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Evolution of an optical vortex with an initial fractional topological charge
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In the general case, upon free-space propagation of a paraxial optical vortex (OV) its topological charge (TC)
is not conserved, unlike the orbital angular momentum (OAM), which remains unchanged. In this work, we
discuss a Gaussian beam with fractional TC in the source plane, showing theoretically and numerically in which
way the TC is changing (but remains integer) upon free-space propagation. There are four evolution scenarios for
an original OV with fractional TC that depend on how close the original TC is to an integer even or odd number.
If the TC in the initial plane has an arbitrary fractional value, it becomes an odd integer in the Fourier plane. If the
initial TC is close to an odd integer number, then, on propagation, an OV with a TC of +1 is born in the Fresnel
diffraction zone, while in the far field an OV with a TC of –1 appears. This optical vortex with a TC of –1 is
located in the beam periphery where the intensity is almost zero and thus it is difficult to detect it experimentally.
Additional vortices with a TC of +1 and −1 are generated in the beam with the initial fractional TC due to the
interference between a linear source appearing in the area of phase jump and an ordinary optical vortex with an
integer TC. An experiment on registering the optical vortices by using the interferograms matches the theory and
simulation. For simple OVs (such as Laguerre-Gaussian or Bessel-Gaussian modes), TC is conserved both upon
propagation and following weak phase distortions. When scattered from a random phase screen, the integer TC
of an OV is experimentally shown to conserve until random path-difference distortion reaches a half wavelength.
Because of this, under weak-turbulence conditions, it makes sense to measure a discretely changing TC, rather
than measuring the continuously varying OAM.
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I. INTRODUCTION

Key characteristics of laser vortex beams [1] include topo-
logical charge (TC) and orbital angular momentum (OAM).
Berry was the first to formulate the definition of the TC of
an optical vortex (OV) [2], whereas the notion of OAM was
introduced into optics in Ref. [3]. While the total OAM of a
paraxial light field is conserved upon free-space propagation,
the TC is sometimes conserved and sometimes not. The TC is
conserved upon propagation if the amplitude of the original
light field can be given by E (r, ϕ) = A(r)exp(inϕ), where
A(r) is the amplitude constituent that depends only on the
radial variable r, ϕ is the azimuthal angle, and n is the
integer TC of OV. Examples of such light fields include the
well-known Bessel-Gaussian and Laguerre-Gaussian beams.
Examples of TC nonconservation upon OV propagation may
be found in Refs. [4–9]. Simple superposition of a Gaussian
beam and a Laguerre-Gaussian (LG) mode (0, n) having
different waist radius has been discussed [4]. Upon free-space
propagation, total TC is changing due to different divergence
of the constituent beams. If in the original plane the waist
radius of the Gaussian beam is larger than that of the LG
mode, total TC of superposition initially equals zero. Upon
propagation, the difference between the waist radii decreases,
with the waist radius of the LG mode at some point becoming
larger than that of the Gaussian beam. From this point on, the
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TC of superposition becomes equal to n. Another example of
nonconserving TC is described in [5], where the TC decreases
with propagation distance after a circularly polarized beam
passes through a slit with the shape of the Fermat spiral.
It has been shown theoretically [2] and experimentally [6,7]
that the original Gaussian beam with fractional TC has an
integer TC in the near field, being equal to the nearest integer
to the fractional number. However, it has been found that
in the course of further propagation, the TC of the beams
undergoes other, previously unknown changes. For instance,
it has been numerically and experimentally shown [8] that,
as it propagates as far as the Fresnel zone, the original OV
with fractional TC is converted to an OV with an integer TC
equal to the nearest integer to the original fractional TC plus
1. In a similar study conducted in Ref. [8], the TC was actually
measured in the Fourier plane (focal plane of a spherical lens),
producing results different from those reported in Ref. [9].
In [9], for a Gaussian OV exp (−r2/w2 + iμϕ) with original
fractional TC μ = (2k + 1) + ε(0.1 < |ε| < 1), the far-field
TC was shown to be 2k + 1. If the original fractional TC was
μ = 2k + ε(0.1 < |ε| < 1), the far-field TC was also shown
to be 2k + 1. The said studies have shown that, first, the TC
is not always conserved on propagation and, second, even
and odd TCs show a different stability towards changes. This
conclusion can be drawn from the fact that regardless of the
original fractional TC (close to an even integer or an odd
integer) the far-field TC is always an odd integer.

We note that TC can be measured using a triangular
diaphragm [10,11] or a cylindrical lens [12].
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In this work, we study theoretically and numerically the
evolution of a Gaussian beam with original fractional TC. We
show that there are only four evolution scenarios for an OV
with original fractional TC. We also show that the TC was
measured in the near field in Refs. [2,6,7], in the Fresnel zone
in [8], and in the far field in [9].

As a rule, an OV propagating in a turbulent atmosphere
is identified by measuring its OAM [13,14]. However, due to
minor “jitters” of both the entire laser beam and its constituent
beams, there are continuous variations in OAM. For weak
turbulence, OAM variations are small; otherwise they are
strong. When measuring TC, we should bear in mind that it
can only change discretely, while remaining integer. Hence,
under weak turbulences, TC is not supposed to change at all.
Analyzing the diffraction of an OV by a random phase screen,
we show that TC remains unchanged until distortions of the
random phase of the screen become essential.

II. THEORY

TC is calculated using a formula proposed by Berry [2]:

TC = 1

2π
lim

r→∞ Im
∫ 2π

0
dϕ

∂E (r, ϕ)/∂ϕ

E (r, ϕ)
. (1)

The amplitude of a Gaussian beam with the original frac-
tional TC is given by [2]

E (r, ϕ, z = 0) = e−iμϕ−r2/w2

= eiπμ sin πμ

π

∞∑
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einϕ−r2/w2
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. (2)

In the Fresnel zone, the amplitude of field (2) is expressed
as a difference of modified Bessel functions Iν (x) [15]:

E (ρ, θ, z) = sin (πμ)√
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(−iz0
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(3)

where x = (z0/z)2(ρ/w)2/(2q), q = 1 − i(z0/z). Polar coor-
dinates (r, ϕ) in Eqs. (1) and (2) are used for the initial plane
(z = 0), while for the field in other planes (z > 0) we use in
Eq. (3) and from now on the polar coordinates (ρ, θ ).

In the near field z � z0, the parameters in (3) take the form
x = ikρ2/(2z), q = −i(z0/z). Considering that the modified
and conventional Bessel functions are connected as Iν (ix) =
iνJν (x), in the near field, we obtain [2,15]

E (ρ, θ, z) = sin (πμ)√
2π

exp

(
ikρ2

2z
+ iπμ

)√
iye−iy

×
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(−i)|m| eimθ
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i(|m|−1)/2

× [
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2
(y) − iJ |m|+1

2
(y)

]
, (4)

FIG. 1. TC in the near field for a Gaussian beam with the original
fractional TC, calculated using Eq. (6).

where y = kρ2/(2z). In the limit, at ρ → ∞, using
the asymptotic form of Bessel function Jν (y � 1) ≈
[2/(πy)]1/2cos(y − νπ/2 − π/4), we get

E (ρ → ∞, θ, z) ≈ exp (iπμ) sin (πμ)

π

∞∑
m=−∞

exp (imθ )

μ − m
.

(5)
Expressions (5) and (2) are identical at w → ∞. Substitut-

ing (5) in (1), we derive a relationship for calculating TC in
the near field:

TC = 1

2π
Re

⎧⎨
⎩
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neinϕ
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][ ∞∑
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dϕ

⎫⎬
⎭.

(6)
Calculations with the aid of Eq. (6) produce a well-known

step function to describe TC jumps at μ = n + 1/2 (Fig. 1).
Figure 1 depicts in which manner the TC of field (2) depends
in the near field on the original fractional TC μ, with calcula-
tions based on Eq. (6) conducted on the interval −7 � μ � 7
with a 0.05 increment. It can be seen from Fig. 1 that the TC
jumps occur at half-integer values, i.e., at μ = n + 0.5, which
is in agreement with Ref. [2].

Next, we calculate the TC in the Fresnel zone for the field
with the original fractional TC of Eq. (2). Here, we can use the
asymptotic form of the modified Bessel function at large ar-
gument values: I(n−1)/2(ξ ) − I(n+1)/2(ξ ) ∼ neξ /[2ξ (2πξ )1/2]
(it can be derived by using the expression 9.7.1 in [16]).
Therefore, Eq. (3) is be reduced to

E (ρ → ∞, θ, z) =
(−iz

z0

)(
w

ρ

)2

sin (πμ)

× exp

(
ikρ2

2z
+ iπμ

)

×
∞∑

m=−∞
(−i)|m| exp (imθ )

μ − m
|m|. (7)

Substituting (7) into (1), we obtain

TC = Re

2π
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0

[ ∞∑
n=−∞

(−i)|n|n|n|einϕ
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]

×
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dϕ. (8)
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FIG. 2. TC in the Fresnel zone for a Gaussian beam with original
fractional TC, Eq. (2), calculated using Eq. (8).

Figure 2 depicts the TC of a Gaussian beam with the
original fractional TC of Eq. (2) calculated for the Fresnel
diffraction zone using Eq. (8) for 5 � μ � 10 with a 0.05 step.
From Fig. 2, the TC jumps are seen to be found near every
integer number, when μ ≈ n + 0.1, which is in agreement
with Ref. [8]. However, according to Ref. [8] such a pattern
was characteristic of the Fraunhofer diffraction zone, rather
than Fresnel zone. However, a similar study of TC of an OV
in the far field (specifically, in the Fraunhofer diffraction zone
or in the focus of a spherical Fourier lens) was conducted in
Ref. [9], producing a different result.

In the far field (the focus of a Fourier lens), the amplitude
of a light field takes the form

EF (ρ, θ ) = sin (πμ)√
2π

(−iz0

f

)
exp (iπμ)

√
x exp (−x)

×
∞∑

m=−∞
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[
I |m|−1

2
(x) − I |m|+1

2
(x)

]
,

(9)

where the argument of Bessel functions is a real value: x =
(z0/ f )2(ρ/w)2/2, and f is the focal length of a lens that
generates the far field in the back focal plane. The calculation
of TC using Eqs. (9) and (1) gives a step function shown in
Fig. 3, which depicts the far-field TC of a Gaussian beam with
the original fractional TC, Eq. (2), calculated using Eqs. (9)
and (1) for −5 � μ � 5 with a step of 0.05. From Fig. 3,
jumps between adjacent integer values of TC occur at even
integers, in agreement with Ref. [9].

Figures 1–3 suggest that the source field with original
fractional TC [Eq. (2)] undergoes an interesting evolution.
From Fig. 3 it is seen that in the far field, any original

FIG. 3. Fourier-plane TC of a Gaussian beam with the original
fractional TC, Eq. (2), calculated using Eqs. (9) and (1).

TABLE I. TC evolution scenarios on propagation of a Gaussian
beam with the original fractional TC, exp(−r2/w2 + iμϕ) (p is an
arbitrary integer, 0 < ε < 1/2).

Original TC (z = 0) TC (z � z0) TC (z ≈ z0) TC (z � z0)

μ = 2p + ε 2p 2p + 1 2p + 1
μ = 2p − ε 2p 2p 2p − 1
μ = (2p + 1) + ε 2p + 1 2p + 2 2p + 1
μ = (2p + 1) − ε 2p + 1 2p + 1 2p + 1

fractional field evolves to one that has only odd TCs. In the
far field, the even TC can be generated only if the original
field has an even integer TC. Actually, we assume that in the
original plane the TC is μ = 3.3. Then, in the near field, an
OV with TC = 3 will be generated (Fig. 1); farther in the
Fresnel zone, a new OV with ТC of +1 will be born, with
the total TC of the beam becoming equal to TC = 4 (Fig. 2).
Meanwhile, in the far field another optical vortex with a ТC
of −1 will be born, with the total TC of the beam being again
TC = 3 (Fig. 3), as in the near field.

The evolution of a field whose original fractional TC is
closer to an even integer (e.g., μ = 4.3) follows a different
path. In the near field, the beam has TC = 4 (Fig. 1); in the
Fresnel zone, TC = 5 (Fig. 2), with TC remaining unchanged
in the far field, TC = 5 (Fig. 3).

There are two more evolution scenarios for a field with
the original fractional TC, which can be seen from Table I,
which gives all four feasible evolution scenarios for the initial
fractional vortex. If a simple field has an integer TC in the
source plane, TC is conserved during propagation. But this
is not always the case. For a linear combination of two
differently diverging light fields, the original integer TC will
change upon propagation [4].

III. NUMERICAL SIMULATION

The numerical simulation aims to corroborate the values of
TC derived from Eqs. (6), (8), and (9) for different diffrac-
tion zones of a Gaussian beam with the original fractional
TC. The intensity and phase patterns in the near field and
Fresnel zone are modeled by the Beam Propagation Method
method (BEAMPROP software by RSoft) for the following
parameters: wavelength λ = 532 nm, Gaussian beam waist
w0 = 5λ(z0 ∼ 25πλ), initial TC μ = 3.3, half size of the
computational domain R = 50λ, transverse discretization step
�x = �y = λ/32, and longitudinal discretization step �z =
λ/16. Meanwhile the amplitude and phase patterns in the far
field are numerically modeled using a Fourier transform im-
plemented with a spherical lens of focal length f = 100 mm
for a Gaussian beam with waist radius w0 = 0.5 mm and the
same original TC μ = 3.3 in the computational domain with
the size of 2R = 1 mm (the evolution scenario corresponds
to line 4 of Table I). The patterns were calculated for a
distance of z = 3λ in the near field and z = 50λ in the Fresnel
zone.

Shown in Fig. 4 are the intensity (a–c) and phase (d–f)
patterns for a Gaussian beam containing a fractional OV
with μ = 3.3 in the near field (z = 3λ) (a,d), Fresnel zone
(z = 50λ) (b,e), and far field (in the Fourier plane of a focal

023516-3



KOTLYAR, KOVALEV, NALIMOV, AND PORFIREV PHYSICAL REVIEW A 102, 023516 (2020)

FIG. 4. Intensity (a–c) and phase (d–f) of a Gaussian beam with
original fractional TC, μ = 3.3 in the near field (a,d), Fresnel zone
(b,e), and far field (c,f). Arrows in the phase distribution patterns
mark OVs of the +first order, with a dashed arrow marking an OV of
the –first order (f). Dark color denotes a zero phase and white is for
a phase of 2π .

lens with focal length f = 100 mm) (c,f). Arrows in the phase
distribution patterns mark optical vortices (singularity centers)
of the +first order, with a dashed arrow in Fig. 4(f) marking
an OV of –first order.

Figure 4 corroborates the calculation results derived from
Eqs. (6), (8), and (9), which are depicted in Figs. 1–3, respec-
tively, also corroborating the evolution scenario depicted in
line 4 of Table I. Actually, from Fig. 4(d) it is seen that while in
the source plane (z = 0) TC is μ = 3.3, immediately behind
it, at a distance of 3λ, there are only three singularity points
and ТC is μ = 3. Although some phase distortions are present
on the right in Fig. 4(d), no new singularity points can be seen.
In Fig. 4(e) at a distance of 50λ (while the Rayleigh range is

FIG. 5. Dependence of the beam TC on the radius R for the initial
beam with μ = 2.2 in the near field at distances z = 0.01 μm (a)
and z = 0.1 μm (b); amplitude (c) and phase (d) at the distance z =
0.01 μm and phase (e) at the distance z = 0.1 μm.

75λ) a fourth singularity point is seen to form, as is evident
from a fringe dislocation for three original singularity points,
with TC being μ = 4 . Propagating further, the beam is seen
to form one more singularity point of the opposite sign (–1)
in the focus of a spherical lens [Fig. 4(f), bottom]. This brings
the total TC of the beam back to the initial TC of μ = 3.

Below we investigate in more detail how the additional
optical vortices are born and propagate. Figure 5 shows the
TC dependence on the radius R for the initial TC of μ = 2.2
in the near field at distances of z = 0.01 μm and z = 0.1 μm.
We use the following parameters of the field (2) in Fig. 5
(and below, in Figs. 6–8): field size 8 × 8 μm (400 ×
400 points), wavelength λ = 0.532 μm, Gaussian beam waist
radius w = 1.3 μm, and Rayleigh distance zR = πω2

0/λ =
9.98 μm. According to Fig. 5, TC in the near field is equal to
3, starting from the radius R > 4 μm. It is also seen that the
phase of the field at distances of z = 0.01 μm and z = 0.1 μm
remains the same in the whole field excepting the central area
R < 4.5 μm. Therefore, for the initial TC μ = 2.2, TC of
the optical vortex in the near field at the distance of just z =
0.01 μm is equal to 3. Why does this simulation contradict
the experiments in [6,7,10–12]? The answer is that, according
to Fig. 5(c), intensity of the optical vortex decays almost to
zero in the circle with the radius of nearly 2 μm, whereas the
radius R of the circle where TC changes from 2 to 3 is about
4 μm. Thus, the additional singularity center is located in the
area where it cannot be detected experimentally. Indeed, in
Fig. 5 at z = 0.1 μm and μ = 2.2, the intensity on the circle
where TC jumps from 2 to 3 (R = 3.5 μm) equal 2.0 × 10−6

of its maximal value. Such low intensity cannot be measured
experimentally.

Figure 6 shows that when the fractional part of the initial
TC increases, the radius of the circle of the TC jump from 2 to
3 decreases. Therefore, for an optical vortex (2) with the initial
fractional TC in the range 2.12 < μ < 3, TC in the Fresnel
diffraction zone is equal to 3. The plot in Fig. 6 shows yet
another interesting feature. If we suppose that R is the distance
from the center of the field (i.e., of the Gaussian beam) to
the third singularity, then with increase of the fractional part
of the initial TC from 0.15 to 0.95 the third singularity is
approaching from the periphery (where the intensity is almost

FIG. 6. Radius R where TC jumps from 2 to 3 vs the initial TC
μ at z = 10 μm.
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FIG. 7. Amplitude (a) and phase (b) of the field (2) with the
initial TC μ = 2.2 at the distance of z = 20 μm (far field).

zero and thus cannot be detected) to the Gaussian beam center.
Starting from a TC nearly of 2.5, it achieves the distance of
circa 3 μm where the intensity can be measured and thus
reveal this singularity. Therefore, the plot in Fig. 6 explains
why in the experiments [6,7,10–12], the TC jumps from 2 to
3 at the fractional part of the initial TC are equal to 0.5. We
note that for the initial fractional TC in the range from 3.1
to 4 we obtained a plot similar to Fig. 6. Therefore, we can
claim that the plot similar to Fig. 6 is valid for arbitrary TC
in the range m < μ < (m + 1) (m is an arbitrary integer).
In fact, our study made the bridge between the results of the
work reported in Ref. [2] (TC jumps from m to m + 1 when
the fractional part is 0.5) and of the work reported in Ref. [8]
(TC jumps at any fractional part).

Figure 7 shows amplitude and phase distributions of the
initial field (2) at a distance of z = 20 μm. The initial field
has TC μ = 2.2; its size is 32 × 32 μm (400 × 400 points).
As seen in Fig. 7(b), there is a fork in the phase distribution
(in the top of the figure) at a distance of about R = 14 μm.
Starting from this fork, the TC of the optical vortex changes
from 2 to 3. Comparison of amplitude and phase in Fig. 7
reveals that the fork (third vortex) is in the beam periphery
where the intensity is almost zero.

Where do the additional vortices come from? How are
they born? Figure 8 illustrates phases of the field (2) in the
near field for the different initial fractional TCs: μ = 2.11,
z = 1 μm [Fig. 8(a)], μ = 2.2, z = 0.1 μm [Fig. 8(b)], and
μ = 2.4, z = 1 μm [Fig. 8(c)]. As seen in Fig. 8, there are two
screw dislocations on the phase distributions in the very center
of the beam and one edge dislocation (distorted fringes) in the
top phase area [Fig. 8(a)], or in the bottom area [Figs. 8(b) and
8(c)]. This edge dislocation appears due to the interference
of an optical vortex with TC = 2 and of a boundary wave
propagating from the area of the phase break [horizontal dark
line in Fig. 5(a)]. On further propagation, this edge dislocation
leads to a screw dislocation [additional optical vortex or fork
in Fig. 7(b)].

Yet another question arises as to whether TC in the far field
is always odd for any fractional μ. Figure 9 depicts phases for
the field (2) with the waist radius w = 0.5 mm in the rear focal
plane of a spherical lens with the focal length f = 100 mm
for different values of μ: 2.3 [Fig. 9(a)], 3.3 [Fig. 9(b)], 4.2
[Fig. 9(c)], and 5.1 [Fig. 9(d)]. As seen in Fig. 9 for an even
integer m = 2 [Fig. 9(a)], in addition to two initial vortices
there is an additional third vortex in the top area, while in
the bottom area there is no vortex (i.e., TC = 3). At the even
value m = 4 [Fig. 9(c)], besides the initial four vortices there
is an additional fifth vortex in the top area and there is no
vortex in the bottom area (i.e., TC = 5). In the bottom areas
of Figs. 9(a) and 9(c), there is a line of phase jump by 2π .
For odd values m = 3 [Fig. 9(b)] and m = 5 [Fig. 9(d)], the
additional vortex at the top is compensated by the additional
vortex at the bottom. Therefore, TC is equal to 3 in Fig. 9(b)
and 5 in Fig. 9(d).

As seen in Fig. 9, additional optical vortices with a TC
of +1 (at the top) and with a TC of −1 [at the bottom of
Figs. 9(b) and 9(d)] are located far from the beam center and
these distances are not equal. The vortices with a TC of −1
are farther than the vortices with a TC of +1. The distance
from the center to the vortex does not affect the TC of the
whole beam, but it affects the results of the experiment. Both
vortices (+1 and −1) are located at the distance from the beam
center where the intensity is almost zero. Therefore, they are
hard to register experimentally.

FIG. 8. Phases of the field (2) with the different initial TCs in the near field: μ = 2.11, z = 1 μm (a), μ = 2.2, z = 0.1 μm (b), μ = 2.4,
z = 1 μm (c).
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FIG. 9. Phases of the field (2) with the waist radius w = 0.5 mm
in the focus of the spherical lens ( f = 100 mm) for different values
of μ: 2.3 (a), 3.3(b), 4.2 (c), 5.1 (d).

IV. EXPERIMENT

Figure 10 shows the experimental setup used in the ex-
periments. A linearly polarized Gaussian laser beam (λ =
532 nm; w0 is approx. 5 mm) was expanded and collimated
with a combination of a pinhole PH (with an aperture of
40 μm) and a lens L1 with a focal length of 350 mm. The
mirrors M1 and M2 as well as two beam splitters B1 and
B2 were used to implement the Mach-Zehnder interferometric
setup. The collimated laser beam was normally incident on
the display of the spatial light modulator SLM (Holoeye LC-
2012, 1024 × 768 pixels), which was used for the imple-
mentation of the phase transmission function of the elements
generating the Gaussian beam with the original fractional TCs
of 2.2, 2.7, 3.3, and 3.7. The 4- f optical system consisted of
the lenses L2 (focal length f2 = 150 mm) and L3 (focal length
f3 = 150 mm), and a diaphragm D spatially filtered the laser
beam generated by the SLM. The intensity pattern formed in
the near field, Fresnel zone, and focal plane of the lens L4
(focal length f4 = 350 mm) was recorded with a video camera
camera Cam (3264 × 2448 pixels, 1.67-μm pixel size). A
neutral density filter F was used to equalize the intensities of
the object and the reference beams.

Figure 11 shows the intensity and interferogram patterns
obtained in the experiments.

The topological charge of the optical vortices from Fig. 11
is given in Table II. It is obtained by simply counting the “fork
teeth” on the interferograms in Fig. 11.

FIG. 10. Experimental setup for investigation of TCs of the
generated OVs.

FIG. 11. Intensity (a–d,i–l,q–t) and interferogram (e–h,m–p,u–x)
patterns obtained in the case of a Gaussian beam with the origi-
nal TCs μ: 2.2 (a,e,i,m,q,u), 2.7 (b,f,j,n,r,v), 3.3 (c,g,k,o,s,w), and
3.7 (d,h,l,p,t,x). The image size is 1100 × 1100 μm (a–h),
200 × 200 μm (i–t), 150 × 300 μm (u–x).

The third row of Table II contains TC values obtained from
the interferograms [Figs. 11(e)–11(h)] of the optical vortices
in the near field, whose intensity is shown in Figs. 11(a)–
11(d). It is seen in the third row of Table II that in the
near field (at a distance 40 mm from the focus of the lens
L4 in Fig. 10) the experiment matches the theory (Fig. 1)

TABLE II. Experimental TC of different fractional optical vor-
tices in different diffraction zones.

Topological charge

Initial field 2.2 2.7 3.3 3.7
Near field 2 3 3 4
Fresnel zone 3 3 4 4
Lens focus 3 3 3 3
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and the simulation [Fig. 4(d)], but contradicts the simulation
from Fig. 5. We gave an explanation for this contradiction
above: The additional vortex in Fig. 5 for the initial TC of
2.2 is generated far from the optical axis and thus cannot be
registered experimentally. The fourth row of Table II contains
TCs in the Fresnel diffraction zone (at a distance of 4 mm
from the focus of the lens L4 in Fig. 10). These values were
measured from the interferograms [Figs. 11(m)–11(p)] for the
optical vortices, whose intensity is shown in Figs. 11(i)–11(l).
For the Fresnel zone, the TC from Table II coincides with the
theory (2) and with the simulation in Figs. 4(e) and 6. The
last (fifth) row of Table II contains TCs in the far field (in
the focus of the spherical lens L4 in Fig. 10). These values
were found from the interferograms [Figs. 11(u)–11(x)] of the
optical vortices with intensity shown in Figs. 11(q)–11(t). The
experimental results shown in the fifth row of Table II agree
with the theory (3) and with the simulation in Figs. 4(f) and
9. Indeed, for an even integer part of the TC value m = 2, as
seen in Figs. 11(u) and 11(v), the forks on the interferogram
contain three additional teeth. For the odd integer part of
the TC value m = 3, interferogram analysis in Figs. 11(w)
and 11(x) is more complicated. In the beam center, there are
four additional fork teeth clearly seen on the interferogram.
However, in the bottom part of the interferogram, the char-
acteristic defect of fringes can be seen (although with a low
contrast), which reveals the additional vortex with a TC of −1.
Therefore, for fractional vortices with the odd value m = 3,
the TC in the far field equals 3. The weak contrast of fringes
in the bottom parts of the interferograms is due to the low
intensity in the beam periphery. Thus, in the far field, the
experiment also confirms the theory (3) and the simulation in
Figs. 4(f) and 9.

We also made an experimental study of the stability of
an OV’s TC against phase distortions. Specifically, we ex-
perimentally study the conservation of the integer TC fol-
lowing random phase distortions of a vortex laser beam.
The experimental setup is similar to that in [17], but the
phase distortions are generated on a spatial light modulator
(SLM) instead of the ground glass plate, thus allowing us to
change the distortion’s magnitude and to define such threshold
distortions for which TC is still conserved. We also adopt
a more accurate method of TC measurement, using for this
purpose a cylindrical lens [12]. A Gaussian beam with waist
radius w = 1.1 mm is incident on a spatial light modulator,
where a vortex phase mϕ with m = 5 is recorded. Each pixel
of the SLM is being distorted by adding 2πα to its phase
mϕ, where α is a random number from the interval [0, 1].
Figure 12 depicts distorted phases of the original light field
recorded on the SLM (left column), intensity patterns (600 ×
600 μm) measured in the focal plane of a spherical lens with
focus f = 150 mm (central column), and intensity patterns
(1900 × 1900 μm) measured at a double focal length from
a cylindrical lens with focus f = 100 mm (right column) for
different phase distortions α. In our experiment, we use the
SLM (Holoeye LC-2012, 1024 × 768 pixels), with a pixel size
of 8 μm. Random phase jumps on the SLM are seen as dark
(phase is 0) and light (phase is 2π ) dots in Figs. 12(d), 12(g),
12(j), 12(m), and 12(p). The phase on the SLM is changed
in each pixel by a proportional changing of the refractive
index of the liquid crystal. Therefore, the power spectrum

FIG. 12. Distorted phase patterns (a,d,g,j,m,p), intensity patterns
(600 × 600 μm) in the focal plane of a spherical lens with focus
f = 150 mm (b,e,h,k,n,q), and intensity patterns (1900 × 1900 μm)
at a double focal length of a cylindrical lens with focus f = 100 mm
(c,f,i,l,o,r) for different degrees of distortion: α = 0 (a–c), α = 0.2
(d–f), α=0.4 (g–i), α=0.6 (j–l), α=0.8 (m–o), and α=1.0 (р–r).

of the random phase distortions is not that of white noise.
Instead, the correlation function of the distortions has the
width defined by the SLM pixel size.

Figure 12 suggests that at α = 0.6 (i.e., the phase is dis-
torted by a random value from the interval [0, 1.2π ]), six
peaks are still clearly seen on the diagonal at an angle of −45°
(either five dark fringes or five intensity nulls), meaning that
the optical vortices have a TC of 5. However, at α � 0.8,
TC is nowhere to be seen (Fig. 12). Therefore, the TC of
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an optical vortex remains equal to the integer 5 until random
phase distortion of the initial vortex gets as large as about a
half wavelength (λ/2).

V. CONCLUSION

Summing up, it has been theoretically shown that a Gaus-
sian beam with an embedded OV with original fractional TC
does not conserve the original TC upon propagation. The TC
of the Gaussian beam with the original fractional TC can
take different values in different diffraction zones, such as
near field (z � z0), Fresnel zone (z ≈ z0), and far field (z �
z0) . This conclusion has been corroborated via numerical
simulation using the BEAMPROP software for the near field and
Fresnel zone and a Fourier transform for the far field. Four
evolution scenarios for the fractional Gaussian beam have
been described. In one scenario, if the source beam has a TC
of 3.3, it has been shown to have a TC of 3 in the near field,
a TC of 4 in the Fresnel zone, and again a TC of 3 in the
Fraunhofer zone (in the focus of a spherical lens). Thus, in
this evolution scenario, an OV with a TC of +1 is produced in
the Fresnel zone, before being compensated for in the far field
by a newly born OV with a TC of −1. The experiment on
the determining TC by using the interferograms matches the
theory and the simulation. We have also shown experimen-
tally that given weak random phase distortions (a phase shift
smaller than π ), TC is conserved. Based on these properties, it

becomes possible to identify OVs in wireless communications
by measuring TC, alongside OAM measurements.

Additional OVs in the Fresnel and Fraunhofer diffraction
zones (see Table I) are explainable since the initial fractional-
TC light field contains the whole angular harmonics spectrum
and thus carries all these additional OVs. Two well-known
examples confirm this. If the Hermite-Gaussian beam of order
(0, n) passes in the initial plane through a cylindrical lens
rotated by 45° to the Cartesian axes, its initial TC is zero.
However, at the double focal length, the beam transforms to a
vortex LG beam with the order (0, n) [18]; i.e., an OV with TC
of n was born. As another example, if in the initial plane there
is a combined beam composed of a Gaussian beam with the
waist radius w1 and of a LG vortex with the order (0, n) and
waist radius w2, and if w1(0) < w2(0), then the TC of such
combined beam equals n up to a distance z1 [4]. At z > z1,
though, w1(z) > w2(z) and TC becomes zero; i.e., n OVs were
born with a TC of −1 and compensated n OVs with a TC of
+1 that were present in the initial plane.

ACKNOWLEDGMENTS

This work was funded by the Russian Foundation for
Basic Research Grants No. 18-29-20003 and No. 18-07-
01129, Russian Science Foundation Grant No. 18-19-00595,
and by RF Ministry of Science and Higher Education under
the government project of FRDC for “Crystallography and
Photonics” RAS.

[1] V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, Vortex Laser
Beams (CRC Press, Boca Raton, FL, 2018).

[2] M. V. Berry, Optical vortices evolving from helicoidal integer
and fractional phase steps, J. Opt. A: Pure Appl. Opt. 6, 259
(2004).

[3] L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman,
Orbital angular momentum of light and the transformation
of Laguerre-Gaussian laser modes, Phys. Rev. A 45, 8185
(1992).

[4] M. S. Soskin, V. N. Gorshkov, M. V. Vastnetsov, J. T. Malos,
and N. R. Heckenberg, Topological charge and angular momen-
tum of light beams carrying optical vortex, Phys. Rev. A 56,
4064 (1987).

[5] H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai,
Vortex beam generation with variable topological charge based
on a spiral slit, Nanophotonics 8, 317 (2019).

[6] J. Leach, E. Yao, and M. J. Padgett, Observation of the vortex
structure of a non-integer vortex beam, New J. Phys. 6, 71
(2004).

[7] J. B. Gotte, S. Franke-Arnold, R. Zambrini, and S. M. Barnett,
Quantum formulation of fractional orbital angular momentum,
J. Mod. Opt. 54, 1723 (2007).

[8] A. J. Jesus-Silva, E. J. S. Fonseca, and J. M. Hickmann, Study
of the birth of a vortex at Fraunhofer zone, Opt. Lett. 37, 4552
(2012).

[9] J. Wen, L. Wang, X. Yang, J. Zhang, and S. Zhu, Vortex strength
and beam propagation factor of fractional vortex beams, Opt.
Express 27, 5893 (2019).

[10] J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-
Cerda, Unveiling a Truncated Optical Lattice Associated with a

Triangular Aperture Using Lights Orbital Angular Momentum,
Phys. Rev. Lett. 105, 053904 (2010).

[11] A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M.
Wright, Visualization of the birth of an optical vortex using
diffraction from a triangular aperture, Opt. Express 19, 5760
(2011).

[12] V. V. Kotlyar, A. A. Kovalev, and A. P. Pofirev, Astigmatic
transforms of an optical vortex for measurement of its topolog-
ical charge, Appl. Opt. 56, 4095 (2017).

[13] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko,
S. M. Barnett, and S. Franke-Arnold, Free-space information
transfer using light beams carrying orbital angular momentum,
Opt. Express 12, 5448 (2004).

[14] R. J. Watkins, K. Dai, G. White, W. Li, J. K. Miller, K. S.
Morgan, and E. G. Jonson, Experimental probing of turbulence
using a continuous spectrum of asymmetric OAM beams, Opt.
Express 28, 924 (2020).

[15] V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer,
H. Elfstrom, and J. Turunen, Generation of phase singularity
through diffracting a plane or Gaussian beam by a spiral phase
plate, J. Opt. Soc. Am. A 22, 849 (2005).

[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, Applied Mathematics Series No. 55 (National Bu-
reau of Standards, Washington, DC, 1965).

[17] G. R. Salla, C. Perumangattu, S. Prabhakar, A. Anwar, and R. P.
Singh, Recovering the vorticity of a light beam after scattering,
Appl. Phys. Lett. 107, 021104 (2015).

[18] E. G. Abramochkin and V. G. Volostnikov, Beam transfor-
mations and nontransformed beams, Opt. Commun. 83, 123
(1991).

023516-8

https://doi.org/10.1088/1464-4258/6/2/018
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.56.4064
https://doi.org/10.1515/nanoph-2018-0214
https://doi.org/10.1088/1367-2630/6/1/071
https://doi.org/10.1080/09500340601156827
https://doi.org/10.1364/OL.37.004552
https://doi.org/10.1364/OE.27.005893
https://doi.org/10.1103/PhysRevLett.105.053904
https://doi.org/10.1364/OE.19.005760
https://doi.org/10.1364/AO.56.004095
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OE.380405
https://doi.org/10.1364/JOSAA.22.000849
https://doi.org/10.1063/1.4926913
https://doi.org/10.1016/0030-4018(91)90534-K

