
and antisymmetric spaces. Although identical in individual
information, they share a strong correlation leading to relevant
entanglement. A good amount of information is lost if this
correlation is ignored.

This fact is particularly evident for the dynamics of a cavity
with equal losses for the pump, signal, and idler, and we
can in this case observe the dramatic effect of the entangle-
ment between the symmetric and the antisymmetric modes.
It makes a clear difference between the tripartite case and the
hexapartite analysis. We may conclude that a detailed analysis
of the sidebands is much more than just a reproduction of two
equivalent tripartite systems, but rather a rich system of six
strongly entangled modes.

While the parametric amplification in the single pass
regime [27] can provide strong correlations in the 4WM
process, the use of a cavity can provide a great enhancement
of these effects: the twin beam correlation can be as perfect
as the ratio of the coupling to the overall losses of the cavity
approaches unit. In this case, open cavities, as shown in [29],
are a promising source of entangled states.

The linear treatment presented here can give further guid-
ance for the transition between the two operational regimes.
It is expected that the linearization should fail close to the os-
cillation threshold [43]. If that is the case, we may go beyond
the treatment described in Eq. (22) that gives only bilinear
operators, which keep the Gaussianity of the input states.
But with open cavities, thanks to the high gain, this sudden
transition may be smoother and a detailed investigation of the
evolution of the state, with the measurement of higher-order
momenta, could be performed.
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APPENDIX A: TROPO WITH DIFFERENT REFLECTION
COEFFICIENTS

An explicit procedure to evaluate the output of a χ (3)

TROPO, P1out, as a function of P0in, R0, and R1 can begin
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FIG. 16. PT 0 as a function of P0in. Solution 1 and Solution 2 are
the results of PT 0(P0in ) when you carry the calculation with each of
the two roots of P0(0).

by expressing the total photon number, PT 0, as a function
of those parameters. By taking the square of Eq. (13) and
replacing P0(L) = P0(0) − 2�P(3)

1 considering that �P(3)
1 =

P1(0)(1 − R1)/R1 in Eq. (11), we end up with

4T0R0P0in

(
P0(0) − 2

1 − R1

R1
P1(0)

)

=
(

−T0P0in(0) + P0(0) + 2R0(0)
1 − R1

R1
P1(0)

)2

. (A1)

Now, we replace P1(0) = [PT 0 − P0(0)]/2 and rearranging the
result relating to P0(0), PT 0, and P0in we have

4R1T0R0(0)P0in[P0(0) − (1 − R1)PT 0]

= [(R1 − R0)P0(0) + R0PT 0(1 − R1) − R1P0in(1 − R0)]2.

(A2)

The solution of Eq. (A2) for P0(0) leads to two distinct
results. We substitute those results in equation P1(0) = [PT 0 −
P0(0)]/2 and we find two possible solutions for P1(0).

From these two possible results, we can numerically find
two solutions for PT 0 for a given P0in. As an example, Fig. 16
shows those two solutions behave for R0 = 0.95 and R1 =
0.80. Since PT 0 > 0 for P0in > 0, the second solution can be
discarded, and just the first one is used for the evaluation of the
output fields, feeding back the values into Eqs. (8) and (11).

We present the output power of the TROPO considering
different possibilities for R0 (75%, 85%, and 95%) while
keeping R1 = 95% fixed. In Fig. 17(a) we present the model
used in [30] for a χ (2) TROPO, that it is a widely used
description, for comparison with the results of Fig. 17(b),
where we present the χ (3) TROPO output power behavior.
One can notice that the curve deviates from the parabolic
response for χ (2) media but, as in Fig. 4, the qualitative
behavior is similar.

APPENDIX B: INPUT-OUTPUT RELATIONS
IN THE OPEN CAVITY

The explicit derivation of Eq. (31), following the system
described in Fig. 6, follows the description presented in [23].

(a)

(b)

FIG. 17. TROPO R1 �= R0. P1out in function of P0in for differ-
ent reflectivity coefficients R0 = {75%, 85%, 95%} and R1 = 75%.
(a) χ (2) TROPO; (b) χ (3) TROPO.

The coupling mirror has reflection and transmission coeffi-
cients rn = √

Rn and tn = √
1 − Rn for each carrier, and we

assume that one of the mirrors is a reflection coefficient r′
n

and transmission coefficient t ′
n accounting for spurious losses.

The equations relating each field operator inside and outside
the cavity are given by the beam splitter transformations

�AR = R �Ain + T�B′, �B = T �Ain − R�B′, (B1)

�AT = R′ �Aν + T′ �C, �C′ = T′ �Aν − R′ �C, (B2)

with

R = diag(r0 r0 r1 r1 r2 r2 r0 r0 · · · ),

T = diag(t0 t0 t1 t1 t2 t2 t0 t0 · · · ),

R′ = diag(r′
0 r′

0 r′
1 r′

1 r′
2 r′

2 r′
0 r′

0 · · · ),

T′ = diag(t ′
0 t ′

0 t ′
1 t ′

1 t ′
2 t ′

2 t ′
0 t ′

0 · · · ), (B3)

with the vector fields changed from the symmetric-
antisymmetric basis into the basis of the sideband operators
�A = (â(0)

ω0+� â(0)†
ω0+� · · · â(0)

ω0−� â(0)†
ω0−� · · · )T .

The round trip of the fields inside the cavity will account
for both parametric gain G′ [Eq. (29), properly transformed
into the sideband mode basis) and additional phase, leading to
the transformation

�C = e−iϕG′ �B, �B′ = e−iϕG′ �C′. (B4)
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(a)

(b)

FIG. 18. DROPO: nondiagonal elements of Vs as a function of
σ for R1 = 85% and � = 0.5BW . Considering in (a) a χ (2) gain
medium and in (b) a χ (3) gain medium.

The phase vector

ϕ = ϕ(�) ⊕ ϕ(−�), (B5)

with

ϕ(�) = diag
(
ϕ

(0)
� ,−ϕ

(0)
� ϕ

(1)
� ,−ϕ

(1)
� , ϕ

(2)
� − ϕ

(2)
�

)
,

gives a different contribution for each sideband depending of
the frequency shift �:

ϕ
(n)
� = �

2 FSRn
, (B6)

where we consider exact resonance of the carrier mode and
FSRn = c/2L as the free spectral range for the mode n.

Combining beam splitter transformation, phase evolution,
and gain, expressed in Eqs. (B1)–(B4), we obtain the linear
transformation, Eq. (31), with the coupling matrices given by

Rχ = R − T e−iϕG(χ )R′e−iϕG(χ )D(χ )T,

T′
χ = T e−iϕG(χ )[I + R′e−iϕG(χ )D(χ )R e−iϕG(χ )]T′,

(B7)

and

D(χ ) = [1 − R e−iϕG(χ )R′e−iϕG(χ )]−1, (B9)

(a)

(b)

FIG. 19. TROPO: nondiagonal elements of Vs as a function of
σ for R1 = 85% and � = 0.5BW . Considering in (a) a χ (2) gain
medium and in (b) a χ (3) gain medium.

with special care in the basis transformation, from the side-
band description [useful for phase propagation given by
Eq. (B6)] to the symmetric-antisymmetric combination [use-
ful for parametric gain given by Eq. (29)], as done in [23].

APPENDIX C: CORRELATIONS BETWEEN THE
SYMMETRIC AND ANTISYMMETRIC BASIS

The nondiagonal terms of the covariance matrix Eq. (32)
in the symmetric basis are presented in Fig. 18. The terms
in the antisymmetric basis are omitted since they are equal
to the terms in the symmetric basis under a rotation of π/2
in one of the field modes [32]. The twin beams present
correlation between the amplitude quadratures, C ps1 ps2, and
anticorrelation between the phase quadratures, Cqs1qs2, for all
values of σ in both cases, as can be seen in Fig. 18(a) for
a χ (2) gain medium and Fig. 18(b) for a χ (3) gain medium.
Both curves present a peak in the amplitude correlations
(C ps0 ps1 and C ps1 ps2) associated to the peak in the am-
plitude noise observed in Fig. 7. The general behavior is
pretty similar for the TROPO case, as shown in Fig. 19.
The greatest difference among the distinct configurations
is for the χ (3) DROPO, where we can observe a flip on
the pump-signal correlations for amplitude (C ps0 ps1) and
phase quadratures (Cqs0qs1) at σ ≈ 3.6, associated with the
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(a)

(b)

FIG. 20. DROPO: correlations between the symmetric and anti-
symmetric basis as a function of σ for R1 = 85% and � = 0.5BW .
Considering in (a) a χ (2) gain medium and in (b) a χ (3) gain medium.

apparent disentanglement between pump and signal observed
in Fig. 12.

The cross-correlation terms between symmetric and anti-
symmetric field modes are shown in Fig. 20 for the DROPO
and Fig. 21 for the TROPO. The relevant term is C ps0as1 =
−C ps1qa0 in most of the situations. Remembering that the
phases of the antisymmetric basis are rotated [32], it is the

(a)

(b)

FIG. 21. TROPO: correlations between the symmetric and anti-
symmetric basis as a function of σ for R1 = 85% and � = 0.5BW .
Considering in (a) a χ (2) gain medium and in (b) a χ (3) gain medium.

leading term associated to the apparent loss of entanglement
in the tripartite case that is recovered once the full covariance
matrix is taken into account. A curious feature appears only in
the χ (3) case: at σ = 2 (for DROPO) or σ = 4 (for TROPO)
the correlation goes to zero. That leads to a perfect decoupling
of the symmetric and antisymmetric modes, as observed by
the unitary value of the symplectic eigenvalue of the partially
transposed matrix observed in Figs. 14 and 15.
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