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Nonlinear states and dynamics in a synthetic frequency dimension
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Recent advances in the study of synthetic dimensions revealed a possibility to employ the frequency space as
an additional degree of freedom which allows for investigating and exploiting higher-dimensional phenomena
in a priori low-dimensional systems. However, the influence of nonlinear effects on the synthetic frequency
dimensions was studied only under significant restrictions. In the present paper, we develop a generalized mean-
field model for the optical field envelope inside a single driven-dissipative resonator with quadratic and cubic
nonlinearities, whose frequencies are coupled via an electro-optical resonant temporal modulation. The leading-
order equation takes the form of a driven Gross-Pitaevskii equation with a cosine potential. We numerically
investigate the nonlinear dynamics in such a microring resonator with a synthetic frequency dimension in the
regime where parametric frequency conversion occurs. We observe that the modulation brings additional control
to the system, enabling one to readily create and manipulate bright and dark dissipative solitons inside the cavity.
In the case of anomalous dispersion, we find that the presence of electro-optical mode coupling confines and
stabilizes the chaotic modulation instability region. This leads to the appearance of an unconventional type of
stable coherent structure which emerges in the synthetic space with restored translational symmetry, in a region
of parameters where conventionally only chaotic modulation instability states exist. This structure appears in
the center of the synthetic band and, therefore, is referred to as the band soliton. Finally, we extend our results
to the case of multiple modulation frequencies with controllable relative phases creating synthetic lattices with
nontrivial geometry. We show that an asymmetric synthetic band leads to the coexistence of chaotic and coherent
states of the electromagnetic field inside the cavity, i.e., dynamics that can be interpreted as chimeralike states.
Recently developed χ (2) microresonators can open the way to experimentally exploring our findings.
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I. INTRODUCTION

The idea of unification of physical theories by using
higher-dimensional models beyond the usual space-time
paradigm has arisen in the early years of development of
quantum mechanics [1] and became an important precursor
for modern unification theories [2]. However, investigation
of effects presented in higher dimensions faces apparent
challenges related to the number of dimensions provided by
conventional physical systems. Boada et al. [3] have proposed
to address these challenges by extending the well-established
quantum simulator platform based on cold atoms with an addi-
tional synthetic dimension. The essence of the proposed idea
was to encode an additional dimension into another degree
of freedom (atomic spin state in this case) in the way that
an effective Hamiltonian is analogous to a higher-dimensional
one.
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Since then, the concept of synthetic dimensions has been
extended and used in various branches of physics [4]. It
acquired special significance in photonics, where it provides
a platform for exploring otherwise hardly accessible physical
phenomena [5] and employment of synthetic dimensions al-
lows for the dimensional extension employing only internal
degrees of freedom of a system. This approach has been
successfully applied to simulating particle random walk [6],
effects of Bloch oscillations [7], unidirectional invisibility and
unconventional reflection in parity-time symmetric systems
[8], Anderson localization [9,10], etc. Recently, synthetic
dimensions have been used in the studies of topological
photonics [11–13]. Observation of a large variety of topolog-
ical effects employing the synthetic frequency dimension has
been proposed theoretically [14,15] or realized experimentally
[16–19].

Synthetic dimensions in photonics can be realized using
different physical mechanisms [20]. For example, coupled
oscillating waveguides [16], pair of coupled unequal loops
[21], and phase modulation inside a ring cavity [22] allows for
encoding a synthetic dimension into spatial discrete models,
arrival time of pulses, and resonator modes, respectively. We
will refer to the latter case as synthetic frequency dimen-
sions. It can be created by inserting an electro-optical (EO)
modulator into the ring resonator circumference [22–24].
Modulating an intracavity field at a frequency equal to an
integer number of free spectral ranges (FSRs) [Fig. 1(a)],

2469-9926/2020/102(2)/023518(11) 023518-1 Published by the American Physical Society

https://orcid.org/0000-0002-8939-7336
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023518&domain=pdf&date_stamp=2020-08-13
https://doi.org/10.1103/PhysRevA.102.023518
https://creativecommons.org/licenses/by/4.0/


TUSNIN, TIKAN, AND KIPPENBERG PHYSICAL REVIEW A 102, 023518 (2020)

FIG. 1. Dynamically modulated optical cavity with χ (2) and χ (3) susceptibilities. (a) Optical cavity with an integrated EO (electro-optical)
modulator. The modulation frequency is integer number of FSRs (free spectral ranges): � = sD1, where s ∈ N. Due to the modulation, modes
with frequencies ωμ and ωμ+s become coupled with coupling strength Js creating a synthetic lattice. A(ϕ, t ) represents a slowly varying
envelope of the interactivity field in the rotating frame ϕ = φ − D1t , where φ is the polar angle. (b) Schematics of the lattice with the nearest-
neighbor coupling (s = 1). (c) Corresponding cavity field response with J1 = 10κ/2, which represents the band structure. (d),(e) The same as
(b),(c) but in the case of dual-tone modulation with relative phase θ = π/2 and J2 = 0.45J1. (f) Displacement of the cavity resonance (in blue)
from their exact equidistant positions (black dotted lines) due to the presence of dispersion. (g) Conventional nonlinear dynamics in a Kerr
optical microresonator with anomalous group-velocity dispersion.

one can establish an effective photon flux between different
optical modes supported by the resonator. In the case of the
nearest-neighbor coupling (single FSR modulation) this sys-
tem becomes similar to a one-dimensional chain of identical
atoms [see Fig. 1(b)]. However, in contrast to solid state
physics [25], the modulated cavity modes play the role of a
direct space, whereas time acts as a reciprocal one. Hence,
exciting a cavity with an external laser which operates at
a frequency ωp close to the resonant ω0 and measuring the
intracavity field response as a function of detuning ω0 − ωp,
one can readily obtain a cosinelike band structure of the
chain [26] [see Fig. 1(c)]. Furthermore, applying dual-tone
modulation creates an effective two-dimensional frequency
crystal [Fig. 1(d)] with controllable coupling strength (ap-
plied voltage) and phase flux (relative modulation phase) as
introduced in the pioneering work by Dutt et al. [26]. Due
to nonzero phase flux, the corresponding band structure has a
nonreciprocal profile [Fig. 1(e)].

Strikingly, the role of nonlinearity in photonic synthetic
frequency dimension is hardly explored; however, it is of par-
ticular importance for simulating locally interacting Hamil-
tonians [27–29] in complex many-body systems which are
actively investigated in the context of photonic quantum sim-
ulator development [4]. Yuan et al. have proposed a scheme
that employs Kerr nonlinearity to achieve the local interaction
between the simulated particles [28]. They have simulated
a synthetic state governing by an effective Bose-Hubbard
Hamiltonian and successfully explored the photon blockade
effect. Even though this approach requires fulfillment of very

restrictive conditions (such as zero dispersion and conserved
total number of photons, which restrains this study to low-
power regime), it is nonetheless very powerful since experi-
mental platforms for realizing synthetic frequency dimensions
often include materials with nonzero χ (3) optical susceptibil-
ity.

Remarkably, balance between cubic nonlinearity and dis-
persion [see Fig. 1(f)] allows generating different types of
solitary waves, including solitons [30,31]. In optical micro-
cavities, an additional balance between parametric gain and
cavity losses leads to the formation of dissipative Kerr solitons
(DKS) [Fig. 1(g)]. Today, it is a very active field of research
with wide raging applications [32–34]. Theoretically, dissi-
pative solitons have been predicted in χ (2) resonators as well
[35,36]. Recent experimental observations with such photonic
platforms as lithium niobate [37–39], aluminum nitride [40],
and gallium phosphide [41] along with theoretical activi-
ties [42–45] in χ (2) (and χ (2)-χ (3)) microresonators create a
promising basis for the future development of this field and
open opportunities for investigation of nonlinear topological
photonics [17,46].

The present paper investigates the nonlinear dynamics in
a dispersive cavity with χ (2) and χ (3) optical susceptibilities
where voltage-induced phase modulation creates a synthetic
frequency dimension. Starting from the coupled-mode formal-
ism, we derive a mean-field Gross-Pitaevskii equation with
a cosine potential which describes nonlinear dynamics of a
resonantly modulated intracavity field in microresonators and
fiber loop cavities [47]. We found that the modulation leads
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to predictable dissipative Kerr solitons (DKSs) [34,48] emer-
gence and possibility of generation soliton crystals on demand
[49–51]. We found that the modulation instability (MI) be-
comes bounded by the curved bistability region. Surprisingly,
with increasing of the coupling rate, stable coherent struc-
tures emerge in the MI region, which we call band soliton.
These states appear to be dispersionless, which makes them
of particular interest in the context of synthetic frequency
dimensions. Introducing a second tone to the intracavity phase
modulation, we effectively create a nontrivial geometry which
enables a nonreciprocal photon transfer [26]. This leads to the
coexistence of stable coherent and chaotic regions which we
interpret as chimeralike states [52]. Our results highlight the
rich physics that can be accessed in synthetic dimensions with
cubic nonlinearity.

II. THEORY

We consider an optical ring coupled to a bus waveguide
with external coupling rate κex [Fig. 1(a)]. The cavity excited
by a monochromatic laser with photon flux sin = √

P/h̄ωp

(P is the input power) and frequency ωp, which is close to
resonance frequency ω0. We suppose the modes being not
equally spaced due to the dispersion, so the mode frequency
(ωμ) depends on the mode number (μ) as ωμ = ω0 + D1μ +
μ2D2/2, where D1/2π equals FSR and D2 characterizes
the group-velocity dispersion (GVD) [Fig. 1(f)]. A synthetic
frequency dimension is created by an EO modulator at one
part of the ring with modulation frequency � = sD1 with s ∈
N [20]. Considering on-resonance coupling, only the modes
with frequencies ωμ and ωμ±s = ωμ ± sD1 + D2

2 (s2 ± 2μs)
interact. The dispersion shifts the resonance positions, leading
to altering of nearest-neighbors coupling efficiency. The linear
equation of motion for the slowly varying mode amplitude bμ

can be written as

∂bμ

∂t
= iJs

2

(
bμ−se

i D2s
2 (2μ−s)t−iθ + bμ+se

−i D2s
2 (2μ+s)t+iθ

)
, (1)

where Js is the coupling rate with an arbitrary global phase θ

corresponding to modulation J cos (sD1t + θ ). By employing
the Fourier transform of the field, one can deduce that this
term may be rewritten as cosine potential for the electric
field, so the governing equation for the electric-field enve-
lope in χ (3) resonator under EO modulation takes the form
of the driven-damped Gross-Pitaevskii equation (GPE) (see
Appendix A for the derivation). In dimensionless form, it can
be written as

∂�

∂τ
= −(1 + iζ0)� + id2

∂2�

∂ϕ2
+ i|�|2�

+ iJ cos (sϕ + θ )� + f , (2)

where normalized variables τ = t/τph, τph = 2/κ is the pho-
ton lifetime, d2 = D2/κ , ζ0 = 2δω/κ , δω = ω0 − ωp, J =
2Js/κ , f =

√
8κexg0/κ3sin, � = √

2g0/κA, κ = κex + κ0, κ0

is the intrinsic loss rate, g0 is the single-photon Kerr frequency
shift, A describes the optical field envelope, and normalized
such that

∫ 2π

0 |A|2dϕ/2π is the number of photons inside
the cavity. In the case of J = 0 this equation corresponds to
conventional LLE [33].

Let us begin with the analysis of stable solutions in the
dispersionless limit (d2 = 0). Introducing I = |�|2, one can
readily derive the cubic equation

{1 + [I + J cos(sϕ) − ξ0]2}I = f 2. (3)

The roots of this equation can be analyzed through its discrim-
inant � (see Appendix B). Depending on the sign of �, there
are three scenarios for solutions of Eq. (3): if � < 0 there
is one real root and two complex conjugated roots, if � = 0
roots are real and at least two of them are equal, and if � > 0
roots are real distinct numbers. Thus a negative (positive)
discriminant corresponds to monostable (bistable) solutions,
and in order to determine the bistability zone one needs to
find f 2 and ζ0 such that the discriminant equals zero. Since
Eq. (3) explicitly depends on ϕ, the discriminant becomes ϕ

dependent; therefore, different spatial parts of the cavity are
found at different parts of the stability diagram at the same
value of laser detuning [see Fig. 2(a)].

We note that a similar effect can be achieved imposing
external resonant modulation on the pump laser [52,53]. Ex-
ternal modulation has been employed for DKSs locking and
manipulations creating an effective potential that traps DKSs
[54]; it also helps to trigger platicon generation [55]. However,
the ϕ dependence lies in the right-hand side of Eq. (3).
Therefore, it is expected that the internal phase modulation
will provide an additional degree of freedom for controlling
emergent coherent structures as well.

The threshold value f 2 which corresponds to the triple real
root of Eq. (3) can be obtained analytically, and it equals
f 2
min = 8

√
3/9, which coincides with the critical value for the

resonance tilt for LLE [56]. Remarkably, this result does not
depend on ϕ, despite the ϕ dependence of Eq. (3).

III. NUMERICAL SIMULATIONS

A. Dynamics of dissipative solitons and platicons

For further analysis we consider the case s = 1. In Fig. 2(a)
we show the values of the discriminant � as a function of
ϕ and ζ0 for pump rate f 2 = 6 and coupling J = 3. As one
can see, the presence of the potential leads to bending of the
bistable zone in a way that for a given detuning the system can
be simultaneously on the monostable and bistable branches.
With increasing of coupling strength J , the bistability zone
bends further and goes deeper into the effectively red-detuned
region (ζ0 > 0) [see Fig. 2(a)].

We continue the further analysis by performing numerical
simulation of GPE (2), taking d2 = ±0.01, and scanning the
cavity from the blue- (ζ0 < 0) to the red-detuned side. We
employ numerical integration utilizing the split-step Fourier
method [30]. The positive (negative) value of d2 corresponds
to anomalous (normal) dispersion regimes. We analyze these
cases separately.

a. Anomalous dispersion. We observe that the presence of
the potential in GPE (2) breaks the translational symmetry
along the ϕ coordinate and leads to confinement of the MI
region [52]. We observe that chaotic patterns do not penetrate
into bistable zones, and DKSs appear at the center of the
cavity [Fig. 2(b)]. The latter might be qualitatively understood
through the analysis of the steady-state dispersionless linear
solution, which can be considered as a background for the
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FIG. 2. Bistable branches and DKS (dissipative Kerr soliton)–platicon-existence range. (a) Value of the discriminant � [Eq. (B1)] for
coupling rate J = 3 and pump f 2 = 6 as a function of ζ0 and ϕ; (b),(c) intracavity field in the case of anomalous and normal GVD (group-
velocity dispersion), respectively. Black solid lines represent value � = 0 and indicate the bistable zone. MI (modulation instability) does
not penetrate the bistable region [below lower black line on (b)]. Soliton existence range is almost covered by the bistable region at ϕ = 0.
(d) Bistability range at ϕ = 0 for coupling values J = 0 (solid), J = 3 (dashed), and J = 6 (dot-dashed). With increase of coupling J , the
bistable zone shifts into the effectively red-detuned region (ζ0 > 0) preserving its width. (e) Amplitude (solid blue) and phase (dashed red)
profiles of DKS for detuning ζ1 = 6.3 [dashed lines on (b),(c)]. (f) The same in the case of normal dispersion.

dissipative nonlinear structures in the cavity. The intracavity
field can be expressed as

� = f

1 + i[ζ0 − J cos(ϕ)]
. (4)

Depending on normalized detuning, the field intensity has
one (ζ0 > J , ϕ0 = 0) or two (ζ0 < J , ϕ± = ± arccos ξ0/J)
maxima. When the modulated background has only one peak,
a single DKS can be formed on it. Numerical simulations
show that the DKS appears on the peak of the modulated
background in the bistable region [Fig. 2(b)] [57]. The width
of this region as a function of f 2 and J can be calculated
analytically (see Appendix B for the details), and we present
it on Fig. 2(d) for coupling rates J = 0, 3, 6. Surprisingly,
this zone simply shifts into the effectively red-detuned region
linearly with J , and the critical detuning for f 2

min is

ζmin =
√

3 + J. (5)

In order to calculate the soliton existence range, we employ
the Lagrangian perturbative approach [58,59]. First of all, we
introduce the change of variable � = 1/

√
2d2ϕ to Eq. (2).

Thus the equation for the Lagrangian density can be written

as follows:

L = i

2

(
�∗ ∂�

∂τ
− �

∂�∗

∂τ

)
− 1

2

∣∣∣∂�

∂�

∣∣∣2

+ 1

2
|�|4 + [J cos(α�) − ζ0]|�|2, (6)

where α = 2d2. The dissipative function is introduced in the
form

R = −i� + i f . (7)

The Lagrangian L = ∫
L d� obeys

∂L

∂qi
− d

dτ

∂L

∂ q̇i
=

∫ (
R∂�∗

∂qi
+ R∗ ∂�

∂qi

)
d�. (8)

Using the ansatz of a stationary soliton � = B sech(B�)eiξ0

and considering q1 = B and q2 = ξ0, we get (see Appendix C
for more details)

dB

dτ
= −2B + π f cos ξ0, (9)

dξ0

dτ
= 1

2
B2 − ζ0 + Jδ2 cosh δ

sinh δ

1

sinh δ
, (10)
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where we define δ = απ/2B. Considering α � 1 and using
Tailor expansion we obtain the stable solution

B2 = 2(ζ0 − J ), (11)

cos ξ0 = 2B

π f
. (12)

From the latter we obtain the analytical expression of the
maximum detuning for stable soliton in the presence of
nearest-neighbor coupling

ζmax = π2 f 2/8 + J. (13)

This result generalizes the known expression for the soliton
existence range to the single-tone EO modulated cavity. Sim-
ilar to the bistable zone, the maximum detuning ζmax simply
shifts by J .

Increasing the modulation frequency [i.e., increasing s
in Eq. (2)] leads to period multiplication of the modulated
background and allows for creating soliton crystals [49,51]
with s equally spaced DKSs. Alternatively, applying several
modulation signals and having control of the modulation
phase, one can control positions and the number of DKS in
the cavity, which enables soliton tweezing [57] and, as shown
later, leads to nontrivial hybrid dynamics.

b. Normal dispersion. In the context of the conventional
LLE with normal GVD (d2 < 0), the dark solitons (also called
platicons) are hard to excite by simple laser tuning (soft
excitation) for relatively small detunings and pump rates [56].
In order to create them, one needs to use additional methods,
such as pumped modulation [55], or pumping in the avoided
mode crossings [60,61]. In this context, EO modulation pro-
vides with an effective flux of photons from the pumped
resonance to sidebands, making platicons accessible without
additional perturbations. In Fig. 2(c) one can see platicon
generation in the resonantly modulated cavity. In contrast to
the DKS, the platicons appear only when one part of the cavity
passes the whole bistable region; however, Fig. 2(d) can still
indicate the approximate platicon existence range.

B. Confined MI region

Let us restrict our consideration for the case of anomalous
GVD (d2 > 0). In the conventional LLE formalism, in order
to generate DKS via the soft excitation, one needs to scan
the resonance through the MI region. In this region, coherent
structures randomly appear and collide with each other, and
may give birth to rogue waves [62]. However, due to the mod-
ulated background, the nonlinear structures appear and inter-
act at different parts of the resonator differently. In order to
investigate the role of coupling J , we explore spatiotemporal
diagrams at a fixed pump rate, detuning and coupling rate, and
its nonlinear dispersion relation (NDR), which is essentially
the Fourier transform of the spatiotemporal diagram along two
axes: time (t) and space (ϕ). This two-dimensional Fourier
transform gives information about effective NDR and reveals
insights about linear dispersive and nonlinear waves in the
system [63]. For instance, a single DKS will be presented as
a line in this diagram with a slope, which indicates its group
velocity; a breather is similar to DKS, but its profile consists of
equally spaced lines, which indicate its breathing oscillation
in time; the linear waves, which obey the linear dispersion

law, lie along the parabola. One may see all these features in
Figs. 3(a)–3(f). First of all, we chose simulation parameters
as in Fig. 2(b), but with fixed detuning ζ0 = 1.3. On the
spatiotemporal diagram Fig. 3(a) one can see how nonlinear
structures periodically arise and oscillate in the vicinity of
background maxima ϕ±, propagate towards the maximum of
the background phase at ϕ ≈ 0 [red dashed line in Fig. 4(b)],
and annihilate. There are several distinct structures on the
corresponding NDR [Fig. 3(d)]: the periodic lines along
the slow frequency axis with opposite slopes correspond to the
colliding structures which locally have a conventional DKS
(dissipative Kerr soliton) profile; the parabola corresponds to
dispersive waves which are emitted by the breathing DKS on
the background. With increase of the detuning these structures
come closer, get smaller group velocity, and interact more
chaotically while the field in the vicinity ϕ = ±π rests un-
perturbed. Thus we observe that for relatively small coupling
rates the potential leads to confinement of the MI (modulation
instability) state.

However, with increasing coupling strength (J = 6, 9), we
observe how these constantly interacting solitons are trans-
formed into a stable dispersionless structure [Figs. 3(b), 3(c),
3(e), and 3(f)]. For coupling rate J = 6, we observe that the
field starts to periodically oscillate in time. The corresponding
NDR consists of a ladder of lines, which signifies the appear-
ance of a dispersionless breathing structure. Further increase
of the coupling (J = 9) stabilizes this structure; it becomes
coherent and dispersionless. In the following sections we
further explore this unconventional state.

C. Band soliton

With increase of coupling strength J , we observe that the
MI region is getting stabilized at a certain detuning range,
and stable (i.e., coherent) nonlinear structures emerge. In a
linear dispersionless case with the nearest-neighbor coupling
(s = 1), the intracavity field response for different detunings
represents a band structure of a one-dimensional synthetic
crystal. However, the presence of FWM introduces global
nonlinear coupling between the modes, the efficiency of
which is given by the chromatic dispersion. The latter signifies
that the eigenfunction basis (see Ref. [26]) is modified, and
the intracavity field response can no longer be considered as a
band structure.

Figure 4(a) demonstrates this difference: the deterministic
dispersionless response (see upper right inset) transforms into
a complex structure, which contains localized chaotic and sta-
ble states. However, the notion of band structure remains im-
portant even in the nonlinear regime [64,65]. We observe that
there is a threshold value of J for a given pump rate f when
the unconventional coherent structures appear. Comparing the
nonlinear response [Fig. 4(a)] with the dispersionless linear
one [Fig. 4(a), inset], we notice that these structures emerge
in the center of the band structure; thus we call them band
solitons. In analogy to solid-state physics, we can introduce
the notion of synthetic Bloch waves (BW) [26], existing in the
frequency space. Their group velocity reaches its maximum in
the part of the band structure with the highest slope steepness.
The latter signifies that the stable nonlinear states appear
due to the interplay between FWM and linear BW. When
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FIG. 3. Dynamics of the confined MI (modulation instability) region in the presence of potential. (a)–(c) Spatiotemporal diagrams of
the intracavity field for f 2 = 6, ζ0 = 1.28. Coupling J = 3 corresponds to (a), J = 6 (b), and J = 9 (c). (d)–(f) Corresponding NDR
(nonlinear dispersion relation) which represents effective nonlinear dispersion relation of the system. One can notice how the dispersion
relation transforms with increase of J . For J = 3 the system consists of constantly appearing and colliding dispersionless structures [lines with
opposite slopes in (d)], which radiate dispersive waves [parabola in (d)]; for J = 6 (b),(e) the field oscillates as a whole and forms a ladder
in the NDR profile, which indicates periodic breathing in time. Further increase of J (c),(f) transforms the field into dispersionless stable
dissipative structure.

the coupling strength is smaller than the threshold value,
linear waves do not have sufficient velocity to redistribute
perturbations induced by FWM. This regime corresponds
to the confined MI. However, when the coupling strength
exceeds the threshold value, the group velocity of the BW
in the center of the band increases as well, and the BW can
propagate faster along the frequency space and redistribute
perturbations induced by FWM, leading to locking between
the modes and the emergence of unconventional coherent
states. This reasoning can also be applied to the explanation of
the conventional DKS states’ existence. As we have shown in
previous sections, DKS appears exactly at the top of the band
structure, where the group velocity of the BW equals zero;
hence the photon flux from the pump is provided only due to
FWM, and the synthetic BWs do not affect this process. Due
to this fact, this soliton corresponds to the conventional soliton
in optical χ (3) microcavities.

Now we investigate the field’s amplitude, phase, and spec-
trum at ζI = 4 [Figs. 4(d) and 4(e)]. In the linear dispersion-
less case, the solution can be found analytically [Eq. (4)]
and the field incorporates two maxima [Fig. 4(b)]. Corre-
sponding spectral profile [Fig. 4(c), solid blue line] decays

exponentially with mode number μ, showing that the coupling
rests the same for all the modes. Dispersion shifts the modes,
decreasing coupling efficiency for higher-order modes and
leading to truncation of the spectrum and emergence of a con-
ventional EO comb [green dots on Figs. 4(c) and 4(e)] [37].
However, FWM shifts the resonances, enhancing coupling
between the modes by restoring translational symmetry in the
frequency space [see Fig. 4(e), solid blue line]. The spectrum
of this state incorporates a flat part near the pump (at −10 dB
level) and decays slower than the EO comb, which signifies
the restored coupling between the modes beyond the cutoff
[37,66,67].

In order to investigate stability of these states, we scan
the cavity for different pump rates and coupling strengths.
In Figs. 4(g) and 4(h) we present the phase diagram for
single-tone modulation with coupling strengths J = 6 and
J = 9, respectively, and compare it with the conventional LLE
model [Fig. 4(f)]. The presence of the potential significantly
changes the system dynamics; especially the MI region has
different features. Band solitons emerge in a region around
ζ0 = 0. With increasing J , their existence range increases
along both axes. One can notice that this existence range
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FIG. 4. New nonlinear states termed Band solitons for single-tone modulation. (a) Intracavity field for potential J cos ϕ, coupling strength
J = 9, and pump rate f 2 = 6. Band solitons emerge in the detuning range ζ0 ∈ [−3.5, 7]. Insets show the linear dispersionless case: schematics
of the lattice for coupling J cos ϕ in the linear case without dispersion (upper left) and corresponding cavity response (upper right). Horizontal
line corresponds to detuning ζI = 4, for which we examine field and spectrum profiles (b)–(e). (b) Linear field intensity (solid blue line)
and phase (dashed red line). (c) Linear field spectrum without dispersion (solid blue line) and with dispersion d2 = 0.01 (dotted green line).
(d) Nonlinear field intensity (solid blue line) and phase (dashed red line). (e) Nonlinear field spectrum (solid blue line) and corresponding linear
spectrum with dispersion (dotted green line). (f)–(h) Phase diagrams for coupling strengths J = 0, J = 6, and J = 9. The red zone corresponds
to continuous wave; the yellow zone indicates the confined MI (modulation instability) state; the green zone corresponds to the soliton existence
range, which is predicted analytically. The dashed line indicates the end of the bistable region. The dark green region depicts DKS breathers.
The blue zone indicates the existence range of band solitons, a type of dissipative coherent structure that appears in a conventional (J = 0)
chaotic MI region.

is asymmetric, while in the linear case the band structure
is symmetric [Fig. 4(a) upper right inset]. However, FWM
induces self-phase modulation, leading to the frequency shift
towards the effectively red-detuned zone, and the whole band
obtains an offset from ζ0 = 0. The band solitons transform
to conventional EO combs at the low pump rates when the
FWM process becomes negligible. With increase of the pump
rate, the band solitons start to breathe, become unstable,
and transform to confined MI. Since the transition from the
breathing state to the chaotic one is smooth, we joined these
regions and labeled them as confined MI in Figs. 4(g) and
4(h) (note that we do not indicate here a narrow region of
stable MI, which always manifests itself at negative values of
detuning). This region appears to be wider than the MI region
in the conventional LLE model [Fig. 4(f)].

D. Chimeralike states

Using two modulation frequencies and controlling the rel-
ative phase between them, one introduces a two-dimensional

synthetic lattice [26] in the frequency space [Fig. 5(a), up-
per left inset]. The phase flux between the nodes can be
controlled in this arrangement by the relative modulation
phase. In particular, one can obtain asymmetric band structure
introducing nonreciprocal frequency conversion [Fig. 5(a),
upper right inset] [26]. We investigate nonlinear dynamics
for a dual-tone modulation corresponding to the effective
potential J[cos ϕ + 0.45 cos(2ϕ + θ )] with coupling J = 9
and the relative phase θ = π/2. Nonreciprocal photon flow
introduces a significant asymmetry in the corresponding spec-
tral profile [Fig. 5(c)] [68]. However, in contrast to the single
tone modulation, it is possible to find a region where one
side of the band structure is almost flat, while another one
has a maximum of its slope [ζ0 ≈ 2 in Fig. 5(a)]. Therefore,
for certain coupling rates fully chaotic dynamics manifests
itself in a part of the cavity where the synthetic band structure
slope (and hence the photon flow due to the linear BWs)
is small, while another side can support a coherent band
soliton existence. A similar intriguing feature was recently ob-
served in systems with local coupling [52,69]. Following these
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FIG. 5. Appearance of chimeralike states in the case of dual-tone modulation. (a) Intracavity field for potential J[cos ϕ + 0.45 cos(2ϕ +
θ )], coupling strength J = 9 with relative phase θ = π/2 and f 2 = 9. Insets: corresponding schematics of lattice (upper left) in the linear
case without dispersion and the cavity response (upper right). Horizontal line corresponds to detuning ζII = 1.9, for which we examine
spatiotemproal diagram (b) and NDR (nonlinear dispersion relation) (c). (d) Single point PDF (probability density function) of the normalized
intensity for two intracavity coordinates ϕ1 = −1.4 (blue) and ϕ2 = 1.8 (red). Black solid line corresponds to exponential PDF exp − I

〈I〉 .

works, we refer to the observed phenomenon as a chimeralike
state.

In order to investigate the chimeralike state, we extract the
complex field envelope at the detuning value ζII = 1.9 [black
dashed line in Fig. 5(a)] and numerically propagate fixing all
the parameters. The dynamics of the field modulus is shown in
Fig. 5(b). Nonreciprocal photon transfer breaks the underlying
symmetry of the system which also follows from the NDR
[see Fig. 5(c)]. Computing the single point probability density
function (PDF) of the intensity variation I/〈I〉 (〈I〉 is averaged
intensity in time) in coherent (ϕ1 = −1.4) and incoherent
(ϕ2 = 1.8) regions using 3 × 105 samples, we show that the
PDF at ϕ2 approaches the exponential (i.e., Gaussian distribu-
tion for the real part of the field), which can be considered as
a signature of a fully developed MI stage [62] (also [70,71]),
while at ϕ1 it is close to deltalike distribution. Such states have
no counterparts in DKS based on χ (3) and single-tone driving.

IV. CONCLUSION

In summary, we proposed a theoretical model which de-
scribes nonlinear dynamics of a modulated optical cavity
with χ (2) and χ (3) optical susceptibilities and second-order
GVD. We have shown that in the linear dispersionless limit
the model describes the physics of a ring with a synthetic
frequency dimension. Considering the dynamics of the full
model, we found that despite the presence of GVD which
breaks the translational symmetry there are coherent disper-
sionless structures for which the coupling remains resonant.
There are two types of structures we have observed. First is
found in the region of zero group velocity of the synthetic
Bloch waves. They correspond to conventional DKS solutions
of LLE but living on a modulated background. Applying
different modulation signals, one can directly control the
background modulation, hence control the number and posi-
tions of DKS, making soliton crystals and soliton tweezing
readily accessible. The second type of structure is found at

the maximum of the synthetic Bloch waves group velocity.
Coherence of these structures, that we called band solitons,
relies on the efficient photon transfer due to the linear mode
coupling and Kerr nonlinearity which compensates the effect
of dispersion. Therefore, such structures can be considered
as nonlinear states in the synthetic frequency dimension. We
generalized this result by including far neighbor coupling
(double-tone modulation) into the model. We found that due
to the nonreciprocal photon transfer the symmetry of the
system is broken, which leads to the coexistence of stable
coherent structures and chaos. We interpret these as the ap-
pearance of chimeralike states in the system.

We would like to emphasize that the proposed model can
be used for further investigation of the synthetic frequency
dimension as well as for simulations of EO combs in χ (2)

resonators. It can be readily generalized for an arbitrary
dispersion profile, which can incorporate either higher-order
dispersion D3, D4 or avoided mode crossings. Also, the po-
tential of this model in the investigation of nonlinear effects
in the synthetic frequency dimension in resonator lattices is
of high interest. For example, by simulating a set of coupled
GPE, one may explore the nonlinear dynamics of topological
states, that can be created by changing the relative modulation
phase of each ring.

As a physical platform for the model one can consider a
high-Q optical microcavity with χ (2) and χ (3) optical suscep-
tibilities. With recent success in the fabrication process it has
become possible to create optical cavities based on lithium
niobate [37,38] or aluminum nitride [40], as well as gallium
phosphide [41] photonic platforms, where the generation of
Kerr [38,39] and EO modulation-based frequency combs [37]
as well as Pockels soliton [40] has been reported. In partic-
ular, the scheme proposed in the current study can be easily
realized on the LiNbO3 platform, where both FSR modulation
[37] and self-starting Kerr combs [38] have been successfully
demonstrated.
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APPENDIX A: DERIVATION OF GROSS-PITAEVSKII
EQUATION

Let us consider a ring resonator with a phase modulator
distributed at one part of the ring. If the modulator consists
of χ (2) active material, then it changes locally refractive index
n(φ, t ) and provides with linear coupling between different
modes, which can be described by the equations of motion for
the amplitudes aμ as (see Supplemental Note 1 in Ref. [26])

∂aν (t )

∂t
= −iωνaν (t ) + i

∑
μ

Jμ−ν (t )aμ(t ). (A1)

Let us suppose that the coupling coefficient does not de-
pend on μ and depends harmonically on time as Jμ−ν =
Js cos (�t + θ ), where � is the modulation frequency and θ is
the modulation phase. Under the transformation into rotating
frame (aν = bνe−iων t ), the equation reads

ḃνe−iων t = i

2

∑
μ

Jsbμe−iωμt (ei�t+iθ + e−i�t−iθ ) (A2)

(ḃμ indicates time derivative). Supposing that we pump the
resonator near to frequency ω0 such that

ωμ = ω0 + μD1 + D2
μ2

2
, (A3)

and modulation frequency � is chosen as � = sD1, where s
is an integer, the RHS of Eq. (A2) incorporates two exponen-
tials:

ωμ + sD1 − ων = D1(μ + s − ν) + D2

2
(μ2 − ν2), (A4)

ωμ − sD1 − ων = D1(μ − s − ν) + D2

2
(μ2 − ν2). (A5)

Therefore, the resonant interaction appears between modes
μ = ν ± s, and Eq. (A2) simplifies to

ḃν = iJs

2

(
eiθ bν+se

−i D2s
2 (2ν+s)t + e−iθ bν−se

i D2s
2 (2ν−s)t

)
. (A6)

Now we aim to find the corresponding equation of the cav-
ity field. In optical cavity the field envelope may be presented
as a Fourier series [48]

A(φ, t ) =
∑

μ

aμeiμφ =
∑

μ

bμei(μφ−ωμt ). (A7)

Taking the time derivative, one obtains

Ȧ =
∑

μ

(ḃμ − iωμbμ)ei(μφ−ωμt ). (A8)

Let us consider only the first term. Substituting Eq. (A6)
yields∑

μ

ḃμei(μφ−ωμt ) = i
∑

μ

ei(μφ−ωμt )Js
(
aμ−se

i D2s
2 (2μ−s)t+iθ

+ aμ+se
−i D2s

2 (2μ+s)t−iθ
)
. (A9)

One may readily rearrange the exponential relations

ωμ−s = ωμ − sD1 + D2

2
(s2 − 2μs),

ωμ+s = ωμ + sD1 + D2

2
(s2 + 2μs),

and the summation yields that modulation creates a potential
for the electric field

Js cos (φs − sD1t + θ ). (A10)

Therefore, in the frame ϕ rotating with speed D1 such that
ϕ = φ − D1t , the electric field obeys the following equation:

Ȧ = iJs cos(sϕ + θ )A. (A11)

This result might be combined with Lugiato-Lefever formal-
ism for Kerr combs in optical cavities [72], and hence the
equation which governs the electric field in the presence of
external pump with frequency ωp = ω0 + δω is

∂A

∂t
= −

(κ

2
+ iδω

)
A + iD2

2

∂2A

∂ϕ2
+ 2iJs cos(sϕ + θ )A

+ ig0|A|2A + √
κexsin. (A12)

APPENDIX B: STABLE DISPERSIONLESS LIMIT

Since the cubic equation (3) is written for real value |�|2,
the solution has to be real as well. However, it is well known
that a cubic equation always possesses three roots, and they
are characterized through its discriminant �. In our case, the
discriminant has the following form:

� = −27 f 4 − 4
(
1 + ξ 2

0

)2 + 4 f 2ξ0
(
9 + ξ 2

0

) + 4J cos(sϕ)

× ( − 3 f 2
(
3 + ξ 2

0

) + 4ξ0
(
1 + ξ 2

0

) − J cos(sϕ)
{
2

− 3 f 2ξ0 + 6ξ 2
0 + J cos(sϕ)

[
f 2 − 4ξ 2

0 + J cos(sϕ)
]})

.

(B1)

Solving the equation � = 0, we find values f 2 and ζ0 which
determine the bistable zone.

APPENDIX C: LAGRANGIAN PERTURBATIVE
APPROACH

In order to calculate the maximum detuning for DKS in a
modulated cavity one needs to use the ansatz of a stationary
soliton � = B eiξ0 sech(B�) in the Lagrangian density (6).
Integrating it over � on the interval (−∞,+∞) (under the
assumption D2/κ � 1), one gets the Lagrangian in the form

L = −2B
∂ξ0

∂τ
+ 1

3
B3 − 2Bξ0 + Jαπ

sinh
(

απ
2B

) . (C1)

The right-hand side of Eq. (8) is not affected by the presence
of the potential and coincides with works in [58,59].
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