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Multistate stimulated Raman adiabatic passage (STIRAP) is a process which allows for adiabatic population
transfer between the two ends of a chainwise-connected quantum system. The process requires large temporal
areas of the driving pulsed fields (pump and Stokes) in order to suppress the nonadiabatic couplings and thereby
to make adiabatic evolution possible. To this end, in the present paper a variation of multistate STIRAP, which
accelerates and improves the population transfer, is presented. In addition to the usual pump and Stokes fields
it uses shortcut fields applied between the states, which form the dark state of the system. The shortcuts cancel
the couplings between the dark state and the other adiabatic states thereby resulting (in the ideal case) in a unit
transition probability between the two end states of the chain. Specific examples of five-state systems formed
of the magnetic sublevels of the transitions between two degenerate levels with angular momenta Jg = 2 (of
ground or lower level) and Je = 1 or Je = 2 (of excited or upper level) are considered in detail, for which the
shortcut fields are derived analytically. The proposed method is simpler than the usual “shortcuts to adiabaticity”
recipe, which prescribes shortcut fields between all states of the system, while the present proposal uses shortcut
fields between the sublevels forming the dark state only. The results are of potential interest in applications
where high-fidelity quantum control is essential, e.g., quantum information, atom optics, formation of ultracold
molecules, cavity QED, etc.
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I. INTRODUCTION

Adiabatic evolution of quantum systems is a concept as
old as quantum mechanics [1]. Regardless of its numerous
formulations over the years, one feature is common: in the
adiabatic limit there are no transitions between the adiabatic
states, defined as the instantaneous eigenstates of the Hamil-
tonian. If the system begins its evolution in a single adiabatic
state and evolves adiabatically then it will remain in this
state at all times, with the only change being the possible
accumulation of adiabatic and/or geometric phases. If the
Hamiltonian is time dependent then the adiabatic states will
be time dependent too, which means that their composition of
original diabatic (also known as bare or unperturbed) states
will change in time. Popular adiabatic-passage techniques,
such as rapid adiabatic passage (RAP) in two-state systems
and stimulated Raman adiabatic passage (STIRAP) in three-
state systems [2–4], use adiabatic states that are equal to
different diabatic states in the beginning and the end, thereby
achieving adiabatic population transfer between different dia-
batic states.

In STIRAP, the population transfer is carried out via the
dark state—a time-dependent eigenstate of the Hamiltonian
involving the two end states 1 and 3 of the three-state chain
system 1 ↔ 2 ↔ 3. If the system is initially in state 1, and
if the Stokes pulse driving the transition 2 ↔ 3 between the
initially unpopulated states 2 and 3 is applied before, and
vanishes before the pump pulse driving the transition 1 ↔ 2
(counterintuitive pulse order), then the dark state is associated
with state 1 in the beginning and state 3 in the end. Therefore,

adiabatic evolution during which the system will remain in the
dark state, will completely transfer the population from state
1 to state 3. An additional and unique advantage of STIRAP is
that the middle state 2, which is subjected to population decay
in many physical implementations, is not populated during the
process because it is not present in the dark state.

Both RAP and STIRAP have been extended to multistate
systems in numerous papers; see Refs. [2–4] for reviews.
The great advantage of adiabatic passage techniques is the
robustness of the population transfer to variations in vari-
ous experimental parameters, such as the pulse amplitude,
duration, frequency, chirp, and shape. However, adiabatic
techniques are slower than the resonant techniques and their
efficiency is less than 100%. This imperfect efficiency derives
from nonadiabatic losses—unwanted transitions between the
population-carrying adiabatic state and the other adiabatic
states due to nonadiabatic couplings. The latter are generated
by the time dependence of the Hamiltonian. The nonadia-
batic couplings lead to leaks of population from the pop-
ulated adiabatic state with an ensuing loss of population
transfer efficiency.

To this end, various proposals have been made for sup-
pressing the nonadiabatic couplings in STIRAP and boost-
ing the population transfer efficiency. In the context of
RAP, Guérin et al. [5,6] proposed to shape the Hamilto-
nian elements—the Rabi frequency �(t ) and the detuning
�(t )—in such a manner that the eigenvalues become parallel,
i.e., �(t )2 + �(t )2 = const. This idea follows from seminal
papers by Dykhne [7] and Davis and Pechukas [8] who
derived the first-order approximation to the probability for
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FIG. 1. Top: Three-state system for STIRAP with the pump
(P) and Stokes (S) couplings for the transitions 1 ↔ 2 and 2 ↔ 3
indicated. The shortcut field Q drives the transition 1 ↔ 3. Bottom:
Pulse shapes of the pump (P), Stokes (S), and shortcut (Q) fields in
three-state STIRAP.

nonadiabatic transitions in terms of the (complex-valued) ze-
ros of the Hamiltonian eigenvalues (named transition points).
Constant eigenvalues mean no transition points and hence
no nonadiabatic transitions to the first order. This idea was
successfully extended to STIRAP [9].

A few years before the pulse-shaping proposals, Unanyan
et al. [10] proposed a rather different idea: apply a third field
in STIRAP which directly links states 1 and 3 and exactly
matches the nonadiabatic coupling but has the opposite sign;
see Fig. 1. This third field cancels the nonadiabatic coupling
and leads to a perfect population transfer 1 → 3. Later, this
approach was used under different names [11,12], with the
term “shortcuts to adiabaticity” [13] finally established [14].
Recently, it was demonstrated experimentally [15]. Further
details can be found in the recent review [16].

In the present paper, I use the ideas of Unanyan et al. [10]
for three-state STIRAP and derive shortcut fields which cancel
the nonadiabatic couplings in multistate STIRAP and ensure
very high population transfer efficiency. Multistate STIRAP
has been proposed and experimentally demonstrated in nu-
merous applications, e.g., for atomic mirrors and beams split-
ters in atom optics [17–27], cavity QED [28,29], production
of ultracold molecules from ultracold atoms [30–44], atomic
clocks [45], etc. High transfer efficiency is essential when
very high precision of operations is required, e.g., in quantum
information processing [46] and other quantum technologies,
especially when using repeated processes because the error
scales quadratically with the number of processes [47,48].
More details of the possible applications are discussed in
Sec. V.

Specifically, I consider the five-state systems formed of
the three magnetic sublevels mg = 0,±2 of a ground level
with an angular momentum Jg = 2 coupled to the magnetic
sublevels me = ±1 of an excited level with Je = 1 or Je = 2
by left and right circularly polarized laser fields. STIRAP has
already been demonstrated in such systems in the context
of atom optics [17]. I propose here to use shortcut fields
which compensate the nonadiabatic couplings and ensure very
high population transfer efficiency. The shortcut fields couple
only the ground-level sublevels mg = 0,±2, and hence such
couplings can be provided by radio-frequency (rf) fields.

This paper is organized as follows. Section II reviews
the basic theory of shortcuts and the shortcut to three-state
STIRAP. The standard “shortcuts to adiabaticity” for five-
state STIRAP in the Jg = 2 → Je = 1 and Jg = 2 → Je = 2
systems are derived in Sec. III. Section IV presents the theory
of reduced shortcuts, which allow for easier implementation,
with examples in the Jg = 2 → Je = 1 and Jg = 2 → Je = 2
systems. Discussion of the implementations and the applica-
tions is provided in Sec. V, with further examples of reduced
shortcuts. The conclusions are summarized in Sec. VI.

II. SHORTCUTS IN STIRAP: BACKGROUND

A. Shortcuts: General

We wish to solve the Schrödinger equation,

ih̄|ċ(t )〉 = H(t )|c(t )〉, (1)

for a system of N states |ψ1〉, |ψ2〉, . . . , |ψN 〉, with probability
amplitudes ck: |c(t )〉 = [c1(t ), c2(t ), . . . , cN (t )]T . Hereafter
the overdot denotes the time derivative. Let the eigenvalues of
H(t ) be denoted by λk (t ) and the corresponding (orthonormal-
ized) eigenvectors by |φk (t )〉 (k = 1, 2, . . . , N ). The latter are
also known as the adiabatic states and they form an alternative
basis (the adiabatic basis) in the N-dimensional Hilbert space.
The matrix formed of the eigenvectors of H(t ), viz.,

W(t ) = [|φ1(t )〉, |φ2(t )〉, . . . , |φN (t )〉], (2)

diagonalizes the Hamiltonian,

W(t )†H(t )W(t ) = diag[h̄λ1(t ), h̄λ2(t ), . . . , h̄λN (t )]. (3)

The transformation |c(t )〉 = W(t )|a(t )〉 casts the Schrödinger
equation into the form

ih̄|ȧ(t )〉 = Ha(t )|a(t )〉, (4)

where |a(t )〉 = [a1(t ), a2(t ), . . . , aN (t )]T is a vector com-
posed of the probability amplitudes of the adiabatic states and

Ha(t ) = W(t )†H(t )W(t ) − ih̄W(t )†Ẇ(t ) (5)

is the Hamiltonian in the adiabatic basis. The first term on
the right-hand side is the diagonal matrix (3), and the second
term is a matrix comprising the nonadiabatic couplings, i.e.,
the couplings between the adiabatic states −ih̄〈φk (t )|φ̇n(t )〉.
Adiabatic evolution occurs when the system remains in the
same adiabatic state in which it is initially. The condition for
this is that all nonadiabatic couplings linked to this adiabatic
state are negligibly small compared to the difference between
its eigenvalue and any other eigenvalue, viz.,

|−i〈φk (t )|φ̇n(t )〉| � |λk (t ) − λn(t )|. (6)
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Nonzero nonadiabatic couplings lead to population leaks
(nonadiabatic losses) from the populated adiabatic state and
ensuing loss of transfer efficiency.

In the “shortcut to adiabaticity” concept, an additional
term Hs(t ) is added to the original Hamiltonian in Eq. (1) to
obtain a new Hamiltonian H′(t ) = H(t ) + Hs(t ). The shortcut
term Hs(t ) is chosen such that in the basis of the eigenstates
|φk (t )〉 (k = 1, 2, . . . , N ) of the original Hamiltonian H(t ) the
nonadiabatic couplings −ih̄〈φk (t )|φ̇n(t )〉 are canceled by the
additional terms coming from the shortcut Hs(t ). Specifically,
by replacing H(t ) by H′(t ) in Eq. (5) we find

H′
a(t ) = W(t )†[H(t ) + Hs(t )]W(t ) − ih̄W(t )†Ẇ(t ). (7)

The “shortcuts to adiabaticity” approach imposes the
condition

W(t )†Hs(t )W(t ) = ih̄W(t )†Ẇ(t ). (8)

Therefore the shortcut reads

Hs(t ) = ih̄Ẇ(t )W(t )†, (9)

and it leads to the diagonal matrix

H′
a(t ) = W(t )†H(t )W(t ); (10)

see Eq. (3).
It is important to note that this cancellation happens in the

adiabatic basis of the original Hamiltonian H(t ), and not in
the adiabatic basis of the new Hamiltonian H′(t ). Therefore,
the resulting evolution, generated by the new Hamiltonian
H′(t ) is nonadiabatic. Nonetheless, this approach produces
a quantum control method for complete population transfer,
which can be useful in certain situations.

In general, the shortcut term Hs(t ) can give contributions
to all elements of the new Hamiltonian H′(t ), thereby creating
a rather messy picture. Shortcut couplings between various
states may be difficult, or even impossible, to implement. In
some special cases, to be considered here, a smart choice of
Hs(t )—different from the prescription of Eq. (9)—can lead to
feasible physical implementations, still maintaining very high
efficiency of the process.

B. Shortcut to three-state STIRAP

The standard STIRAP process operates in a resonant three-
state chainwise-connected system, for which the Hamiltonian
reads

H = 1

2
h̄

⎡
⎣ 0 �P 0

�P 0 �S

0 �S 0

⎤
⎦, (11)

where �P is the (pump) Rabi frequency of the coupling
between states 1 and 2, and �S is the (Stokes) Rabi frequency
for the transition 2 ↔ 3; see Fig. 1. Both �P(t ) and �S (t ) are
assumed real and positive unless stated otherwise. The system
is initially in state 1 and the objective is to transfer the popu-
lation to state 3. When writing the Hamiltonian in Eq. (11) it
is assumed that the rotating-wave approximation (RWA) has
been made, which means that the rapidly oscillating terms, if
present in the electric-dipole coupling expressions, have been
averaged out and dropped, and only the slowly varying field
amplitudes have been left [49]. As discussed in Ref. [49], such

rapidly oscillating terms always emerge for linearly polarized
driving fields. However, for circularly polarized fields, as in
the two main systems considered in Secs. III and IV, such
terms do not arise and RWA is not needed [49], an issue which
is often misunderstood.

The eigenvalues of the Hamiltonian (11) are λ0 = 0, λ± =
±�(t )/2, where �(t ) =

√
�P(t )2 + �S (t )2 is the rms Rabi

frequency. In terms of the mixing angle θ defined by

θ (t ) = arctan
�P(t )

�S (t )
, (12)

the eigenvectors of the Hamiltonian (11) read

|φ0(t )〉 = [cos θ (t ), 0,− sin θ (t )]T , (13a)

|φ+(t )〉 = [sin θ (t ), 1, cos θ (t )]T /
√

2, (13b)

|φ−(t )〉 = [sin θ (t ),−1, cos θ (t )]T /
√

2. (13c)

For counterintuitively ordered pulses—Stokes before
pump—the mixing angle θ (t ) changes from 0 initially
to π/2 in the end. Correspondingly, the zero-eigenvalue
eigenstate |φ0(t )〉 changes from [1, 0, 0]T = ψ1 initially to
[0, 0,−1]T = −ψ3 in the end, thereby providing an adia-
batic connection between states 1 and 3. If the evolution is
adiabatic, then the system will remain in the adiabatic state
|φ0(t )〉 at all times and the population will pass from state 1
to state 3. An added bonus of STIRAP is that state |φ0〉 has
no component of the middle state 2, which is usually a lossy
state; hence the name “dark” state for |φ0(t )〉. Therefore, in the
adiabatic limit no population loss occurs during the population
transfer process if states 1 and 3 are ground or metastable, as
they usually are.

In the general nonadiabatic regime, there exist nonadia-
batic couplings ±iθ̇/

√
2 between the dark state and the other

two adiabatic states which generate population leaks from the
dark state |φ0(t )〉 with an ensuing loss of population transfer
efficiency. In order to suppress them, one demands the (local)
adiabatic condition �(t ) 	 θ̇ (t ). By integrating over time,
one finds the (global) adiabatic condition A 	 π , where A =∫ ∞
−∞ �(t )dt is the rms pulse area. Hence, large pulse areas are

needed for high population transfer efficiency.
To this end, Unanyan et al. [10] proposed to add a Q field,

which shortcuts the transition 1 ↔ 3, as shown in Fig. 1. The
Q field has a phase shift of π/2 relative to the P and S fields.
The Hamiltonian becomes

H′ = 1

2
h̄

⎡
⎣ 0 �P i�Q

�P 0 �S

−i�Q �S 0

⎤
⎦. (14)

Furthermore, if [10]

�Q(t ) = 2θ̇ (t ), (15)

then the nonadiabatic coupling is completely canceled by the
Q field. Then the system will stay in the dark state |φ0(t )〉
and the population transfer 1 → 3 will take place with unit
probability—this is an exact rather than approximate result.
It is easy to verify that Eqs. (14) and (15) are exactly what
the general procedure of Eq. (9) prescribes. Figure 1 (bottom)
illustrates the shortcut pulse for Gaussian-shaped P and S
pulses.
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FIG. 2. M-shaped five-state chainwise-connected system formed
by the magnetic sublevels mg = ±2, 0 of a ground level with an
angular momentum Jg = 2 and me = ±1 of an excited level with
an angular momentum Je = 1. The transitions mg = −2 ↔ me = −1
and mg = 0 ↔ me = +1 are driven by a σ+ polarized laser field,
while the transitions mg = 0 ↔ me = −1 and mg = +2 ↔ me = +1
are driven by a σ− polarized laser field.

In the next two sections I extend the three-state shortcut-
STIRAP to a STIRAP-like process in five-state chainwise-
connected systems of practical significance.

III. MULTISTATE STIRAP: STANDARD “SHORTCUTS
TO ADIABATICITY”

I consider the simplest, resonant version of multistate
STIRAP, which provides the highest speed of population
transfer. It has been shown that in the resonant case STI-
RAP is always possible in systems with an odd number
of states [50–53], while it is impossible in systems with
an even number of states [52–55]. In the off-resonance
case, STIRAP-like population transfer can take place for
both even and odd number of states if the detunings sat-
isfy certain inequalities [53,56]. Here I consider two cases
of resonantly coupled five-state systems, which have en-
joyed significant experimental interest, but the ideas pre-
sented below can be applied to other multistate systems
as well.

A. System

Consider the five-state chainwise-connected system
formed of the sublevels mg = 0,±2 of a ground (lower)
level with an angular momentum Jg = 2 and the sublevels
me = ±1 of an excited (upper) level with Je = 1 driven by
two left (σ−) and right (σ+) circularly polarized laser fields;
see Fig. 2. The Hamiltonian driving this system reads

H = 1

2
h̄

⎡
⎢⎢⎢⎢⎢⎣

0 �−1
−2 0 0 0

�−1
−2 0 �−1

0 0 0

0 �−1
0 0 �1

0 0
0 0 �1

0 0 �1
2

0 0 0 �1
2 0

⎤
⎥⎥⎥⎥⎥⎦

, (16)

where �me
mg

is the Rabi frequency of the coupling between
sublevels mg and me. Hereafter the following notation is
adopted: a subscript relates to the lower (ground) state and a

superscript relates to the upper (excited) state. Therefore, �me
mg

means the Rabi frequency of the coupling between the lower
sublevel mg and the upper sublevel me, while �m′

g,m
′′
g

means
the Rabi frequency of the (shortcut) coupling between two
lower sublevels with m′

g and m′′
g ; see below. The transitions

mg = −2 ↔ me = −1 and mg = 0 ↔ me = 1 are driven by
the σ+ field, while the transitions mg = 0 ↔ me = −1 and
mg = 2 ↔ me = 1 are driven by the σ− field; see Fig. 2. The
Rabi frequencies are proportional to the respective Clebsch-
Gordan coefficients, �−1

−2 = ξ−1
−2 �P, �−1

0 = ξ−1
0 �S , �1

0 =
ξ 1

0 �P, �1
2 = ξ 1

2 �S , where �P and �S are the Rabi frequency
“units” associated with the σ+ and σ− fields, respectively.

For the Jg = 2 ↔ Je = 1 system, we have ξ−1
−2 =

√
3
5 , ξ−1

0 =√
1

10 , ξ 1
0 =

√
1

10 , ξ 1
2 =

√
3
5 . For the Jg = 2 ↔ Je = 2 system,

the linkage pattern is the same but the Clebsch-Gordan co-

efficients are different: ξ−1
−2 = −

√
1
3 , ξ−1

0 =
√

1
2 , ξ 1

0 = −
√

1
2 ,

ξ 1
2 =

√
1
3 .

The eigenvalues of the Hamiltonian (16) read

λ0 = 0, (17a)

λ−− = −�
√

7 − r

4
√

5
, λ+− = �

√
7 − r

4
√

5
, (17b)

λ++ = �
√

7 + r

4
√

5
, λ−+ = −�

√
7 + r

4
√

5
, (17c)

for Jg = 2 ↔ Je = 1, and

λ0 = 0, (18a)

λ−− = −�
√

5 − s

4
√

3
, λ+− = �

√
5 − s

4
√

3
, (18b)

λ++ = �
√

5 + s

4
√

3
, λ−+ = −�

√
5 + s

4
√

3
, (18c)

for Jg = 2 ↔ Je = 2. Here � =
√

�2
P + �2

S , r =√
13 + 12 cos 4θ , and s = √

5 − 4 cos 4θ . The mixing angle
θ is introduced by Eq. (12). Note that 0 � θ (t ) � π/2.
Obviously, the relations λ−+ < λ−− < λ0 < λ+− < λ++
apply in both cases due to r > 0 and s > 0.

The eigenstates |φxy(t )〉 of the Hamiltonian (16) corre-
sponding to the eigenvalues λxy of Eqs. (17) or (18) with
x, y = ± are too cumbersome to be presented here but they
are straightforward to calculate. The (normalized) dark state
reads

|φ0〉 = [
√

2 cos2 θ, 0,−√
3 sin 2θ, 0,

√
2 sin2 θ ]T

√
3 − cos 4θ

(19)

for Jg = 2 ↔ Je = 1 and

|φ0〉 = [
√

6 cos2 θ, 0, sin 2θ, 0,
√

6 sin2 θ ]T

√
5 + cos 4θ

(20)

for Jg = 2 ↔ Je = 2. If the S (σ−) pulse precedes the P (σ+)
pulse, the dark state in both cases will be equal to state
|mg = −2〉 initially (θ = 0) and state |mg = 2〉 in the end
(θ = π/2), thereby providing the adiabatic path for complete
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population transfer from |mg = −2〉 to |mg = 2〉 in the adia-
batic limit.

The nonadiabatic couplings χxy = −ih̄〈φxy(t )|φ̇0(t )〉 be-
tween the dark state and the other four eigenstates of the
Hamiltonian read

χ−− = χ+− = − i
√

6 (1 + 4 cos 2θ + r) cos θ√
(3 − cos 4θ )(7 − r)(r2 + 5r cos 2θ )

,

(21a)

χ++ = χ−+ = − i
√

6 (1 + 4 cos 2θ − r) cos θ√
(3 − cos 4θ )(7 + r)(r2 − 5r cos 2θ )

,

(21b)

for Jg = 2 ↔ Je = 1 and

χ−− = χ+− = − i
√

6 (3 − 4 cos 2θ + s) cos θ√
(5 + cos 4θ )(5 − s)(s2 − s cos 2θ )

,

(22a)

χ++ = χ−+ = − i
√

6 (3 − 4 cos 2θ − s) cos θ√
(5 + cos 4θ )(5 + s)(s2 + s cos 2θ )

,

(22b)

for Jg = 2 ↔ Je = 2.
Now the objective is to eliminate these nonadiabatic cou-

plings by adding shortcut fields on the direct transitions
between the magnetic sublevels of the same level.

B. Standard prescription for shortcuts (type I)

The standard prescription of Eq. (9) leads to the shortcut
Hamiltonian

H′
s = 1

2
h̄

⎡
⎢⎢⎢⎢⎢⎣

0 0 i�−2,0 0 i�−2,2

0 0 0 i�−1,1 0
−i�−2,0 0 0 0 i�0,2

0 −i�−1,1 0 0 0
−i�−2,2 0 −i�0,2 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

(23)
where

�−2,0 =
√

6 (34 + 29 cos 2θ + 26 cos 4θ + 11 cos 6θ )

(3 − cos 4θ )(13 + 12 cos 4θ )
θ̇ ,

(24a)

�0,2 =
√

6 (34 − 29 cos 2θ + 26 cos 4θ − 11 cos 6θ )

(3 − cos 4θ )(13 + 12 cos 4θ )
θ̇ ,

(24b)

�−2,2 = − 4(1 + 9 cos 4θ ) sin 2θ

(3 − cos 4θ )(13 + 12 cos 4θ )
θ̇ , (24c)

�−1,1 = 10

13 + 12 cos 4θ
θ̇ , (24d)

for Jg = 2 ↔ Je = 1, and

�−2,0 =
√

6 (10 + 9 cos 2θ − 14 cos 4θ − cos 6θ )

(4 cos 4θ − 5)(cos 4θ + 5)
θ̇ , (25a)

�0,2 =
√

6 (10 − 9 cos 2θ − 14 cos 4θ + cos 6θ )

(4 cos 4θ − 5)(cos 4θ + 5)
θ̇ , (25b)

FIG. 3. Top: Transitions driven by the pump, Stokes, and short-
cut pulses of type I, Eq. (23). Middle: Pulse shapes of the pump (P),
Stokes (S) and the four shortcut pulses of Eqs. (24) for Gaussian P
and S shapes for the Jg = 2 ↔ Je = 1 system. Bottom: The same but
for the Jg = 2 ↔ Je = 2 system, Eqs. (25).

�−2,2 = 12(5 − 3 cos 4θ ) sin 2θ

(4 cos 4θ − 5)(cos 4θ + 5)
θ̇ , (25c)

�−1,1 = 6

4 cos 4θ − 5
θ̇ , (25d)

for Jg = 2 ↔ Je = 2. Therefore, as many as four different
shortcut fields are required to satisfy the prescription of
Eq. (9). These pulse shapes are displayed in Fig. 3 for Gaus-
sian pump and Stokes pulses

�P = �0 exp[−(t − τ/2)2/T 2], (26a)

�S = �0 exp[−(t + τ/2)2/T 2], (26b)

023515-5



NIKOLAY V. VITANOV PHYSICAL REVIEW A 102, 023515 (2020)

where T is the characteristic pulse duration and τ is the pulse
delay. In the numeric simulations shown in the figures below,
the delay is taken as τ = T and the peak amplitude of these
pulses is taken as �0 = 10

√
π/T ; then the pulse areas are

AP,S = ∫ ∞
−∞ �P,S (t )dt = 10π . These values make the evolu-

tion nearly adiabatic, but not perfectly adiabatic, because the
nonadiabatic coupling is reduced but not eliminated.

The shortcuts derived above ensure that if the five-state
system is initially in any adiabatic state |φk (t )〉 then it will
remain in it throughout the evolution. The price to pay is
the necessity of having as many as four additional shortcut
fields of Eqs. (24) or (25), which is a rather large increase
compared to the single shortcut field needed in three-state
STIRAP, Fig. 1. Actually, this is an overkill for the problem
posed here—complete population transfer from state mg =
−2 to state mg = 2—because the population transfer proceeds
through just a single adiabatic state: the dark state |φ0(t )〉.
In order to achieve this objective, it is sufficient to can-
cel only the nonadiabatic couplings χxy = −ih̄〈φxy(t )|φ̇0(t )〉,
with x, y = ±, related to the dark state |φ0(t )〉; see Eqs. (21)
or (22). This approach, which leads to fewer shortcut fields, is
considered below.

IV. MULTISTATE STIRAP: REDUCED SHORTCUTS

A. Derivation of reduced shortcuts

We start from Eq. (8), the fulfillment of which ensures
the cancellation of all nonadiabatic couplings, contained
in the matrix on the right-hand side of this equation. Following
the arguments above, we wish to cancel only the nonadiabatic
couplings connected to the dark state |φ0(t )〉. By recalling the
composition of the transformation matrix W(t ) in Eq. (2) we
take in Eq. (8) only the row of W(t )† composed of 〈φ0(t )| to
find

〈φ0(t )|Hs(t )W(t ) = ih̄〈φ0(t )|Ẇ(t ), (27)

and hence

〈φ0(t )|Hs(t ) = ih̄〈φ0(t )|Ẇ(t )W(t )†. (28)

After Hermitian conjugation we obtain

Hs(t )†|φ0(t )〉 = −ih̄W(t )Ẇ(t )†|φ0〉. (29)

This equation represents a set of linear algebraic equations
from which one can find Hs(t ). I present below two solutions
to Eq. (29) which involve just two shortcut fields, rather than
four as in the standard prescription of Eqs. (24).

I note here that the recipe for reduced shortcuts outlined
above provides a very simple and straightforward approach
to the derivation of such shortcuts. Alternatively, one can use
the procedure proposed by Demirplak and Rice [12] (see also
[16]), which is a bit more involved although it may lead to
the same results. The recipe used here allows one to explicitly
select which transitions to be shortcut and look for solutions
under such restrictions. Such a choice, instead of a purely
mathematical derivation, is physically more intuitive, which
is beneficial for experimental implementations.

FIG. 4. Top: Transitions driven by the pump, Stokes and shortcut
pulses of type II, Eq. (30). Middle: Pulse shapes of the pump (P),
Stokes (S) and the two shortcut pulses of Eqs. (31) for Gaussian P
and S shapes for the Jg = 2 ↔ Je = 1 system. Bottom: The same but
for the Jg = 2 ↔ Je = 2 system, Eqs. (32).

B. Shortcuts of type II

Consider two independent shortcut couplings between the
adjacent dark-state sublevels produced by two shortcut fields
(type II shortcuts). For our system, consider the two shortcut
couplings �−2,0 on the transitions mg = −2 ↔ mg = 0 and
�0,2 on the transition mg = 0 ↔ mg = 2, as shown in Fig. 4
(top). They give rise to the Hamiltonian

H′′
s = 1

2
h̄

⎡
⎢⎢⎢⎢⎢⎣

0 0 i�−2,0 0 0
0 0 0 0 0

−i�−2,0 0 0 0 i�0,2

0 0 0 0 0
0 0 −i�0,2 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (30)
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FIG. 5. Time evolution of the transition probability P−2→2 for the
Jg = 2 ↔ Je = 1 system. Solid curve: with the shortcuts (31) as in
Fig. 4. Dashed curve: no shortcuts. The P and S pulses are Gaussian,
Eq. (26).

The solution of Eq. (29) for �−2,0 and �0,2 reads

�−2,0 = 4

√
2

3

2 + cos 2θ

3 − cos 4θ
θ̇ , (31a)

�0,2 = 4

√
2

3

2 − cos 2θ

3 − cos 4θ
θ̇ , (31b)

for Jg = 2 ↔ Je = 1, and

�−2,0 = −4
√

6
2 − cos 2θ

5 + cos 4θ
θ̇ , (32a)

�0,2 = −4
√

6
2 + cos 2θ

5 + cos 4θ
θ̇ , (32b)

for Jg = 2 ↔ Je = 2. For Gaussian P and S pulse shapes, the
shortcut pulses are shown in Fig. 4. The time evolution of the
transition probability P−2→2 for the Jg = 2 ↔ Je = 1 system
is shown in Fig. 5. Without the shortcuts the evolution is not
adiabatic and the transition probability P−2→2 reaches only
about 80%. With the shortcut fields the transfer efficiency
reaches 100%. Note that a possible coupling generated by
the shortcut fields on the upper transition me = −1 ↔ me =
+1 has no effect because the dark state does not contain
these sublevels.

C. Shortcuts of type III

Let us now assume that there are three shortcut couplings
between the dark-state sublevels produced by two shortcut
fields: one field generates the two couplings between the
adjacent sublevels and another field generates the coupling
between the two end sublevels (type III shortcuts). In our
system, let us assume that two shortcut couplings are equal,
�−2,0(t ) = �0,2(t ), and the other shortcut �−2,2(t ), which
couples mg = −2 and mg = +2 directly, is independent; see
Fig. 6 (top). The shortcut Hamiltonian reads

H′′′
s = 1

2
h̄

⎡
⎢⎢⎢⎢⎢⎣

0 0 i�−2,0 0 i�−2,2

0 0 0 0 0
−i�−2,0 0 0 0 i�0,2

0 0 0 0 0
−i�−2,2 0 −i�0,2 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (33)

FIG. 6. Top: Transitions driven by the pump, Stokes and shortcut
pulses of type III, Eq. (33). Middle: Pulse shapes of the pump (P),
Stokes (S) and the two shortcut pulses of Eqs. (34) for Gaussian P
and S shapes for the Jg = 2 ↔ Je = 1 system. Bottom: The same but
for the Jg = 2 ↔ Je = 2 system, Eqs. (35).

The solution of Eq. (29) for �−2,0 and �−2,2 reads

�−2,0 = �0,2 = 4
√

6

3 − cos 4θ
θ̇ , (34a)

�−2,2 = 8 sin 2θ

3 − cos 4θ
θ̇ , (34b)

for Jg = 2 ↔ Je = 1, and

�−2,0 = �0,2 = − 4
√

6

5 + cos 4θ
θ̇ , (35a)

�−2,2 = − 8 sin 2θ

5 + cos 4θ
θ̇ , (35b)

for Jg = 2 ↔ Je = 2. For Gaussian P and S pulse shapes, the
shortcut pulses are shown in Fig. 6.
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of 

FIG. 7. Population transfer efficiency as a function of the phase
of the field �0,2 for type-II shortcuts for Jg = 2 ↔ Je = 1 system
(solid) and Jg = 2 ↔ Je = 2 system (dashed). The P and S pulses
are Gaussian, Eq. (26).

V. DISCUSSION

A. Robustness to parameter variations

It should be pointed out that the shortcut multistate STI-
RAP technique presented above is strongly dependent on
the accurate implementation of the shortcut fields. Compared
to the conventional adiabatic multistate STIRAP, the short-
cut technique achieves much higher efficiency of population
transfer at the expense of loss of robustness. Indeed, the
shortcut technique is much more sensitive to parameter vari-
ations than conventional STIRAP, which is readily found in
numerical simulations.

A notable feature of the shortcut approach is that the addi-
tion of shortcut fields creates closed-loop patterns compared
to the initial open chain. This brings phase sensitivity which
is absent in the original adiabatic scheme where the popula-
tion transfer efficiency does not depend on the field phases
(unless they fluctuate which would damage the coherence).
This phase sensitivity has been turned to an advantage in a
recent proposal for shortcut-based chiral resolution [57], but
generally it is a potential problem and one should be aware of
it and be able to control it very well.

To this end, Fig. 7 shows the dependence of the population
transfer efficiency P−2→2 as a function of the phase of the
shortcut field �0,2 for type-II shortcuts, as in Fig. 4. For
a phase of π/2 the transfer efficiency is 100% but away
from this value it rapidly decreases even below the value of
80% achieved by standard STIRAP without any shortcuts;
see Fig. 5.

Another feature of the shortcut approach is the necessity to
have well-defined pulse areas of the shortcut fields. Figure 8
shows the dependence of the population transfer efficiency
P−2→2 on the amplitude of the shortcut field �−2,0 for type-II
shortcuts, as in Fig. 4. Here it is assumed that the shortcut
�−2,0 is replaced by ξ�−2,0, and P−2→2 is plotted versus the
imbalance parameter ξ . For ξ = 1, which is the ideal case,
the transfer efficiency is 100%, but for ξ �= 1 the transfer
efficiency decreases.

Figure 9 shows the population transfer efficiency P−2→2

versus the amplitude of the Stokes pulse S, again for type-II
shortcuts, as in Fig. 4. It is assumed that the Stokes field S is

FIG. 8. Population transfer efficiency as a function of the am-
plitude of the field �−2,0 for type-II shortcuts for Jg = 2 ↔ Je = 1
system (solid) and Jg = 2 ↔ Je = 2 system (dashed). The P and S
pulses are Gaussian, Eq. (26).

replaced by βS, and P−2→2 is plotted versus the imbalance
parameter β. For β = 1, which is the balanced case, the
transfer efficiency is 100%, but away from this value the
transfer efficiency significantly drops.

Finally, the shortcuts require accurate pulse shaping, as
can easily be verified in simulations. This is an additional
condition which is absent in standard multistate STIRAP.

To conclude, using shortcuts makes it possible to increase
the population transfer efficiency to 100%, something impos-
sible with the usual STIRAP fields. However, this feature does
not come for free because shortcuts require not only more
fields on the table but also brings sensitivity to parameter
variations in the pulse shapes, amplitudes, and phases. The
benefits of the shortcuts are strongly dependent on the ability
to control these parameters with high accuracy.

In this section, I considered some issues of the robustness
of the type-II solution. Similar arguments, and similar figures,
apply to the type-III solution, which are omitted for the sake
of brevity.

B. Feasibility and implementation issues

Any theoretical proposal should always estimate various
implementation issues. The direct “shortcut-to-adiabaticity”

FIG. 9. Population transfer efficiency as a function of the ampli-
tude of the Stokes field S for type-II shortcuts for Jg = 2 ↔ Je = 1
system (solid) and Jg = 2 ↔ Je = 2 system (dashed). The P and S
pulses are Gaussian, Eq. (26).
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approach of type-I shortcuts, Fig. 3, requires four additional
very well controlled shortcut fields and it is clearly the most
difficult one to implement in a real experiment. The other two
proposals, each requiring two shortcut fields, are obviously
the better candidates. The reduced complexity stems from the
fact that only the nonadiabatic couplings related to the dark
state are canceled. The other nonadiabatic couplings between
the other four adiabatic states are irrelevant in the present
context of complete population transfer between the two ends
of the five-state chain because only the dark state is populated
in the ideal case.

The second approach of type-II shortcuts, Fig. 4, demands
very well controlled shortcut fields on the direct transitions
−2 ↔ 0 and 0 ↔ 2. These transitions can be driven by rf
fields after splitting the magnetic sublevels by a magnetic
field. If the magnetic field is not sufficiently strong, only
the first-order Zeeman will show up and the two transitions
will have nearly the same transition frequency, thereby ruling
out selective driving. One possibility is to use a stronger
magnetic field and then the second-order Zeeman shift will
split the two transition frequencies. The other possibility is
to apply an electric field and the combined action of the
linear Zeeman effect and the quadratic Stark effect will make
the two transition frequencies different again. Note that the
application of magnetic and electric fields and the ensuing
energy shifting of the magnetic sublevels imply that one has
to adjust the frequencies of the original driving fields so that
they remain on resonance with the respective transitions.

The third approach of type-III shortcuts, Fig. 6, demands
only a weak magnetic field to split the sublevels 0,±2 because
it assumes that the transitions −2 ↔ 0 and 0 ↔ 2 are driven
by the same field. The challenge here is generating a well
controlled direct coupling between states −2 and 2. The
transition −2 ↔ 2 is of much higher order than the ±2 ↔ 0
transitions and hence much weaker. However, one can still
achieve an effecting coupling �−2,2 by using two off-resonant
fields on the ±2 ↔ 0 transitions. By adiabatically eliminating
state 0 one obtains an effective coupling for the transition
−2 ↔ 2.

All approaches I, II, and III considered here require to
couple magnetic sublevels with �m = ±2 or even 4. One
possibility to obtain such couplings is to use higher-order
processes, which, however, may require very strong driving
fields. The most feasible approach is to couple the sublevels
with, e.g., mg = 0 and mg = 2 (or mg = −2) with two single-
photon off-resonant transitions via a sublevel with m′ = 1
(or m′ = −1). After adiabatic elimination of the off-resonant
sublevel one is left with an effective two-photon coupling
between mg = 0 and mg = 2 (or mg = −2).

This work has been mainly concerned with the σ+σ−
configuration. It is straightforward to extend the method to
the σπ configuration too [24–26,45]; see Fig. 10. For ex-
ample, σ+π driving of the Jg = 2 ↔ Je = 2 system starting
in mg = 0 will create a five-state chain mg = 0 ↔ me = 1 ↔
mg = 1 ↔ me = 2 ↔ mg = 2 (owing to the fact that the mg =
0 ↔ me = 0 transition is forbidden, as used in Refs. [24–27]).

The Clebsch-Gordan coefficients in this system are ξ 1
0 =

√
1
2 ,

ξ 1
1 =

√
1
6 , ξ 2

1 =
√

1
3 , ξ 2

2 =
√

2
3 . The shortcuts are straightforward

FIG. 10. Top: Transitions for the Jg = 2 ↔ Je = 2 system pre-
pared initially in state |mg = 0〉 and driven by σ+ (pump) and π

(Stokes) polarized laser fields and two shortcut rf fields. Bottom:
Transitions for the Jg = 3

2 ↔ Je = 1
2 system prepared initially in

state |mg = − 3
2 〉 and driven by σ+ (pump) and π (Stokes) polarized

laser fields and two shortcut rf fields. Magnetic sublevels which
are not coupled by the driving fields are not shown for the sake of
simplicity.

to calculate. For example, the ones of type II shown in Fig. 10
(top) are

�0,1 = 4
√

3

3 − cos4 θ
θ̇ , (36a)

�1,2 = 2
√

2(3 − cos2 θ )

3 − cos4 θ
θ̇ . (36b)

Another example is the σ+π driving of the Jg = 3
2 ↔

Je = 1
2 system starting in mg = − 3

2 sublevel which will create
another five-state chain; see Fig. 10 (bottom). The Clebsch-

Gordan coefficients are ξ
−1/2
−3/2 =

√
1
2 , ξ

−1/2
−1/2 = −

√
1
3 , ξ

1/2
−1/2 =√

1
6 , ξ 1/2

1/2 = −
√

1
3 . The shortcuts of type II in Fig. 10 (bottom)

read

�− 3
2 ,− 1

2
= − 4

√
6

3 + cos4 θ
θ̇ , (37a)

�− 1
2 , 1

2
= −2

√
2(3 + cos2 θ )

3 + cos4 θ
θ̇ . (37b)

This paper has considered specific shortcuts to five-state
STIRAP only. Multistate STIRAP has been demonstrated in
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nine-state systems of magnetic sublevels in Jg = 4 ↔ Je = 3
and Jg = 4 ↔ Je = 4 too [17–19,21,24–27]. The challenge
to implement shortcuts in such systems is purely algebraic
because the shortcuts cannot be derived in a simple analytic
form. However, numeric derivation of the shortcuts in such
systems following the procedures described above should be
fairly straightforward.

VI. CONCLUSIONS AND OUTLOOK

In this paper three types of shortcuts which eliminate
the nonadiabatic couplings in multistate STIRAP and enable
population transfer with unit efficiency have been derived.
Specifically, two five-state systems formed of the magnetic
sublevels of two levels with angular momenta Jg = 2 and
Je = 1 or Je = 2 driven by two delayed left and right circularly
polarized laser pulses have been considered in detail. In the
adiabatic limit, which requires very large pulse areas, multi-
state STIRAP transfers the population adiabatically between
the two end states Mg = ±2 of the five-state chain via a dark
state, as in three-state STIRAP. For moderately large pulse
areas nonadiabatic couplings cause population leaks from the
dark state and erode the transfer efficiency.

The application of shortcut fields between the magnetic
sublevels belonging to the same level allows one to cancel
the nonadiabatic couplings and reach unit transfer efficiency.
Three shortcut choices have been studied here, all of which
admit simple analytic solutions for the shortcut fields. The
first one is obtained from the prescription of the “shortcut-to-
adiabaticity” approach and it prescribes four additional short-
cut fields. The second approach demands two shortcuts for the
transitions mg = −2 ↔ mg = 0 and mg = 0 ↔ mg = 2. The
last approach also assumes two different shortcut fields: one
acting simultaneously on the transitions mg = 0 ↔ mg = ±2
and another on the transition mg = −2 ↔ mg = 2.

All three approaches ensure a unit transfer efficiency
mg = −2 → mg = 2 but they have different experimental
complexity. The direct “shortcut-to-adiabaticity” approach
with its four additional shortcut fields is clearly very de-
manding, if possible at all in a real experiment. The second
approach requires the application of either a strong magnetic
field, so that the second-order Zeeman shift becomes pro-
nounced and allows for the separation of the two transitions
mg = 0 ↔ mg = ±2 in the frequency space, or the applica-
tion of both magnetic and electric fields. The third approach
requires the application of moderate magnetic field only but
it comes with the necessity to generate a well controlled
coupling between states mg = −2 and mg = 2.

The results in this paper can be of interest to applications
wherein high efficiency of population transfer is essential.
One such application is quantum information processing [46].
For example, the proposed method can be useful in population

shelving [58], which is a key part in some quantum-state
and quantum-gate tomography methods. Indeed, population
shelving must be implemented with fidelity exceeding the
quantum state or gate fidelity in order not to compromise the
measurement. Another application is STIRAP-based atomic
mirrors and beams splitters in atom optics [17–27]. A promis-
ing application of the proposed shortcut multistate STIRAP
is in the production of ultracold molecules from ultracold
atoms [30–44]. It starts with a mixture of two ultracold
atomic species at high phase space density, which are adia-
batically associated into a weakly bound Feshbach molecular
state. Then the Feshbach molecules are transferred into the
electronic, vibrational, and rotational ground state of the
molecules using STIRAP via an intermediate electronically
excited state, with a typical efficiency reported hitherto of
about 90%. Shortcuts can be helpful here both in three-state
and multistate STIRAP [34] because high transfer efficiency
is essential in order to preserve the phase-space density of
the ultracold mixture. Yet another application can be found in
the initialization of the clock state m = 0 in cesium fountain
frequency standards operating in the nK temperature range
where 97% efficiency has been reported by multistate STI-
RAP [45]. Cavity QED experiments can also benefit from
the high efficiency of shortcut multistate STIRAP, e.g., in
quantum-state mapping between multilevel atoms and cavity
light fields [28,29].

Another issue is worth mentioning. The five-state systems
considered here obviously look symmetric. Both systems are
amenable to the Morris-Shore transformation [59] in the case
when the two driving fields have the same time dependence
and they can be reduced to a pair of independent two-state
systems and a dark state [60]. For the different time de-
pendences here, however, even three-state STIRAP requires
some constraints in order to be reduced to a two-state system
on-resonance or near resonance [61,62]. (The large-detuning
case is trivial and not very interesting as it requires very large
pulse areas). More states make the dynamics even more com-
plicated. However, at least on resonance, a reduction of the
five-state system to a simpler system might be possible. This
topic is outside the scope of the present paper because such a
reduction is not needed for the derivation but it might be useful
in some invariant-based inverse engineering approaches [16].

Finally, this paper has focused on five-state systems formed
by the magnetic sublevels of angular momentum levels. The
same approach applies to more general systems of arbitrary
states if the fields driving the various transitions there can be
well controlled.
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