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Spontaneous symmetry breaking and formation of self-organized structures in nonlinear systems are intriguing
and important phenomena in nature. Advancing such research to new nonlinear optical regimes is of much
interest for both fundamental physics and practical applications. Here we propose a scheme to realize optical
pattern formation in a cold Rydberg atomic gas via electromagnetically induced transparency. We show that,
by coupling two Rydberg states with a microwave field (microwave dressing), the nonlocal Kerr nonlinearity
of the Rydberg gas can be enhanced significantly and may be tuned actively. Based on such nonlocal Kerr
nonlinearity, we demonstrate that a plane-wave state of a probe laser field can undergo a modulation instability
(MI) and hence spontaneous symmetry breaking, which may result in the emergence of various self-organized
optical patterns. Especially, we find that a hexagonal lattice pattern (which is the only optical pattern when the
microwave dressing is absent) may develop into several types of square lattice ones when the microwave dressing
is applied; moreover, as an outcome of the MI the formation of nonlocal optical solitons is also possible in the
system. The optical patterns and nonlocal optical solitons found here can be flexibly manipulated by adjusting
the effective probe-field intensity, nonlocality degree of the Kerr nonlinearity, and strength of the microwave
field. Our paper opens a route for versatile controls of self-organizations and structural phase transitions of laser
light, which may have potential applications in optical information processing and transmission.

DOI: 10.1103/PhysRevA.102.023519

I. INTRODUCTION

Symmetry breaking and formation of ordered structures
(patterns) in spatially extended dissipative systems driven
away from equilibrium via some instability mechanisms are
very interesting and important phenomena, occurring widely
in physics, chemistry, biology, cosmology, and even eco-
nomics and sociology, etc. [1–7]. Well-known instability
mechanisms for pattern formations include the Rayleigh-
Bénard instability in thermal fluid convection [8,9], the
Taylor-Couette instability in rotating fluids [10], the elec-
trohydrodynamic instability in nematic liquid crystals [11],
and the Faraday instability for parametric waves [12]; other
typical examples are the lasing instability in laser devices
[13–15], the Mullins-Sekerka instability for solidification pat-
tern growth (e.g., snowflakes) [16], and the Turing instability
for structures created in chemical reaction and living systems
(e.g., animal coats) [17]. For details, see Refs. [1–7] and
references cited therein. One of the main characteristics of
these pattern forming systems is that an external drive (stress)
must be applied, and the induced instability triggers symmetry
breaking, causing dissipative structures to appear immediately
in the linear regime.

Besides the linear instability in driven dissipative systems,
much attention was also paid to the research of modulational
instability (MI) in nonlinear systems [18–25]. MI is a typical

nonlinear instability discovered first in the study of water
waves [26], and may apply to nondissipative and nondriven
systems, where a plane wave of finite amplitude may undergo
an instability and lose its energy to sideband components,
resulting in a nonlinear modulation of the plane wave. Usually,
MI is considered in wave dynamics problems for conserva-
tive nonlinear systems, where wave envelopes are controlled
typically by the cubic nonlinear Schrödinger (NLS) equation,
with local and attractive Kerr nonlinearities. For such systems,
the existence of MI is thought to be the major reason for the
formation of solitons (see Refs. [18–35] and references cited
therein).

In recent years, considerable efforts were made on the
study of MI in conservative nonlinear systems described by
cubic NLS equations with nonlocal Kerr nonlinearity. It was
found that MI may occur in such systems even if the Kerr non-
linearity is repulsive, or has both repulsive and attractive parts
[36–44], which provides the possibility to realize spontaneous
symmetry breaking [45] and generate spatially extended, or-
dered structures in nonlocal nonlinear media. Various self-
organized patterns were found [42–44,46–48], especially the
ones of atomic density formed in Rydberg-dressed [40,49–54]
and dipolar [55–60] Bose-Einstein condensates.

On the other hand, in the past two decades a large
amount of research works focused on the investigation of cold
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Rydberg atomic gases [61,62] working under the condition
of electromagnetically induced transparency (EIT). EIT is an
important quantum destruction interference effect occurring
typically in resonant three-level atomic systems, by which
the absorption of a probe laser field can be largely elim-
inated by a control laser field [63]. Due to strong, long-
range atom-atom interaction (also called Rydberg-Rydberg
interaction), such systems are desirable nonlinear optical me-
dia with strong, nonlocal Kerr nonlinearity if the Rydberg-
Rydberg interaction is suitably mapped to photon-photon
interaction via EIT [64,65]. In an interesting work, Sevincli
et al. [66] reported a self-organized hexagonal optical pat-
tern via a MI of a plane-wave probe beam in a cold
Rydberg atomic gas with a repulsive Rydberg-Rydberg
interaction.

In this paper, we propose and analyze a scheme for
realizing various self-organized optical structures and their
structural phase transition in a cold Rydberg atomic gas via
a Rydberg-EIT [67,68]. By exploiting a microwave dress-
ing (i.e., a microwave field couples two electrically ex-
cited Rydberg states) [69–83], we show that the nonlocal
Kerr nonlinearity of the Rydberg gas (which has only a
repulsive Rydberg-Rydberg interaction in the absence of the
microwave field) is significantly modified, and its strength
and sign can be tuned actively. Based on such nonlocal Kerr
nonlinearity, we demonstrate that a homogeneous (plane-
wave) state of a probe laser field can undergo MI and hence
spontaneous symmetry breaking, which may result in the
formation of various ordered optical patterns.

Through detailed analytical and numerical analysis, we
find that a homogeneous state of the probe field is first tran-
sited into a hexagonal lattice pattern (which is the only lattice
pattern when the microwave dressing is absent). Interestingly,
this hexagonal lattice pattern may undergo a structural phase
transition and develop into several types of square lattice
patterns when the microwave field is applied and its strength
is increased. Moreover, as an outcome of the MI the formation
of nonlocal spatial optical solitons is also possible by a
suitable choice of system parameters. The optical patterns
and nonlocal optical solitons found here can be flexibly
manipulated via the adjustment of the effective probe-field
intensity, nonlocality degree of the Kerr nonlinearity, and
strength of the microwave field. Our paper opens a way for
actively controlling the self-organization and structural phase
transition of optical patterns through microwave dressing on
Rydberg gases, which are not only of fundamental interest
but also useful for potential applications in optical information
processing and transmission.

The remainder of the paper is arranged as follows. In
Sec. II, we describe the physical model, discuss the modifi-
cation and enhancement of the Kerr nonlinearity contributed
by the microwave field, and derive the nonlinear envelope
equation of the probe field. In Sec. III, we consider the
MI of a plane-wave state and investigate the formation and
structural phase transitions of optical patterns controlled by
the microwave field, effective probe-field intensity, nonlocal
Kerr nonlinearity, and its nonlocality degree. The result on the
formation of nonlocal spatial optical solitons is also presented.
The last section (Sec. IV) gives a summary of our main
research results.

FIG. 1. Schematics of the model. (a) Ladder-type four-level
atomic configuration for realizing the microwave-dressed Rydberg-
EIT. Here, the weak probe laser field (blue), strong control laser field
(red), and strong microwave field (green) with half Rabi frequencies
�p, �c, and �m drive the transitions |1〉 ↔ |2〉, |2〉 ↔ |3〉, and
|3〉 ↔ |4〉, respectively. States |1〉 and |2〉 are, respectively, ground
and excited states. Both |3〉 and |4〉 are highly excited Rydberg states.
�2, �3, and �4 are, respectively, the one-, two-, and three-photon
detunings. �12, �23, and �24 are the spontaneous emission decay
rates from |2〉 to |1〉, |3〉 to |2〉, and |4〉 to |2〉, respectively. Two
Rydberg atoms locating, respectively, at position r and r′ interact
through van der Waals potential h̄V l

vdw(r′ − r) (l = s, d, e; see text).
(b) Possible experimental geometry, where small solid circles denote
atoms and large dashed circles denote Rydberg blockade spheres.
(c) Emergence of an optical pattern via modulation instability.

II. PHYSICAL MODEL, THE NONLINEAR ENVELOPE
EQUATION, AND ENHANCED KERR NONLINEARITY

A. Physical model

We consider an ensemble of lifetime-broadened four-level
atomic gas with a ladder-type level configuration, shown
schematically in Fig. 1(a). Here, the weak probe laser field
with central angular frequency ωp, wave vector kp, and half
Rabi frequency �p drives the transition from atomic ground
state |1〉 to intermediate state |2〉, and the strong control
laser field with central angular frequency ωc, wave vector
kc, and half Rabi frequency �c drives the transition |2〉 to
the first highly excited Rydberg state |3〉. This ladder-type
three level EIT is dressed by a microwave field with central
angular frequency ωm, wave vector km, and half Rabi fre-
quency �m, which couples the transition between the Rydberg
state |3〉 and another Rydberg state |4〉. The total electric
fields acting in the atomic system can be written as E(r, t ) =∑

j e jE jei(k j ·r−ω j t ) + H.c., with e j and E j , respectively, the
polarization unit vector and the envelope of jth laser field
( j = p, c, m). �2, �3, and �4 are, respectively, the one-,
two-, and three-photon detunings; �12, �23, and �24 are the
spontaneous emission decay rates from |2〉 to |1〉, |3〉 to |2〉,
and |4〉 to |2〉, respectively. The microwave field is employed
here to realize a microwave-dressed Rydberg-EIT [69–83] and
thus to modify the Rydberg-Rydberg interaction, which, in
turn, can manipulate the interaction strength and sign for the
photons in the probe field and hence realize self-organized
optical structures not discovered before.

The dynamics of the system is controlled by the Hamil-
tonian Ĥ = Na

∫
d3rĤ(r, t ), where Ĥ(r, t ) is Hamiltonian

density and Na is atomic density. Under the electric dipole and
rotating-wave approximations, the Hamiltonian density in the
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interaction picture reads

Ĥ ≡ Ĥ1 + ĤvdW, (1)

where Hamiltonian Ĥ1 describes unperturbed atoms as well
as the interaction between the atoms and the laser fields and
ĤvdW describes the Rydberg-Rydberg interaction; the two,
respectively, are given by

Ĥ1 = −h̄
4∑

α=2

�α Ŝαα −, h̄(�pŜ12 + �cŜ23 + �mŜ34 + H.c.),

(2a)

ĤvdW

= h̄Na

∫
d3r′

{ ∑
α=3,4

Ŝαα (r′, t )V s
αα (r′ − r)Ŝαα (r, t )

+Vd
34(r′−r)[Ŝ33(r′, t )Ŝ44(r, t )+Ŝ44(r′, t )Ŝ33(r, t )]

+Ve
34(r′−r)[Ŝ43(r′, t )Ŝ34(r, t )+Ŝ34(r′, t )Ŝ43(r, t )]

}
.

(2b)

Here d3r′ = dx′dy′dz′; Ŝαβ = |β〉〈α| exp{i[(kβ − kα ) ·
r − (ωβ − ωα + �β − �α )t]} is the transition operator
satisfying the commutation relation [Ŝαβ (r, t ), Ŝα′β ′ (r′, t )] =
N−1

a δ(r − r′)[δαβ ′ Ŝα′β (r, t ) − δα′β Ŝαβ ′ (r′, t )]; the one-,
two-, and three-photon detunings are, respectively, given
by �2 = ωp − (ω2 − ω1), �3 = ωc + ωp − (ω3 − ω1),
and �4 = ωc + ωp + ωm − (ω4 − ω1), with Eα = h̄ωα

the eigenenergy of the atomic state |α〉. The half Rabi
frequencies of the probe, control, and microwave fields are,
respectively, �p = (ep · p21)Ep/h̄, �c = (ec · p32)Ec/h̄, and
�m = (em · p43)Em/h̄, with pαβ the electric dipole matrix
element associated with the transition between the states |α〉
and |β〉.

The Hamiltonian density ĤvdW is the contribution by the
Rydberg-Rydberg interaction, which contains four parts, rep-
resented by V s

33, V s
44, Vd

34, and Ve
34, respectively; the term

V s
33 = −Cs

33/|r′ − r|6 (V s
44 = −Cs

44/|r′ − r|6) describes the
van der Waals interaction between the two atoms located,
respectively, at positions r′ and r and excited to the same
Rydberg state |3〉 (|4〉); the term Vd

34 = −Cd
34/|r′ − r|6 (Ve

34 =
−Ce

34/|r′ − r|3) describes the direct nonresonant van der
Waals interaction (resonant exchange dipole-dipole interac-
tion) between the two atoms excited to different Rydberg
states (i.e., |3〉 and |4〉). Here Cl

αβ ({αβ} = {33, 44, 34}; l =
s, d, e) are dispersion parameters [73–75].

The time evolution of the atoms in the system is governed
by the optical Bloch equation

∂ρ

∂t
= − i

h̄
[Ĥ , ρ] − �[ρ], (3)

where ρ(r, t ) = 〈Ŝ(r, t )〉 [84] is a 4×4 density matrix (DM)
[with density-matrix elements ραβ (r, t ) = 〈Ŝαβ (r, t )〉; α, β =
1, 2, 3, 4] describing the atomic population and coherence,
and � is a 4×4 relaxation matrix describing the spontaneous
emission and dephasing. Explicit expressions of ραβ (r, t ) are
presented in Appendix A.

The propagation of the probe field is controlled by the
Maxwell equation, which under paraxial and slowly varying
envelope approximations is reduced to [65]

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp
∇2

⊥�p + κ12ρ21 = 0, (4)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 describes diffraction, κ12 =

Naωp|(ep · p12)|2/(2ε0ch̄) is a parameter describing the cou-
pling between the atoms and the probe field, and c is the
light speed in vacuum. Without loss of generality, we as-
sume the probe field propagates along the z direction, i.e.,
kp = (0, 0, ωp/c); to suppress Doppler effect, the microwave
field is along the z direction but the control field is along
the negative z direction [i.e., km = (0, 0, ωm/c) and kc =
(0, 0,−ωc/c)]. A possible experimental arrangement is given
in Fig. 1(b).

Note that the physical model described above is valid for
any microwave-dressed Rydberg atomic gas. But for latter
calculations where numerical values of the system are needed
we take cold 87Rb atomic gas [73] (which has density-density
interaction in the absence of the microwave field) as a
realistic example. The assigned atomic levels in Fig. 1(a)
are |1〉 = |5S1/2〉, |2〉 = |5P3/2〉, |3〉 = |nS1/2〉, and |4〉 =
|nP3/2〉. For example, for principal quantum number n = 60,
the dispersion parameters are Cs

33 = −2π×140 GHz μm6

(repulsive interaction), Cs
44 = 2π×295 GHzμm6 (attractive

interaction), Cd
34 = −2π×3 GHzμm6 (repulsive interaction),

and Ce
34 = −2π×3.8 GHz μm3 (repulsive interactions)

[73,78,85], respectively. Typical system parameters are
chosen as follows: �2 = 3.17×102 MHz, �3 = 15.3 MHz,
�4 = 1.32 MHz; �12 = 2π×6.1 MHz, �3 = �4 =
2π×1.67×10−2 MHz; �c = 20 MHz; Na = 1.0×1011 cm−3.

We stress that although the Bloch Eq. (3) is for
the evolution of one-body density-matrix elements
ραβ (r, t ) it involves two-body density-matrix elements
ραβ,μν (r′, r, t ) = 〈Ŝαβ (r′, t )Ŝμν (r, t )〉 due to the Rydberg-
Rydberg interaction; furthermore, the equation of motion for
ραβ,μν (r′, r, t ) involves three-body density-matrix elements
ραβ,μν,γ δ (r′′, r′, r, t ) = 〈Ŝαβ (r′′, t )Ŝμν (r′, t )〉Ŝγ δ (r, t )〉, and
so on. Thus an effective approach for solving such a hierarchy
of infinite equations involving many-atom correlations is
needed.

B. Enhanced Kerr nonlinearity by the microwave dressing

We first consider the modification of Kerr nonlinearity
of the system induced by the microwave field based on the
physical model described above. For simplicity, we assume
that the control and microwave fields are strong enough, so
that they are not depleted during the propagation of the probe
field. Since the probe field is weak, a perturbation expansion
can be applied to solve the Maxwell-Bloch (MB) equations (3)
and (4) by taking �p as a small expansion parameter. Gen-
eralizing the approach developed in Refs. [86–89], where
MB equations for Rydberg atomic gases without microwave
dressing are solved beyond mean-field approximation in a
self-consistent and effective way, we can obtain the solutions
of the Bloch Eq. (3) using the perturbation expansion up
to third-order approximation. In particular, the result of the
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one-body density-matrix element ρ21 can be obtained analyti-
cally (see Appendix A for detail).

With the expression of ρ21 and the definition of probe-field
susceptibility, i.e., χ = Na(e · p12)ρ21/(ε0Ep), it is easy to
obtain the optical susceptibility of the probe field, which reads

χ = χ (1) + (
χ

(3)
loc + χ

(3)
nloc

)|Ep|2, (5)

where χ (1) is the linear susceptibility; χ
(3)
loc and χ

(3)
nloc are lo-

cal and nonlocal third-order nonlinear (Kerr) susceptibilities,
originated, respectively, from nonzero two-photon detuning
(i.e., �3 	= 0) [86–91]) and from the Rydberg-Rydberg in-
teraction in the system. Expressions of χ (1), χ

(3)
loc , and χ

(3)
nloc

are given in Appendix B; see Eqs. (B1), (B2), and (B3),
respectively. Using the system’s parameters given at the final
part of the last subsection and taking �m = 18 MHz, we ob-
tain χ

(3)
loc ≈ (5.08 + 0.012i)×10−11 m2/V2, χ

(3)
nloc ≈ (3.05 +

0.022i)×10−8 m2/V2. We see the imaginary parts of χ
(3)
loc and

χ
(3)
nloc are much smaller than their real parts, which is due

to the EIT effect contributed by the control field; moreover,
the nonlocal Kerr nonlinearity is three orders of magnitude
larger than the local one, which is due to the strong Rydberg-
Rydberg interaction together with the microwave dressing.

It is helpful to reveal how the microwave dressing modifies
the Kerr effect of the system. Figure 2(a) shows the real
part Re(χ (3)

loc ) (solid red line) and imaginary part Im(χ (3)
loc )

(dotted blue line) of the local nonlinear susceptibility χ
(3)
loc as

a function of the half Rabi frequency �m of the microwave
field. Figure 2(b) is the same as Fig. 2(a) but for the nonlocal
nonlinear susceptibility χ

(3)
nloc. From the figure we see that the

nonlinear optical susceptibilities have two evident features.
(i) Both the real parts of χ

(3)
loc and χ

(3)
nloc are much larger

than the corresponding imaginary parts, contributed by the
EIT effect.

(ii) In the value range of �m taken here, Re(χ (3)
loc ) is an

increasing function; however, Re(χ (3)
nloc) increases first, then

arrives at a maximum at some value of �m, and decreases
when �m is increased further.

At the point of the maximum, where �m ≈ 18 MHz,
Re(χ (3)

nloc) ≈ 3.05×10−8 m2/V2, which is 15 times larger
than the case without the microwave field [Re(χ (3)

nloc) ≈
0.2×10−8 m2/V2 for �m = 0]. Thus, microwave dressing can
be used to modify the Kerr effect of the system greatly.

To support the above conclusion, a calculation is carried
out for the interaction potential of two Rydberg atoms located,
respectively, at positions r and r′, which may occupy the
Rydberg states |3〉 and |4〉. In the absence of the microwave
field (i.e., �m = 0), the basis set of such a two-atom system
consists of states |33〉 = |3132〉, |44〉 = |4142〉, and |34±〉 =
1/

√
2(|3142〉 ± |3241〉), with the subscripts 1 and 2 represent-

ing atoms 1 and 2, respectively. The (bare state) eigenener-
gies of the system are E33 = −h̄Cs

33/|r′ − r|6, E44 = 2h̄� −
h̄Cs

44/|r′ − r|6, E+
34 = h̄� + h̄Ce

34/|r′ − r|3, and E−
34 = h̄� −

h̄Cd
34/|r′ − r|6, with � = �3 − �4 = 13.98 MHz. Since anti-

symmetric state |34−〉 is nearly not coupled to the laser field,
one can disregard it if the microwave field is present (i.e.,
�m 	= 0). Then, the Hamiltonian in the two-atom basis set

FIG. 2. Kerr nonlinearity enhancement, interaction potential en-
ergy, and normalized nonlinear-response function � of the probe
field in the presence of the microwave dressing. (a) Real part Re(χ (3)

loc )
(solid red line) and imaginary part Im(χ (3)

loc ) (dotted blue line) of
the local nonlinear susceptibility χ

(3)
loc as a function of the half Rabi

frequency �m of the microwave field. (b) The same as (a) but for the
nonlocal nonlinear susceptibility χ

(3)
nloc. (c) Potential-energy curves

E1 (solid blue line), E2 (solid black line), and E3 (solid red line)
of two Rydberg atoms as functions of the interatomic distance r =
|r′ − r| for �m = 10 MHz and � = 13.98 MHz; E33 (dashed blue
line), E44 (dashed black line), and E+

34 (dashed red line) are for the
case without the microwave field. (d) Normalized response function
�/�max as a function of the dimensionless coordinate ξ = x/R0 (R0

is the typical transverse beam radius of the probe field) with �m = 0
(dotted black line), 5 MHz (solid red line), and 15 MHz (solid blue
line), respectively. Inset: The normalized response function �̃/�̃max

in momentum space (i.e., the Fourier transformation of Re/Remax) as
a function of the dimensionless wave number β1 = R0kx (kx is the
dimensional wave number in the x direction) with �m = 0, 5, and
15 MHz, respectively.

{|33〉, |34+〉, |44〉} takes the form

H = h̄

⎛
⎜⎜⎝

− Cs
33

|r′−r|6
√

2�m 0√
2�m � + Ce

34
|r′−r|3

√
2�m

0
√

2�m 2� − Cs
44

|r′−r|6

⎞
⎟⎟⎠. (6)

After diagonalization, we can obtain the energies E1, E2, and
E3 of the Hamiltonian (6). Potential-energy curves of E1, E2,
and E3 as functions of the interatomic separation r = |r′ − r|
for �m = 10 MHz are shown in Fig. 2(c). For comparison, the
bare potential-energy curves E33, E44, and E+

34 (for �m = 0)
are also shown. We see that, compared with the case without
the microwave field, the potential-energy curves are modified
largely by the introduction of the microwave field, especially
for small interatomic separation r. The reason is that the
microwave dressing brings a coupling between the Rydberg
states |3〉 and |4〉, and thereby a modification of the Rydberg-
Rydberg interaction. It is the use of the microwave dressing
that brings the significant change and enhancement of the
nonlocal Kerr nonlinearity.
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C. Nonlinear envelope equation and the property
of the nonlinear-response function

We now derive the envelope equation which controls the
dynamics of the probe field. By substituting the solution of
ρ21 into the Maxwell Eq. (4) and making a local approxima-
tion along the z direction on the nonlocal nonlinear-response
function (see the Appendix B), we obtain the following three-
dimensional (3D) nonlocal nonlinear Schrödinger (NNLS)
equation:

i
∂�p

∂z
+ c

2ωp
∇2

⊥�p + W1|�p|2�p

+
∫

d2r′G(r′
⊥ − r⊥)|�p(r′

⊥, z)|2�p(r⊥, z) = 0, (7)

with r⊥ = (x, y), d2r′ = dx′dy′. The third and fourth
terms on the left-hand side of this equation describe
two types of self-phase modulations of the probe field,
contributed, respectively, by the local Kerr nonlinearity
(originated from nonzero two-photon detuning, i.e., �3 	= 0
[86–91]) and the nonlocal Kerr nonlinearity (originated
from the Rydberg-Rydberg interaction). In the integral of
the fourth term of the NNLS equation, G is a reduced
nonlinear-response function, taking the form G(r′

⊥ − r⊥) =∑
α=3,4 Gs

αα (r′
⊥ − r⊥) + ∑

l=d,e Gl
34(r′

⊥ − r⊥), with
Gl

αβ (r′
⊥ − r⊥) = ∫

dz′Rl
αβ (r′ − r) ({αβ} = {33, 44, 34};

l = s, d, e). Explicit expressions of the matrix elements of
nonlinear-response function Rl

αβ (r′ − r) and local nonlinear
coefficient W1 are given in Appendix B [see Eqs. (B4) and
(B5), respectively]. Due to the microwave dressing, the
nonlocal Kerr nonlinearity consists of four parts; the first
(second) part Gs

33(r′
⊥ − r⊥) [Gs

44(r′
⊥ − r⊥)] is contributed by

the interaction of the atoms lying in the same Rydberg state
|3〉 (|4〉); the third (fourth) part Gd

34(r′
⊥ − r⊥) [Ge

34(r′
⊥ − r⊥)]

is contributed by the interaction of the atoms lying in the
different Rydberg states |3〉 and |4〉.

For the convenience of later discussions and numerical
calculations, we rewrite the 3D NNLS Eq. (7) into the nondi-
mensional form

i
∂u

∂s
+ ∇̃2

⊥u +
∫

d2ζ ′�(ζ ′ − ζ )|u(ζ ′, s)|2u(ζ , s) = 0, (8)

with s = z/(2Ldiff ), u = �p/U0, ∇̃2
⊥ = ∂2/∂ξ 2 + ∂2/∂η2,

ζ = (ξ, η) = (x, y)/R0, and d2ζ ′ = dξ ′dη′. Here Ldiff =
ωpR2

0/c is the typical diffraction length, which is 1.61 mm
in our system; U0 is the typical Rabi frequency of the probe
field; R0 is the typical beam radius of the probe field; the
nondimensional nonlinear-response function is defined by
�(ζ ′ − ζ ) = 2LdiffU 2

0 R2
0G[(ζ ′ − ζ )R0]. Note that in writing

Eq. (8) we have neglected the term related to W1 because the
local Kerr nonlinearity is much smaller than the nonlocal one
[88].

The property of the nonlocal Kerr nonlinearity of the
system is characterized by the nonlinear-response function
�(ζ ). Comparing with the case without the microwave field
(�m = 0), �(ζ ) is largely modified and can be manipulated
by the use of the microwave field (�m 	= 0). To demonstrate
this, the normalized response function �/�max as a function
for ξ = x/R0 is shown in Fig. 2(d), where the dotted black

line, solid red line, and solid blue line are for �m = 0, 5, and
15 MHz, respectively. We see that, due to the role played by
the microwave field, the shape of �/�max is changed signif-
icantly. Especially, for a larger microwave field, the �/�max

curve becomes negative for the small value of ξ (not shown
here), consistent with the result obtained in Ref. [73]. Plotted
in the inset of the figure is the normalized response function in
momentum space �̃/�̃max (i.e., the Fourier transformation of
�/�max) as a function of the nondimensional wave number
β1 = R0kx (kx is the wave number in the x direction) with
�m = 0, 5, and 15 MHz, respectively. One sees that �̃/�̃max

has only one change in sign for �m = 0; however, more
changes in sign arise when �m takes nonzero values. Such
behavior of �̃/�̃max is due to the joint action by the nonlocal
Kerr nonlinearity and the microwave field, through which the
MI of the plane-wave probe field may occur (see the next
section).

Except for the significant dependence on the microwave
field �m, the property of the response function depends also
on another parameter, i.e., the nonlocality degree of the Kerr
nonlinearity, defined by

σ ≡ Rb/R0, (9)

where Rb is the radius of the Rydberg blockade sphere,
given by Rb = |Cs

33/δEIT|1/6 [62,64,65], with δEIT the width of
the EIT transparency window. One has δEIT = |�c|2/γ21 for
�2 = 0, and δEIT = |�c|2/�2 for �2 � γ21. With the system
parameters used here, we have Rb ≈ 8.34 μm. In the next
section, we shall show that the structural phase transitions of
the optical patterns of the system depend strongly not only on
the microwave field �m but also on the nonlocality degree σ

of the Kerr nonlinearity.

III. MODULATIONAL INSTABILITY, EMERGENCE
OF OPTICAL PATTERNS, AND SOLITONS

A. Modulation instability

MI is a nonlinear instability of constant-amplitude continu-
ous waves under long-wavelength perturbations, occurring in
a variety of contexts where Kerr nonlinearity is attractive and
local [19,22]; it can also arise in systems with repulsive but
nonlocal Kerr nonlinearity when the perturbations have both
long [36,38] and short [43,44,66] wavelengths. To explore
the MI in our system, we consider the MI of the plane-wave
solution of the NNLS Eq. (8), i.e.,

upw(ζ , s) = A0 exp

[
−isA2

0

∫
�(ζ )d2ζ

]
, (10)

where A0 is a real number. Since any perturbation can be
expanded as a superposition of many Fourier modes, we make
the MI analysis of the plane wave by taking only a periodic
mode as the perturbation, i.e.,

ũ(ζ , s) = [A0 + a1eiβ·ζ+λs + a∗
2e−iβ·ζ+λ∗s]

× exp

[
−isA2

0

∫
�(ζ )d2ζ

]
, (11)

where a1 and a2 are small complex amplitudes of the per-
turbation, β = (β1, β2) (β1 ≡ R0kx, β2 ≡ R0ky; kx and ky are
wave numbers in x and y directions, respectively) is the
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FIG. 3. Modulation instability and its manipulation for the plane-wave probe field in the Rydberg atomic gas with the microwave dressing.
(a) −λ2 (λ is the growth rate) as a function of β = √

β2
1 + β2

2 [β j ≡ R0k j ; k j is the wave number along the jth direction ( j = x, y); R0 is
the typical transverse beam radius of the probe field], for the microwave field �m = 0 (dotted black line), 5 MHz (dashed red line), and
15 MHz(solid blue line), respectively; shadow regions are ones where MI occurs. (b) Real part of the growth rate Re(λ) as a function of β

and the effective probe-field intensity Ieff = αA2
0 [with A0 the amplitude of the plane wave and α = − ∫ �(ζ )d2ζ ], for the microwave field

�m = 10 MHz. The colorful region is the one for Re(λ) > 0, where MI occurs. (c) Re(λ) as a function of β and �m for Ieff = 20; the colorful
region is the one where MI occurs.

nondimensional or two-dimensional wave vector, and λ is the
growth rate of the perturbation, to be determined yet.

Substituting the perturbation solution (11) into Eq. (8) and
keeping only linear terms of a1 and a2, it is easy to obtain the
expression of the growth rate:

λ2 = −β2
[
β2 − 2A2

0 �̃(β )
]
, (12)

where β =
√

β2
1 + β2

2 and �̃(β ) is the response function in

momentum space [i.e., the Fourier transformation of �(ζ )].
The property of the growth rate λ depends on the plane-

wave intensity A2
0, the shape of the response function �̃ where

the microwave field �m plays an important role. Shown in
Fig. 3(a) is the curve of −λ2 as a function of the nondimen-
sional wave number β for the microwave field �m = 0 (dotted
black line), 5 MHz (dashed red line), and 15 MHz (solid blue
line), respectively. The shadow regions in the figure are ones
for Re(λ) > 0. That is to say, MI occurs in these shadow
regions and hence the plane-wave state of the probe field is
unstable. The MI will lead to a symmetry breaking of the
system and hence a phase transition to new states. As a result,
new optical self-organized structures (or pattern formation)
appear in the system (see next section). We note that, different
from the cases reported in Refs. [36,38] but similar to those
considered in Refs. [43,44,66], the MI in the present system
arises for the perturbation of short wavelengths.

To obtain a further understanding of the MI, Fig. 3(b)
shows the real part of the growth rate, Re(λ), as a function
of β and the effective probe-field intensity

Ieff = αA2
0 (13)

for �m = 10 MHz, where α = − ∫ �(ζ )d2ζ is a parameter
characterizing the role of the nonlocal Kerr nonlinearity. The
colorful region in the figure is the one where Re(λ) > 0 and
hence MI occurs. Figure 3(c) shows Re(λ) as a function of
β and �m for Ieff = 20, with the colorful region denoting the
one where the MI happens. From these results we see that the
MI depends not only on the effective probe-field intensity Ieff

but also on the microwave field �m, which provides ways to

manipulate the MI and thereby the emergence of the optical
patterns in the system.

B. Pattern formation controlled by the Kerr nonlinearity
and the microwave field

We now turn to consider the outcome of the MI in the
system. Note that in the absence of the microwave field
the system is reduced to a three-level one (i.e., conven-
tional Rydberg-EIT) and the atom-atom interaction Hamilto-
nian Ĥvdw owns only the term h̄Na

∫
d3r′Ŝ33(r′, t )V s

33(r′ −
r)Ŝ33(r, t ); however, in the presence of the microwave field,
the state |4〉 may have a significant population and hence it
plays an important role for the dynamics of the probe field. In
this case Ĥvdw owns four terms, which may be comparable
through the tuning of the system parameters. As a result,
the nonlinear-response function G in the envelope Eq. (7)
contains four terms, i.e., G = Gs

33 + Gs
44 + Gd

34 + Ge
34; the

nonlocal Kerr nonlinearities contributed by Gs
33, Gd

34, and Ge
34

are repulsive, but the one contributed by Gs
44 is attractive.

Therefore, depending on system parameters and based on
the competition among these four terms in G, the total Kerr
nonlinearity of the system may be a type of self-defocusing
or self-focusing, which means that the system may support
very rich nonlinear structures after the occurrence of the
MI, including the emergence of various optical patterns and
solitons. Generally, when the repulsive part (contributed by
Gs

33, Gd
34, and Ge

34) plays a dominant role over the attractive
part (contributed by Gs

44), the MI results in the formation
of optical patterns; in contrast, when the attractive part is
dominant over the repulsive part, the MI gives rise to the
formation of bright solitons.

As a first step, we focus on the case of pattern formation,
for which the whole Kerr nonlinearity must be a type of
self-defocusing. This can be realized by choosing suitable
system parameters to make the repulsive part in G (i.e., Gs

33,
Gd

34, and Ge
34) larger than the attractive part (i.e., Gs

44). In fact,
the system parameters given in the final part of Sec. II A fulfill
such a requirement. Except for these parameters, the other
three parameters, i.e., Ieff (the effective probe-field intensity),
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FIG. 4. Pattern formation and phase diagram controlled by the
effective intensity of the probe field Ieff = αA2

0 and the microwave
field �m, for the nonlocality degree σ ≡ Rb/R0 = 1. Here, A0 is
the amplitude of the plane-wave state; α = − ∫ �(ζ )d2ζ ; Rb and
R0 are the Rydberg blockade radius and the transverse radius of the
probe beam, respectively. (a) Phase diagram of the structural transi-
tion of optical patterns, where different regions (phases) are obtained
by changing the values of Ieff and �m. Region 1, the homogeneous
(i.e., the plane-wave) state; region 2, the hexagonal lattice; region 3,
the type-I square lattice; region 4, the type-II square lattice. (b) The
hexagonal lattice of the normalized probe-field amplitude |u| as a
function of ξ = x/R0 and η = y/R0 for �m = 10 MHz and Ieff = 15,
corresponding to the region 2 in panel (a). (c) The type-I square
lattice of |u| as a function of ξ and η for �m = 13 MHz and Ieff = 25,
corresponding to the region 3 in panel (a). (d) The type-II square
lattice of |u| as a function of ξ and η for �m = 15 MHz and Ieff = 35,
corresponding to the region 4 in panel (a).

σ (the nonlocality degree of the Kerr nonlinearity), and �m

(the microwave field), play significant roles for determining
the types of optical patterns in the system. Based on such
consideration and for obtaining the optical patterns, we seek
the ground-state solution of the system by a numerical simula-
tion solving Eq. (8) via an imaginary evolution and split-step
Fourier methods [92], for which the total energy of the system

E =
∫

|∇̃⊥u(ζ , s)|2d2ζ

+ 1

2

∫∫
�(ζ ′ − ζ )|u(ζ , s)|2|u(ζ ′, s)|2d2ζ ′d2ζ (14)

is minimum. The initial condition used in the simulation is the
plane wave (10), perturbed by a random noise.

Shown in Fig. 4(a) is the phase diagram describing the
phase transition of self-organized optical structures, which are
controlled by the effective intensity of the probe field Ieff =
αA2

0 and the microwave field �m. The dashed lines in the
figure are boundaries of different phases. When obtaining the
phase diagram, the nonlocality degree of the Kerr nonlinearity,

TABLE I. Differences between the type-I and type-II square
lattice patterns. Values of the normalized probe-field amplitude |u|,
microwave field �m, effective probe-field intensity Ieff , and lattice
constant l for the two types of square lattice patterns.

Type |u|max �m Ieff l

Type I [Fig. 4(c)] 28.5 13 25 1.74
Type II [Fig. 4(d)] 54.4 15 35 1.66
Type I [Fig. 5(c)] 37.9 12 35 2.82
Type II [Fig. 5(d)] 69.5 18 35 2.35

i.e., σ = Rb/R0, is fixed to be 1. From the figure, we see that
several structural transitions of optical patterns emerge when
Ieff and �m are changed in the following ways: (i) from the
homogeneous state 1 to the hexagonal lattice 2; (ii) from the
hexagonal lattice 2 to the type-I square lattice 3; and (iii) from
the type-I square lattice 3 to the type-II square lattice 4. Here
1, 2, 3, and 4 represent regions of the homogeneous state,
hexagonal lattice, type-I square lattice, and type-II square
lattice, respectively.

To be more concrete, we give several examples for il-
lustrating the optical lattice patterns that correspond to the
self-organized structures indicated in the different regions of
Fig. 4(a). Figure 4(b) shows a hexagonal lattice pattern, where
the amplitude |u| of the probe field is normalized as a function
of ξ = x/R0 and η = y/R0; it is obtained by taking �m =
10 MHz and Ieff = 15, located in the region 2 of Fig. 4(a).
Such a hexagonal lattice pattern was found by Sevincli et al.
[66] where no microwave dressing is used (i.e., �m = 0); in
this case the hexagonal lattice pattern is the only one that
can be obtained via the MI of the homogeneous (plane-wave)
state.

Plotted in Fig. 4(c) is the optical pattern by taking |u|
as a function of ξ and η, for �m = 13 MHz and Ieff = 25
[which locates in the region 3 of Fig. 4(a)]. We see that in this
case a new optical structure, called the type-I square lattice,
emerges. Obviously, such a new optical structure, which does
not exist if the microwave dressing is absent, arises due to
the symmetry breaking induced by the introduction of the
microwave field.

Figure 4(d) gives the result for the optical pattern with
increasing microwave field and the effective intensity of the
probe field, by taking �m = 15 MHz and Ieff = 35 [which is
in the region 4 of Fig. 4(a)]. One sees that in this situation
another type of optical structure, called the type-II square
lattice, appears. By comparing the type-I square lattice pattern
of Fig. 4(c), we see that there is an angle difference (around
45◦) between the type-I and type-II square lattices; further-
more, there are also differences for the normalized probe-field
amplitudes and the lattice constants between these two types
of square lattice patterns (for details, see Table I below).

C. Pattern formation controlled by the nonlocality degree
of the Kerr nonlinearity and the microwave field

To explore the structural phase transition of the optical
patterns further, we now fix the effective probe-field intensity
(Ieff = 35) but take the nonlocality degree of the Kerr nonlin-
earity σ and the microwave field �m as control parameters.
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FIG. 5. Pattern formation and phase diagram controlled by the
nonlocality degree of the Kerr nonlinearity σ = Rb/R0 and the
microwave field �m, for the effective probe-field intensity Ieff = 35.
(a) Phase diagram of the structural transition of optical patterns,
where different regions (phases) are obtained by changing the values
of σ and �m. Region 4, the pattern with hexagonal lattice structure;
region 3, the pattern with type-I square lattice structure; region 2, the
pattern with type-II square lattice structure; region 1, the homoge-
neous (i.e., the plane-wave) state. (b) The hexagonal structure of the
normalized probe-field amplitude |u| as a function of ξ = x/R0 and
η = y/R0 for �m = 10 MHz and σ = 2, corresponding to the region
4 in panel (a). (c) The type-I square structure of |u| as a function of
ξ and η for �m = 12 MHz and σ = 1, corresponding to the region 3
in panel (a). (d) The type-II square structure of |u| as a function of ξ

and η for �m = 18 MHz and σ = 1, corresponding to the region 4 in
panel (a).

Similar to the last subsection, we seek the spatial distribu-
tion of the probe field for which the total energy (14) of
the system is minimum, through a numerical simulation of
Eq. (8).

Shown in Fig. 5(a) is the phase diagram of the structural
transition of optical patterns, where different regions (phases)
are obtained by changing the values of σ and �m, separated
by dashed lines (i.e., boundaries of different phases). We see
that several structural transitions (i.e., from the homogeneous
state 1 to the hexagonal lattice 4, from the hexagonal lattice 4
to the type-I square lattice 3, and from the type-I square lattice
3 to the type-II square lattice 2 ) of the optical patterns arise
when σ and �m are varied.

We also give several examples for illustrating the optical
patterns corresponding to the self-organized structures indi-
cated in the different regions of Fig. 5(a). Figure 5(b) shows
a hexagonal lattice pattern, obtained by taking the normalized
amplitude of the probe field |u| as a function of ξ = x/R0 and
η = y/R0, for �m = 10 MHz and σ = 2 [located in the region
4 of Fig. 5(a)].

Shown in Fig. 5(c) is the optical pattern for �m = 12 MHz
and σ = 1 [located in the region 3 of Fig. 5(a)]; one sees that
in this case the lattice pattern is a type-I square lattice, which
is absent without microwave field. Illustrated in Fig. 5(d) is
the optical pattern with �m = 18 MHz and σ = 1, which is in
the region 2 of Fig. 5(a); in this case the type-II square lattice
structure appears.

To see clearly the differences between the two types of
square lattice patterns, a quantitative comparison is made for
the normalized probe-field amplitude |u|, microwave field �m,
effective probe-field intensity Ieff , and lattice constant l (i.e.,
the distance between the maxima of two adjacent optical
spots) between the type-I and type-II square lattice patterns
obtained in Figs. 4 and 5 by taking the nonlocality degree
of the Kerr nonlinearity σ = 1, with the result presented in
Table I. We see that (i) the lattice constant l of the type-I
square lattice pattern is larger than that of the type-II one
and (ii) comparing Fig. 5(c) with Fig. 5(d) [Fig. 4(c) with
Fig. 4(d)], the lattice constant l is larger for smaller microwave
field �m. The physical reason for such differences is that the
nonlocal nonlinear-response function �/�max has a signifi-
cant dependence on the microwave field. When the microwave
field �m is increased, the shape of �/�max is largely modified
[i.e., it becomes narrower and steeper; see Fig. 2(d)], which
makes the system change into a new state and thereby a new
type of square lattice pattern emerges.

Combining Figs. 4 and 5, which are the key results of
this paper, we see that, in the parameter domains considered
here, the system supports three types of self-organized optical
structures (i.e., the hexagonal lattice and the type-I and type-II
square lattices), and their phase transitions can be controlled
by actively manipulating the microwave field (�m), the effec-
tive probe-field intensity (Ieff ), and the nonlocality degree of
the Kerr nonlinearity (σ ). The basic physical mechanism of
the MI and the formation of the optical patterns found here
may be understand as follows. When the plane-wave probe
field with a finite amplitude is applied to and propagates in the
Rydberg atomic gas along the z direction, the nonlocal Kerr
nonlinearity coming from the Rydberg-Rydberg interaction
brings a phase modulation to the probe field; due to the role
played by the diffraction in the transverse (i.e., x and y)
directions, the phase modulation is converted into amplitude
modulation. Because of the joint effect of the phase and
amplitude modulations, in some parameter domains the probe
field undergoes MI and reorganizes its spatial distribution and
hence the formation of optical patterns occurs.

The emergence of the different self-organized structures
(i.e., the hexagonal and square lattice optical patterns) and
related phase changes are originated from the spatial symme-
try breaking of the system. To understand this and illustrate
furthermore the differences between various optical lattice
patterns, a detailed theoretical analysis on the ground-state
energy of the system for different spatial distributions of the
probe-field intensity is given in Appendix C.

D. Formation of nonlocal spatial optical solitons

Spatial optical solitons, i.e., localized nonlinear optical
structures resulting from the balance between nonlinearity and
diffraction, can form through the MI of plane waves [33,93].
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However, a necessary condition for the formation of an optical
soliton is that the Kerr nonlinearity in the system should be of
the type of self-focusing. As indicated in Sec. III B, due to
the microwave dressing in our system there exist four kinds of
nonlocal Kerr nonlinearities, which are described by the four
response functions (i.e., Gs

33, Gs
44, Gd

34, and Ge
34), and one of

them (i.e., Gs
44) is attractive. Therefore, it is possible to make

the total Kerr nonlinearity of the system a self-focused one if
suitable system parameters are chosen.

In fact, a self-focused total Kerr nonlinearity can indeed
be obtained by choosing the following system parameters:
�2 = 6.28×102 MHz, �3 = 6.92 MHz, �4 = 1×104 Hz,
�12 = 2π×6 MHz, �3 = �4 = 2π×1.67×10−2 MHz, �c =
90 MHz, and Na = 1.0×1011 cm−3. In this situation, the
attractive interaction contributed by Gs

44 plays a dominant
role, and hence the plane-wave state (10) will undergo a MI
and can be squeezed into a soliton by the Kerr nonlinearity.

To confirm the MI, a numerical simulation based on an
imaginary-time propagation method is carried out by solving
the NNLS equation (8) with the above parameters. Shown
in Fig. 6(b) is the spatial distribution of the probe-field
envelope when it propagates a diffraction length of 5 (i.e.,
s ≡ z/2Ldiff = 5), by taking |u| (the normalized probe-field
amplitude) as a function of nondimensional coordinates ξ =
x/R0 and η = y/R0, for the microwave field �m = 10 MHz
and the nonlocality degree of the Kerr nonlinearity σ = 1. The
initial condition used in the simulation is |u| = 1.3 sech[(ξ 2 +
η2)1/2] [Fig. 6(a)]. We see that a nonlocal spatial optical
soliton can indeed form in the system and it is quite stable
during propagation. Note that solitons can be also generated
by using random initial conditions. Figure 6(d) shows the
spatial distribution of a soliton when it is created and prop-
agates a diffraction length of 5, for which the initial condition
used is of the form |u| = 1 + 0.05 f , where f is Gaussian
noise [Fig. 6(c)].

The nonlocal spatial optical solitons found here can be
actively manipulated by actively tuning �m and σ . Shown in
the panels (e), (f), and (g) of Fig. 6 are two-soliton, three-
soliton, and four-soliton solutions when they propagate to a
diffraction length of 5 (i.e., s = 5), obtained for (�m, σ ) =
(10, 1.2), (15,1.4), and (18,1.8), respectively. Other multisoli-
ton solutions of the system may also be obtained.

IV. SUMMARY

In this paper, we have proposed a scheme for the real-
ization of optical pattern formation and spatial solitons via
a Rydberg-EIT. Through the use of a microwave dressing,
we have shown that the nonlocal Kerr nonlinearity of the
system can be manipulated actively and its magnitude can be
enhanced significantly. Based on such nonlocal and tunable
Kerr nonlinearity, we have demonstrated that a plane-wave
probe field can undergo MI and spontaneous symmetry break-
ing, and thereby various self-organized optical patterns may
emerge in the system. In particular, we have found that a
hexagonal lattice pattern, which appears after the MI when
the repulsive part of the nonlocal nonlinear-response function
is larger than its attractive part, may develop into several
types of square lattice patterns when the microwave field is
applied and tuned actively. Furthermore, through the MI the

FIG. 6. Formation and propagation of nonlocal spatial optical
solitons in the presence of the microwave dressing. (a) Initial
condition |u| = 1.3 sech[(ξ 2 + η2)1/2] at s = 0 (s = z/2Ldiff ; Ldiff is
diffraction length). (b) Spatial distribution of the soliton when prop-
agating to the position s = 5, by taking the normalized probe-field
amplitude |u| as a function of nondimensional coordinates ξ = x/R0

and η = y/R0 (R0 is the typical transverse beam radius of the probe
field) for the microwave field �m = 10 MHz and the nonlocality
degree σ = 1. (c) Random initial condition |u| = 1 + 0.05 f ( f is
a Gaussian noise) and (d) the soliton (generated by the random
initial condition) when propagating to s = 5. (e), (f), and (g) are
two-, three-, and four-soliton solutions when propagating to s = 5
for (�m, σ ) = (10, 1.2), (15,1.4), and (18,1.8), respectively.

formation of nonlocal spatial optical solitons has also been
found when the attractive part of the nonlocal nonlinear-
response function is dominant over its repulsive part. The
optical patterns and nonlocal optical solitons discovered here
can be flexibly adjusted and controlled through the change
of the effective probe-field intensity, nonlocality degree of
the Kerr nonlinearity, and strength of the microwave field.
Our paper opens a way for a versatile control of the self-
organizations and structural phase transitions of laser light
based on microwave-dressed Rydberg gases, which may have
potential applications in optical information processing and
transmission.
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APPENDIX A: BLOCH EQUATIONS AND SOLUTIONS FOR DENSITY-MATRIX ELEMENTS

1. Explicit expressions of the Bloch equation for one-body density-matrix elements

The optical Bloch equation (3) for the one-body DM elements ραβ (r′, t ) = 〈Ŝαβ (r′, t )〉 [84] reads

i
∂

∂t
ρ11 − i�12ρ22 − �pρ12 + �∗

pρ21 = 0, (A1a)

i

(
∂

∂t
+ �12

)
ρ22 − i�23ρ33 − i�24ρ44 + �pρ12 − �cρ23 − �∗

pρ21 + �∗
cρ32 = 0, (A1b)

i

(
∂

∂t
+ �23

)
ρ33 + �cρ23 − �mρ34 + �∗

mρ43 − �∗
cρ32 + Na

∫
d3r′Ve

34(r′ − r)[ρ43,34(r′, r, t ) − ρ34,43(r′, r, t )] = 0, (A1c)

i

(
∂

∂t
+ �24

)
ρ44 + �mρ34 − �∗

mρ43 − Na

∫
d3r′Ve

34(r′ − r)[ρ43,34(r′, r, t ) − ρ34,43(r′, r, t )] = 0, (A1d)

for diagonal matrix elements, and(
i
∂

∂t
+ d21

)
ρ21 + �p(ρ11 − ρ22) + �∗

cρ31 = 0, (A2a)

(
i
∂

∂t
+ d31

)
ρ31 + �cρ21 + �∗

mρ41 − �pρ32 − Na

∫
d3r′V s

33(r′ − r)ρ33,31(r′, r, t )

−Na

∫
d3r′Vd

34(r′ − r)ρ44,31(r′, r, t ) − Na

∫
d3r′Ve

34(r′ − r)ρ34,41(r′, r, t ) = 0, (A2b)

(
i
∂

∂t
+ d32

)
ρ32 + �c(ρ22 − ρ33) − �∗

pρ31 + �∗
mρ42 − Na

∫
d3r′V s

33(r′ − r)ρ33,32(r′, r, t )

−Na

∫
d3r′Vd

34(r′ − r)ρ44,32(r′, r, t ) − Na

∫
d3r′Ve

34(r′ − r)ρ34,42(r′, r, t ) = 0, (A2c)

(
i
∂

∂t
+ d41

)
ρ41 + �mρ31 − �pρ42 − Na

∫
d3r′V s

44(r′ − r)ρ44,41(r′, r, t )

−Na

∫
d3r′Vd

34(r′ − r)ρ33,41(r′, r, t ) − Na

∫
d3r′Ve

34(r′ − r)ρ43,31(r′, r, t ) = 0, (A2d)

(
i
∂

∂t
+ d42

)
ρ42 + �mρ32 − �cρ43 − �∗

pρ41 − Na

∫
d3r′V s

44(r′ − r)ρ44,42(r′, r, t )

−Na

∫
d3r′Vd

34(r′ − r)ρ33,42(r′, r, t ) − Na

∫
d3r′Ve

34(r′ − r)ρ43,32(r′, r, t ) = 0, (A2e)

(
i
∂

∂t
+ d43

)
ρ43 + �m(ρ33 − ρ44) − �∗

cρ42 − Na

∫
d3r′[V s

44(r′ − r)ρ44,43(r′, r, t ) − V s
33(r′ − r)ρ33,43(r, t )

]

−Na

∫
d3r′Vd

34(r′ − r)[ρ33,43(r′, r, t ) − ρ44,43(r′, r, t )]

−Na

∫
d3r′Ve

34(r′ − r)[ρ43,33(r′, r, t ) − ρ43,44(r′, r, t )] = 0, (A2f)

for nondiagonal matrix elements, where d3r′ ≡ dx′dy′dz′, �3 = �13 + �23, and dαβ = �α − �β + iγαβ (α, β = 1, 2, 3, 4; α 	= β ),
with �2 = ωp − (ω2 − ω1), �3 = ωc + ωp − (ω3 − ω1), and �4 = ωc + ωp + ωm − (ω4 − ω1) the one-, two-, and three-
photon detunings, respectively. Here γαβ = (�α + �β )/2 + γ

dep
αβ with �α = ∑

α<β �αβ , �αβ denoting the spontaneous emission

decay rate from the state |β〉 to the state |α〉 and γ
dep
αβ representing the dephasing rate reflecting the loss of phase coherence

between |α〉 and |β〉.
From the left-hand side of the above equations, we see that, different from conventional EIT, there are many terms coming

from the Rydberg-Rydberg interaction. One class of them involves the van der Waals interaction between the two atoms located,
respectively, at positions r′ and r and excited to the same Rydberg state [i.e., V s

33(r′ − r) and V s
44(r′ − r)]; the other class
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involves the direct nonresonant van der Waals interaction and the resonant exchange dipole-dipole interaction between the two
atoms excited to different Rydberg states [i.e., Vd

34(r′ − r) and Ve
34(r′ − r)].

Notice that, although the above equations describe the time evolution of the one-body DM elements ραβ (r, t ), they involve
two-body DM elements ραβ,μν (r′, r, t ) = 〈Ŝαβ (r′, t )Ŝμν (r, t )〉 due to the Rydberg-Rydberg interaction. Similarly, equations of
motion for the two-body DM elements (not shown here to save space) involve three-body DM elements, etc. To solve such
many-body problems, a suitable truncation for the infinite equation chain concerning many-body correlations is necessary, and a
self-consistent calculation beyond mean-field approximation is needed, which have been developed recently [86–89]. Based on
such an approach, we can solve the MB Eqs. (3) and (4) by using an asymptotic expansion in a standard way.

Notice also that in these equations there exist two types of nonlinearities. One of them (characterized by terms like �∗
pρ31)

arises from the photon-atom interaction due to the coupling between the probe field and atoms, which results in local Kerr
nonlinearity if the two-photon detuning �3 is not zero [86–91]; another one arises from the Rydberg-Rydberg interaction
(characterized by terms involving the two-body interaction potentials V s

33, V s
44, Vd

34, and Ve
34), which results in nonlocal Kerr

nonlinearity. It is the nonlocal Rydberg-Rydberg interaction that makes the Rydberg-EIT interesting and typical on the study of
nonlocal nonlinear optics.

2. Solutions for density-matrix elements

We are interested in stationary states of the system, and hence the time derivatives in the MB equations (3) and (4) can be
neglected (i.e., ∂/∂t = 0), which is valid if the probe, control, and microwave fields have large time durations. We adopt the
method developed in Refs. [86–89] to first solve the Bloch equation (3) under the condition of Rydberg-EIT. We assume that all
the atoms are initially prepared in the ground state |1〉.

Since the probe field is assumed to be weak, one can take �p (∼ ε) as an expansion parameter, and ραα = δα,1ρ
(0)
αα + ερ (1)

αα +
ε2ρ (2)

αα + · · · , ραβ = ερ
(1)
αβ + ε2ρ

(2)
αβ + · · · , (β = 1, 2, 3; α = 1, 2, 3, 4; β < α). Substituting these expansions into Eq. (3) and

collecting coefficients of the same power of ε, we can solve equations for ρ
(m)
αβ (m = 1, 2, 3, . . .) order by order.

a. First-order solution

The first-order equation reads

⎛
⎜⎝

d21 �∗
c 0

�c d31 �∗
m

0 �m d41

⎞
⎟⎠

⎛
⎜⎝

ρ
(1)
21

ρ
(1)
31

ρ
(1)
41

⎞
⎟⎠ =

⎛
⎜⎝

−�p

0

0

⎞
⎟⎠. (A3)

Its solution is given by ρ
(1)
21 = −(Dm/D)�p ≡ a(1)

21 �p, ρ
(1)
31 = −(d41�c/D)�p ≡ a(1)

31 �p, and ρ
(1)
41 = (�m�c/D)�p ≡ a(1)

41 �p

with D = d21Dm + d41|�c|2, and

Dm = |�m|2 − d31d41. (A4)

b. Second-order solution

At this order, the solution of nonzero DM elements is given by ρ (2)
αα = a(2)

αα |�p|2 (α = 1, 2, 3, 4), and ρ
(2)
αβ = a(2)

αβ |�p|2 (α =
4, 3; β = 3, 2), where the coefficients a(2)

αα and a(2)
αβ can be obtained by solving the equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i�23 0 �∗
m −�m 0 0 −�∗

c �c

0 0 i�24 −�∗
m �m 0 0 0 0

0 −�c 0 0 0 �∗
m 0 d32 0

0 0 0 −�c 0 d42 0 �m 0

0 �m −�m d43 0 −�∗
c 0 0 0

0 −�c 0 0 0 0 �m 0 d∗
32

0 0 0 0 −�∗
c 0 d∗

42 0 �∗
m

0 �∗
m −�∗

m 0 d∗
43 0 −�c 0 0

1 1 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(2)
11

ρ
(2)
33

ρ
(2)
44

ρ
(2)
43

ρ
(2)
34

ρ
(2)
42

ρ
(2)
24

ρ
(2)
32

ρ
(2)
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

�∗
pρ

(1)
31 − �cρ

(2)
22

�∗
pρ

(1)
41

0

�pρ
∗(1)
31 − �∗

cρ
(2)
22

�pρ
∗(1)
41

0

ρ
(2)
22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

with ρ
(2)
22 = [�∗(1)

p ρ
(1)
21 − �(1)

p ρ
∗(1)
21 ]/(i�12) ≡ a(2)

22 |�p|2.
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c. Third-order solution

The third-order solution for ρ
(3)
21 reads

ρ
(3)
21 = A

D
|�p|2�p − �c�mNa

D

∫
d3r′[V s

44ρ
(3)
44,41(r′, r, t ) + Vd

34ρ
(3)
33,41(r′, r, t ) + Ve

34ρ
(3)
43,31(r′, r, t )

]

+ �cd41Na

D

∫
d3r′[V s

33ρ
(3)
33,31(r′, r, t ) + Vd

34ρ
(3)
44,31(r′, r, t ) + Ve

34ρ
(3)
34,41(r′, r, t )

]
, (A6)

with

A = Dm(a(2)
22 − a(2)

11 ) + d41�ca(2)
32 − �c�ma(2)

42 . (A7)

Results for ρ
(3)
31 and ρ

(3)
41 have similar forms, but are omitted here to save space.

Notice that for obtaining the solutions of ρ
(3)
21 , ρ

(3)
31 , and ρ

(3)
41 equations for some two-body DM elements ραβ,μν must be

solved simultaneously. These two-body DM elements are nonzero starting at ε2 order, so they can be assumed to have the form
ραβ,μν = ε2ρ

(2)
αβ,μν + ε3ρ

(3)
αβ,μν + · · · . Then we have the equation

⎛
⎜⎜⎜⎜⎜⎝

M1 �c �∗
m 0 0

�∗
c M2 0 �∗

m 0

�m 0 M3 �c �∗
m

0 �m �∗
c M4 0

0 0 �m 0 M5

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(2)
31,31

ρ
(2)
31,21

ρ
(2)
41,31

ρ
(2)
41,21

ρ
(2)
41,41

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−�pρ
(1)
31

0

−�pρ
(1)
41

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A8)

where M1 = d31 − V s
33/2, M2 = d21 + d31, M3 = d41 + d31 − Vd

34 − Ve
34, M4 = d41 + d21, and M5 = d41 − V s

44/2. The solution
reads ρ

(2)
α1,β1 = a(2)

α1,β1|�p|2 (α, β = 2, 3, 4), where a(2)
α1,β1 are constants (their explicit expressions are omitted here).

With these results, the third-order equations of the two-body DM elements (which are too lengthy and are thus omitted here)
can be solved, which have the solution of the form ρ

(3)
αβ,μν = a(3)

αβ,μν |�p(r′, t )|2�p(r, t ), where a(3)
αβ,μν are functions of r′ − r.

Notice that, when solving the equations of the two-body DM elements, some three-body DM elements are involved. To make
the equations closed, the method developed in Refs. [86–89] has been exploited to factorize the three-body DM elements into
one- and two-body ones.

Solutions of the equations of density-matrix elements above the third-order approximation can also be obtained in a similar
way. However, we can stop here since in this paper we are interested only in the Kerr effect up to third order. Thereby, based on
the first-, second-, and third-order solutions given above, we may obtain the explicit expression of ρ21 = ρ

(1)
21 + ρ

(2)
21 + ρ

(3)
21 (by

setting ε = 1).

APPENDIX B: EXPRESSION OF THE THIRD-ORDER
NONLINEAR OPTICAL SUSCEPTIBILITY AND THE
DERIVATION OF THE NONLOCAL NLS EQUATION

The optical susceptibility of the probe field is defined by
χ = Na(e · p12)ρ21/(ε0Ep). Based on the result in the Ap-
pendix A, we have χ = χ (1) + [χ (3)

loc + χ
(3)
nloc]|Ep|2 [94], with

the linear and local third-order nonlinear susceptibilities given
by

χ (1) = Na|p12|2Dm

ε0h̄D
, (B1)

χ
(3)
loc = Na|p12|4A

ε0 h̄3D
, (B2)

respectively, where Dm and A are given by (A4) and (A7). Due
to the Rydberg-Rydberg interaction, the system also supports
the nonlocal third-order nonlinear susceptibility

χ
(3)
nloc

= N 2
a |p12|4
ε0 h̄3

�c

D

∫
d3r′{d41

[
a(3)

33,31V s
33+a(3)

44,31Vd
34+a(3)

34,41Ve
34

]

− �m
[
a(3)

44,41V s
44 + a(3)

33,41Vd
34 + a(3)

43,31Ve
34

]}
, (B3)

where V l
αβ ≡ V l

αβ (r′) (l = s, d, e) and a(3)
αβ,μν ≡ a(3)

αβ,μν (r′, t ).

Substituting the result of ρ21 obtained in Appendix A into
the Maxwell equation (4), we obtain the envelope equation for
�p, which has the form of the NNLS equation

i
∂�p

∂z
+ c

2ωp
∇2

⊥�p + W1|�p|2�p

+
∫

d3r′R(r′ − r)|�p(r′)|2�p(r) = 0, (B4)

where W1 = Aκ12/D and R(r) = ∑
α=3,4 Rs

αα (r) +∑
γ=d,e Rγ

34(r) with

Rs
33(r) = κ12�cd41Naa(3)

33,31(r)V s
33(r)/D,

Rs
44(r) = −κ12�c�mNaa(3)

44,41(r)V s
44(r)/D,

Rd
34(r) = κ12�cNa

[
�ma(3)

33,41(r) − d41a(3)
44,31(r)

]
Vd

34(r)/D,

Re
34(r) = −κ12�cNa

[
�ma(3)

43,31(r) − d41a(3)
34,41(r)

]
Ve

34(r)/D,

(B5)
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which are contributed by V s
33, V s

44, Vd
34, and Ve

34, respectively.
The coefficient W1 characterizes the local self-phase modu-
lation and the nonlinear-response function R(r) characterizes
nonlocal self-phase modulation of the probe field.

For simplicity, we assume that the probe field is slowly
varied along the z direction, so that a local approximation in
this direction can be made for the nonlinear-response function.
Then Eq. (B4) is reduced to

i
∂�p

∂z
+ c

2ωp
∇2

⊥�p + W1|�p|2�p

+
∫

d2r′G(r′
⊥ − r⊥)|�p(r′

⊥, z)|2�p(r⊥, z) = 0, (B6)

where r⊥ = (x, y), d2r′ = dx′dy′, and the reduced nonlo-
cal nonlinear-response function reads G(r⊥) = Gs

33(r⊥) +
Gs

44(r⊥) + Gd
34(r⊥) + Ge

34(r⊥), with Gl
αβ (r⊥) = ∫

Rl
αβ (r)dz

({αβ} = {33, 44, 34}; l = s, d, e).
Equation (B6) can be written into the dimensionless form

i
∂u

∂s
+ ∇̃2

⊥u + w1|u|2u

+
∫

d2ζ ′�(ζ ′ − ζ )|u(ζ ′, s)|2u(ζ , s) = 0, (B7)

where u = �p/U0 (U0 is the typical half Rabi fre-
quency of the probe field), s = z/(2Ldiff ) (Ldiff = ωpR2

0/c is
the typical diffraction length), w1 = 2U 2

0 Ldiff R2
0W1, �(ζ ′ −

ζ ) = 2LdiffU 2
0 R2

0G[(ζ ′ − ζ )R0], ∇̃2
⊥ = ∂2/∂ξ 2 + ∂2/∂η2, ζ =

(ξ, η) = (x, y)/R0 (R0 is the typical transverse radius of the
probe beam), and d2ζ ′ = dξ ′dη′.

APPENDIX C: GROUND-STATE ENERGY ANALYSIS ON
THE HEXAGONAL AND SQUARE LATTICE PATTERNS

Here we make a detailed analysis to illustrate the reason
why the system supports only the hexagonal, type-I, and type-
II square lattices due to the breaking of continuous transla-
tional and rotational symmetries, found in the parameter range
we used. To this end, we assume that the solution of the NNLS
Eq. (8) is a superposition of many Fourier modes, i.e.,

u(ζ ) =
N∑

j=1

Aj eiβ j ·ζ , (C1)

where β j = (β1 j, β2 j ) are nondimensional wave numbers, and
Aj ( j = 1, 2, . . . , N) are complex amplitudes (order param-
eters) which are functions of s, ξ , and η when the Kerr
nonlinearity of the system plays a significant role.

Because the system has a rotation symmetry, generally N
can take a very large value. However, due to the joint action
of the Kerr nonlinearity and diffraction, the system undergoes
MI for some wave numbers and hence symmetry breaking, by
which only several modes are kept at the end. To see this, we
assume all the modes in (C1) are unstable ones, and satisfy
|β j | ≈ βcr where βcr is the first wave number of the unstable
band of the MI [e.g., in the shadow regions of Fig. 3(a)].

Any complicated periodic pattern is made of the most pe-
riodic basic pattern, i.e., an array of parallel stripes (or called
rolls). For example, a square lattice pattern is made of two

FIG. 7. Schematic diagram of the nondimensional wave vectors
β j for different optical self-organized structures. (a) Parallel stripes.
(b) Square lattice, for which β1 · β2 = 0. (c) Hexagonal lattice, for
which β1 + β2 + β3 = 0. All the wave vectors have the same module
(i.e., |β j | ≈ βcr; βcr is the first wave number of the unstable band of
the MI).

kinds of parallel stripes with equal amplitudes but different
orientations (the angle difference between the directions of
the two kinds of parallel stripes is 90◦); a hexagonal pattern is
made of three kinds of parallel stripes with equal amplitudes
but different orientations (the angle difference between any
two kinds of parallel stripes is 120◦).

Shown in panels (a), (b), and (c) of Fig. 7 are nondi-
mensional wave vectors for the parallel stripes, square lattice
(for which β1 · β2 = 0), and hexagonal lattice (for which
β1 + β2 + β3 = 0). Note that here all the wave vectors have
the same module (i.e., |β j | ≈ βcr; βcr is the first wave number
of the unstable band of the MI).

In order to determine which lattice pattern arises first under
given system parameters, we consider the total energy of the
system:

E =
∫

|∇̃⊥u(ζ , s)|2d2ζ

+1

2

∫∫
�(ζ ′ − ζ )|u(ζ , s)|2|u(ζ ′, s)|2d2ζ ′d2ζ . (C2)

Note that the response function � has an imaginary part,
which, however, is very small due to the EIT effect and hence
is negligible in the calculation below.

For the hexagonal lattice pattern, we assume the solution
of the NNLS equation (8) has the form

u = √
ρeiφeiμs, (C3)

ρ = ρ0

⎡
⎣1 +

3∑
j=1

(Dj eiβ j ·ζ + c.c.)

⎤
⎦, (C4)

where ρ0 = A2
0; μ = − ∫ �(ζ )d2ζ ; Dj ( j = 1, 2, 3) are com-

plex constants called modulation amplitudes; the wave vectors
β j fulfill the condition β1 + β2 + β3 = 0 with |β1| = |β2| =
|β3| = βcr. Note that for obtaining the solution with minimal
energy the phase φ must be homogeneous (i.e., a real constant)
[95,96].

Inserting (C3) and (C4) into Eq. (C2) and expanding Dj

in Taylor series, we obtain the energy of the system for the
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FIG. 8. Ground-state energy for cases of hexagonal and square
lattices. (a) Ground-state energy E as a function of modulation
amplitude D, with parameters βcr = 4.3, Ieff = 15, �m = 10 MHz,
and σ = 1. The solid red line (EHex) is for the hexagonal pattern;
the dotted blue line (ESqu) is for the square pattern. (b) The same as
(a) but for βcr = 4.3, Ieff = 25, �m = 15 MHz, and σ = 1.

hexagonal lattice:

EHex =ρ0β
2
crV

⎡
⎣1

2

3∑
j=1

(|Dj |2+|Dj |4)− 3

4
(D1D2D3+D∗

1D∗
2D∗

3 )

+ 2(|D1|2|D2|2 + |D1|2|D3|2 + |D2|2|D3|2)

⎤
⎦

+ 1

2
ρ2

0V �̃(βcr )
3∑

j=1

|Dj |2 + high-order term, (C5)

where �̃(βcr ) is the value of the response function � in
momentum space for β = βcr, and V = ∫

d2ζ is the volume
of the system. The ground-state energy can be acquired by
solving the equations ∂EHex/∂Dj = 0 ( j = 1, 2, 3). Then, we
obtain its expression

EHex =ρ0V β2
cr

[
3
2 (D2 − D3) + 15

2 D4
] + 3

2V ρ2
0 �̃(βcr )D

2

(C6)

for D1 = D2 = D3 = D. The ground-state energy for the
square lattice pattern can be obtained in a similar way, which
reads

ESqu = V ρ0β
2
cr (D

2 + 3D4) + V ρ2
0 �̃(βcr )D

2. (C7)

Shown in Fig. 8(a) is the ground-state energy E as a func-
tion of modulation amplitude D, with parameters βcr = 4.3,

Ieff = 15, �m = 10 MHz, and σ = 1. The solid red line in the
figure is for the ground-state energy EHex of the hexagonal
lattice; the dotted blue line is the ground-state energy ESqu

for the square lattice. We see that the minimal energy
of the system occurs at D = 0.32 (where Emin = EHex,min =
−0.78×103), which means that the hexagonal lattice pattern is
preferred to emerge in the system. The case shown in Fig. 8(b)
is similar to Fig. 8(a), but the parameters are taken as βcr =
4.3, Ieff = 25, and �m = 15 MHz. We see that in this case the
minimal energy of the system occurs for D = ±0.28 (where
Emin = ESqu,min = −0.81×103), which means that the system
favors the emergence of the square lattice pattern. These
results are consistent with the ones found in Figs. 4 and 5.
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〈G|Ô|G〉, with |G〉 = |1, 1, 1, . . . , 1〉.

[85] The dispersion parameter in the P state is anisotropic and hence
has a dependence on the angle θ between the quantization
axis z and the two-atom separation vector r′ − r. Here we
set θ = π/2, which has no significant influence on the result
obtained in our paper since the potential-energy curve has only
a small dependence on θ (see Petrosyan and Molmer [73] for
the detailed analysis about the angle dependence of dispersion
parameters).

[86] Z. Bai and G. Huang, Enhanced third-order and fifth-order Kerr
nonlinearities in a cold atomic system via Rydberg-Rydberg
interaction, Opt. Express 24, 4442 (2016).

[87] Q. Zhang, Z. Bai, and G. Huang, Fast-responding property of
electromagnetically induced transparency in Rydberg atoms,
Phys. Rev. A 97, 043821 (2018).

[88] Z. Bai, W. Li, and G. Huang, Stable single light bullets and
vortices and their active control in cold Rydberg gases, Optica
6, 309 (2019).

[89] Z. Bai, Q. Zhang, and G. Huang, Quantum reflections of nonlo-
cal optical solitons in a cold Rydberg atomic gas, Phys. Rev. A
101, 053845 (2020).

[90] H. Wang, D. Goorskey, and M. Xiao, Enhanced Kerr Nonlin-
earity via Atomic Coherence in a Three-Level Atomic System,
Phys. Rev. Lett. 87, 073601 (2001).

[91] Y. Chen, Z. Bai, and G. Huang, Ultraslow optical solitons and
their storage and retrieval in an ultracold ladder-type atomic
system, Phys. Rev. A 89, 023835 (2014).

[92] J. Yang, Nonlinear Waves in Integrable and Non-Integrable
Systems (SIAM, Philadelphia, 2010).

[93] Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial
solitons: Historical overview and recent advances, Rep. Prog.
Phys. 75, 086401 (2012).

[94] In the calculation of the Kerr coefficients given here, we have
assumed that the spatial variation of the probe-field envelope Ep

is slow and thus Ep can be approximately taken to be a constant.
[95] Y. Pomeau and S. Rica, Dynamics of a Model of a Supersolid,

Phys. Rev. Lett. 72, 2426 (1994).
[96] C. Josserand, Y. Pomeau, and S. Rica, Patterns and supersolids,

Eur. Phys. J. Special Topics 146, 47 (2007).

023519-16

https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1088/0953-4075/49/15/152003
https://doi.org/10.1103/PhysRevLett.107.153001
https://doi.org/10.1103/PhysRevLett.98.113003
https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1088/0953-4075/44/18/184020
https://doi.org/10.1038/nphys2423
https://doi.org/10.1103/PhysRevLett.111.173001
https://doi.org/10.1103/PhysRevLett.110.103001
https://doi.org/10.1103/PhysRevLett.113.123003
https://doi.org/10.1088/1367-2630/17/7/072003
https://doi.org/10.1103/PhysRevLett.112.243601
https://doi.org/10.1088/1367-2630/16/12/123036
https://doi.org/10.1103/PhysRevA.89.043827
https://doi.org/10.1103/PhysRevA.90.062319
https://doi.org/10.1103/PhysRevA.91.043802
https://doi.org/10.1038/nature20823
https://doi.org/10.1364/OL.43.001822
https://doi.org/10.1103/PhysRevA.99.023832
https://doi.org/10.1038/s41567-020-0918-5
https://doi.org/10.1364/OE.24.004442
https://doi.org/10.1103/PhysRevA.97.043821
https://doi.org/10.1364/OPTICA.6.000309
https://doi.org/10.1103/PhysRevA.101.053845
https://doi.org/10.1103/PhysRevLett.87.073601
https://doi.org/10.1103/PhysRevA.89.023835
https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1103/PhysRevLett.72.2426
https://doi.org/10.1140/epjst/e2007-00168-9

