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Tailoring optical pulling forces with composite microspheres
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Optical pulling forces or tractor beams can pull particles against light propagation by redirecting the incident
photons forward. This is typically achieved using Bessel beams with very small half-cone angles, which
considerably limits their applicability. One can circumvent such an issue by using a superposition of plane
waves. In order to investigate optical pulling forces exerted by a pair of noncollinear plane waves, we develop
a theoretical framework based on Mie theory, Debye potentials, and Wigner rotation matrices. We apply this
framework to calculate the optical pulling force on metallodielectric composite particles, which we put forward
as an alternative material platform to optimize and tailor tractor beams. Indeed, we demonstrate that by adding
a few plasmonic inclusions to low-refractive-index dielectric particles of arbitrary sizes, we are able to produce
polarization-dependent optical pulling forces that cannot occur in the corresponding homogeneous particles.
Altogether, our findings not only provide innovative theoretical methods to compute optical pulling forces but
also provide strategies to tailor and optimize them, paving the way to increase their applicability.
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I. INTRODUCTION

Light exerts radiation pressure on matter due to momentum
exchange. Focused light beams exert an optical scattering
force (forward force due to radiation pressure), as well as
a gradient force (possibly along the backward direction) on
small particles owing to the inhomogeneity of the electromag-
netic field. As an example of application, in optical tweezers
a tightly focused beam is used for optical manipulation [1–4]
and optical rotation [5–9] with many applications [10–13].

On the other hand, a plane wave will always push a par-
ticle made of a passive medium along the forward direction.
However, under certain conditions spatially structured beams
can accelerate small particles along the direction opposite
to the light-propagation direction [14–18]. Negative optical
force or optical pulling force (OPF) occurs whenever illu-
minated particles are pulled towards the source due to the
momentum conservation. In contrast to the trapping force
in optical tweezers, the OPF can accelerate particles over
a long distance without defining an equilibrium position.
OPF has attracted considerable attention due to its many
applications such as optical sorting [19,20], self-assembling,
remote sampling [21,22], miniaturization of nanodevices [23],
and enantioselective manipulation [24–29] (see [30] for a
recent review). In particular, it was shown both theoretically
and experimentally that nondiffracting Bessel beams can pull
a subwavelength dielectric sphere [15,22,31]. Several ap-
proaches exist to demonstrate OPF on homogeneous dielectric
spherical particles using bichromatic fields [32] and multiple
plane waves [33,34] and with optical gain [35,36].

*rali.physicist@gmail.com

OPF can be achieved for weakly absorptive particles that
maximize forward scattering while minimizing backward
scattering [15,30,33,37]. Typically, it is easier to pull high-
refractive-index particles, especially in the size range close to
the laser wavelength λ. Particles made of Si, Ge, and GaAs
can be pulled even when they are very small, with radii in the
range R � 0.2 λ, because of the significant forward scattering
and negligible backscattering due to the strong coherent in-
terference between the electric and magnetic dipoles [33,34].
In contrast, particles made of lower-refractive-index materials
such as polystyrene and silica can be pulled only for relatively
larger radii R � 0.4 λ [15,22].

The angular distribution of Mie scattering is clearly a
key feature to achieve OPF. In that respect, progress in the
fields of metamaterials and plasmonics now allows for novel
strategies to tailor the interplay between electric and magnetic
multipoles to produce directional Mie scattering [15,33,38].
In particular, when considering composite microspheres, it
is possible to minimize backscattering by tuning the filling
fraction of inclusions [39,40].

In this work we show that metallodielectric composite
microspheres, with metallic inclusions embedded in a low-
index dielectric host, provide an optimal material platform
that allows for pulling forces in a size range well below
the laser wavelength, thus extending the applicability domain
of OPF towards smaller sizes and lower refractive indexes.
Specifically, we put forward a scheme using a superposition
of plane waves, in contrast to the traditional approach that
employs structured light beams. Our model describes the case
of two collimated Gaussian light beams with beam waists
much larger than the particle size that thus lead to long-range
optical forces. This is typically the case of paraxial beams as
we consider sphere radii smaller than or of the order of λ.

In order to consider our proposal, we develop an analytical
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FIG. 1. Schematic diagram of a particle illuminated by two
noncollinear plane waves with (a) transverse-electric (TE) and
(b) transverse-magnetic (TM) polarization. The angle between the
corresponding wave vectors is 2�.

framework to compute optical forces based on Mie theory,
Debye potentials, and Wigner rotation matrices and apply it
to situations such as the one depicted in Fig. 1.

This paper is organized as follows. Section II is devoted
to the derivation of our theoretical formalism, which is based
on Mie scattering theory combined with Wigner rotations.
In Sec. III, we present the numerical results for the OPF
on a metallodielectric composite. Finally, we summarize our
findings and conclusions in Sec. IV.

II. OPTICAL FORCE EXERTED BY A SUPERPOSITION
OF PLANE WAVES ON A MIE SPHERE

In the following we present our theoretical approach to the
optical force on a microsphere. We consider a superposition of
two linearly polarized noncollinear plane waves, as indicated
in Fig. 1. The corresponding wave vectors define the plane
shown in Fig. 1, with respect to which we define transverse-
electric (TE) and transverse-magnetic (TM) polarizations. We
assume that both plane waves are linearly polarized along the
same direction. The mixed case or a higher number of plane
waves can also be considered within our formalism. In order
to allow for arbitrary values of R/λ, our approach is based on
Mie scattering, implemented in terms of Debye potentials and
on Wigner rotations to build the desired scattering problem
from the standard case of axial incidence.

We start by writing the electric field corresponding to the
superposition of two incident plane waves propagating in the
nonmagnetic and nonabsorbing host medium:

Ein(r, t ) =
2∑

j=1

E0 ε̂ j ei(k j ·r−ωt ), (1)

where the polarization unit vectors ( j = 1, 2) are

ε̂ j (θ j, φ j ) = cos φ j θ̂ j − sin φ j φ̂ j . (2)

The wave vectors

k j = nh
ω

c

(
sin θ j cos φ j, sin θ j sin φ j, cos φ j

)
are written in terms of the speed of light in vacuum c and of
the host-medium refractive index nh = √

εh, where εh is the
relative permittivity. The spherical polar and azimuthal angles

θ j and φ j define the propagation directions with respect to
the z axis. When discussing specific examples, we will take
φ1 = 0 and φ2 = π for TM and φ1 = π/2 and φ2 = 3π/2 for
TE polarization, as depicted in Fig. 1.

We introduce the electric (E) and magnetic (M) Debye
potentials [41,42]

	E (r) =
∞∑


=1

(r · E)


(
 + 1)
, (3)

	M (r) =
∞∑


=1

(r · H)


(
 + 1)
. (4)

The electric and magnetic fields can be written in terms of the
Debye potentials as follows:

E = ∇ × ∇ × (r 	E ) + iωμ0 ∇ × (r 	M ), (5)

H = ∇ × ∇ × (r 	M ) − iωεhε0 ∇ × (r 	E ), (6)

where ε0 and μ0 are the vacuum permittivity and permeability,
respectively.

In order to derive the Debye potentials for a given plane
wave, we first consider a “primed” coordinate system such
that the z′ and x′ axes coincide with the propagation and
polarization directions, respectively. In such a system, we find
(omitting the time dependence from now on)

r̂ · E(r, θ ′, φ′) = E0 eikr cos θ ′
sin θ ′ cos φ′. (7)

The Debye potentials of a plane wave in the primed coor-
dinate system are then obtained from Eqs. (3), (4), and (7) by
expanding eikr cos θ ′

in terms of spherical waves:

	E
pw(r, θ ′, φ′) = E0

k

∞∑

=1

i
+1

√
π (2
 + 1)


(
 + 1)
j
(kr)

× [Y
,+1(θ ′, φ′) − Y
,−1(θ ′, φ′)], (8)

	M
pw(r, θ ′, φ′) = H0

k

∞∑

=1

i


√
π (2
 + 1)


(
 + 1)
j
(kr)

× [Y
,+1(θ ′, φ′) + Y
,−1(θ ′, φ′)], (9)

where H0 = √
εhε0/μ0 E0 and j
 and Y
,m denote the spherical

Bessel functions and the spherical harmonics, respectively
[43].

To describe an incident plane wave propagating along a
generic direction defined by the spherical angles θ j and φ j ,
we implement a rotation from the primed to the unprimed
coordinate system with the help of the Wigner rotation matrix
elements d


m,±1(θ j ) [44]. We then derive the Debye poten-
tials for the incident field by taking a superposition of the
plane-wave potentials (8) and (9) as in Eq. (1). The explicit
expressions are written as sums over 
 (for the total angular
momentum J2) and m (corresponding to Jz) of the form

∑

,m

≡
∞∑


=1


∑
m=−


.
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We find

	E
in(r, θ, φ) = i

E0

k

∑

,m

γ E

,m j
(kr)Y
,m(θ, φ), (10)

	M
in (r, θ, φ) = H0

k

∑

,m

γ M

,m j
(kr)Y
,m(θ, φ). (11)

The multipole coefficients γ E ,M

,m are written as a sum over the

plane waves j = 1, 2 and the photon helicity ε = ±1:

γ E ,M

m =

√
π (2
 + 1)


(
 + 1)
i


∑
j,ε

gE ,M (ε) e−iφ j (m−ε)d

m,ε(θ j ),

(12)
with gE (ε) = ε and gM (ε) = 1.

As we consider spherically symmetric particles, it is
straightforward to obtain the Debye potentials for the scat-
tered field Es by following the prescription outlined above:

	E
s (r, θ, φ) = i

E0

k

∑

,m

(−a
)γ E

,mh(1)


 (kr)Y
,m(θ, φ), (13)

	M
s (r, θ, φ) = H0

k

∑

,m

(−b
)γ M

,mh(1)


 (kr)Y
,m(θ, φ), (14)

where h(1)

 (kr) are the spherical Hankel functions of the first

kind [43]. The Mie coefficients a
 and b
 denote the scattering
amplitudes for electric and magnetic multipoles, respectively.
For a homogeneous dielectric sphere embedded in a nonab-
sorbing and nonmagnetic host medium, they are given by [45]

a
 = nsψ
(nsx)ψ ′

(x) − μsψ
(x)ψ ′


(nsx)

nsψ
(nsx)ξ ′

(x) − μsξ
(x)ψ ′


(nsx)
, (15)

b
 = μsψ
(nsx)ψ ′

(x) − nsψ
(x)ψ ′


(nsx)

μsψ
(nsx)ξ ′

(x) − nsξ
(x)ψ ′


(nsx),
(16)

where x = kR is the size parameter, ns is the relative refractive
index of the sphere with respect to the host medium, μs is the
relative magnetic permeability of the sphere, and ψ
 and ξ


are the Riccati-Bessel functions [43].
Once the total field E = Ein + Es is known in terms of

the Debye potentials for the incident and scattered fields, we
are able to obtain the optical force acting upon the dielectric
sphere by integration of the Maxwell stress tensor over a
spherical surface at infinity:

F = lim
r→∞

[
− r

2

∫
r(εhε0E2 + μ0H2)d�

]
. (17)

We choose our coordinate system with the z axis bisecting
the propagation directions as shown in Fig. 1: θ1 = θ2 = �,
where 2� is the angle between the two propagation directions.
As the two plane waves have equal amplitudes and the same
polarization, the optical force points along the z direction by
symmetry. Fz has two distinct contributions: the extinction
term Fe arises from cross terms of the form Ein · E∗

s (and
likewise for the magnetic field) and represents the rate of
linear momentum removal from the incident fields. Not all
of this momentum is transferred to the particle, as part of
it is carried away by the scattered fields. Thus, the second
contribution to the optical force Fs, which is quadratic in
Es and Hs, represents the negative of the rate of momentum

contained in the scattered electromagnetic fields. We find

Fz = Fs + Fe. (18)

The scattering contribution is obtained by writing Es and
Hs in terms of the Debye potentials as in Eqs. (5) and (6),
respectively, and then taking the asymptotic approximation
of the Hankel functions in (13) and (14) when evaluating the
Maxwell stress tensor surface integral (17):

Fs = εhε0E2
0

k2

∑

,m

Im

{

(
 + 2)

√
(
 + 1 − m)(
 + 1 + m)

(2
 + 1)(2
 + 3)

× [
a
a∗


+1γ
E

,mγ

E∗

+1,m + b
b∗


+1γ
M

l,m γ M∗

+1,m

]−im b
 a∗

γ

M

,mγ

E∗

,m

}
.

(19)

The extinction term results from interference between the
incident and scattered fields and reads

Fe =
√

πεhε0E2
0

2k2

∑

,m

∑
ε=±1

ε
√


(
 + 1)(2
 + 1)

× Re
[(

a∗

γ

E∗

,m + εb∗


γ
M∗

,m

)
Gε


,m

]
. (20)

Equation (20) contains an additional sum over the photon
helicity ε = ±1 and the associated coefficients

Gε

,m = i


2∑
j=1

cos � d

m,ε(�)e−i(m−ε)φ j .

Dipolar limit. In order to gain a more physical insight,
we compare the limiting values of our exact analytical ex-
pressions when kR � 1 with the known results for the force
on an induced dipole. Within the dipolar approximation, the
electromagnetic response is entirely captured by the induction
of electric and magnetic dipoles: p = ε0αeE and m = αmH,
where αe and αm denote the electric and magnetic polarizabil-
ities, respectively.

Such a model is obtained as a limiting case of Mie scatter-
ing for very small spheres, kR � 1, as long as the sphere is
magnetic or provided that the sphere refractive index is high
enough to satisfy the additional condition nskR 	 1 [45]. In
such cases, the leading contribution in the extinction term (20)
arises from both electric and magnetic dipole terms 
 = 1.

The corresponding Mie coefficients are related to the electric
and magnetic polarizabilities as follows:

a1 = −i
k3

6π
αe, b1 = −i

k3

6π
αm. (21)

Clearly, the extinction term (20) cannot provide a pulling
contribution as the total momentum removed from the inci-
dent waves points along the positive z axis in Fig. 1. Indeed,
the pulling force necessarily arises from the scattered field
carrying an excess linear momentum along the positive z axis.
Such an effect is captured by the scattering contribution (19),
whose leading-order term is proportional to b1a∗

1, represent-
ing the coherent interference between electric and magnetic
dipoles [33]. Together with the leading-order extinction terms,
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they lead to the dipolar force

Fz ≈ 2kεhε0E2
0

[
Im

(
αe cos �

εh
+ αm cos3 �

)

− 2k3

3εh
Re(αeα

∗
m) cos �

]
(22)

in the case of TE-polarized waves and to

Fz ≈ 2kεhε0E2
0

[
Im

(
αe cos3 �

εh
+ αm cos �

)

− 2k3

3εh
Re(αeα

∗
m) cos �

]
(23)

in the case of TM polarization. Such expressions are obtained
by neglecting the quadrupole and higher multipoles (
 � 2) in
(19) and (20) and using the explicit form of the Wigner matrix
elements d1

m,±1(�). They agree with known results [33,34] for
the dipolar regime.

In the case of very small nonmagnetic microspheres with
moderate refractive indexes, the magnetic dipole turns out
to be much smaller than the electric dipole and actually
comparable to the electric quadrupole term associated with
a2 (Rayleigh scattering regime) [45]. Thus, OPF cannot be
achieved in the Rayleigh limit, as the electric-magnetic dipole
interference term appearing in (22) and (23) would be miss-
ing.

In the next section, we discuss in more detail the validity
of the dipolar approximation by comparing the full evaluation
of the Mie series expressions (19) and (20) with the approxi-
mations (22) and (23) consisting of keeping only the dipolar
terms involving a1 and b1. We will confirm that the dipolar
approximation is more accurate for higher refractive indexes.
As expected, this is also the case allowing us to achieve OPF
with smaller particles.

III. RESULTS AND DISCUSSION

For the numerical examples discussed in this section, we
take the vacuum wavelength to be λ0 = 1064 nm. For the host
medium, we consider an aqueous solution with nh = 1.332.

We normalize the optical force to F0 = 2πnhI0/(k2c), where
I0 = √

εhε0/μ0 E2
0 /2 is the intensity of each incident plane

wave shown in Fig. 1.
In Fig. 2, we compare the exact results for the optical force

(solid line), calculated from Eqs. (18), (19), and (20), with the
dipolar approximations (22) and (23) (dashed line). For the
latter, the polarizabilities are calculated from (21) by taking
the full exact expressions for the Mie coefficients a1 and b1.

In Figs. 2(a) and 2(b), we consider a silicon sphere (re-
fractive index of 3.5) of radius R = 140 nm and plot the axial
force as a function of the half angle � between the two inci-
dent wave vectors, as shown in Figs. 1(a) and 1(b) for TE and
TM polarizations, respectively. Figures 2(a) and 2(b) show
that the dipolar approximation is capable of reproducing the
features of the exact curve in this example with a small sphere
and high refractive index. OPF is achieved in the interval
65◦ < � < 90◦ only in the case of TE polarization and is
explained by the coherent interference between electric and
magnetic dipoles, as discussed in connection with Eq. (22).

(e)

FIG. 2. Normalized optical force acting on Si or SiO2 micro-
spheres under illumination by two plane waves with the same inten-
sity and linear polarization. All panels show the result of the full Mie
calculation (solid lines) and of the dipolar approximation (dashed
lines). The polarization is TE in (a), (c), and (e) and TM in (b), (d),
and (f) (see Fig. 1). (a) and (b) Optical force as a function of the half
angle � for Si microspheres of radius 140 nm. (c) and (d) for Si and
(e) and (f) for SiO2 show the optical force as a function of sphere
radius for � = 78◦.

The maximum pulling force occurs at � = 78◦. In Figs. 2(c)–
2(e) we fix the incident angle at � = 78◦ and plot the force
as a function of the sphere radius R. Figures 2(c) and 2(d)
correspond to Si microspheres, whereas Figs. 2(e) and 2(f)
show the results for SiO2 microspheres, with refractive index
nSiO2 = 1.45. The polarization is TE in Figs. 2(c) and 2(e) and
TM in Figs. 2(d) and 2(f).

In the case of silicon, OPF is also achieved for TM polar-
ization, as shown in Fig. 2(d). In contrast to the TE config-
uration, the pulling effect here is not captured by the dipolar
curve and is then not related to interference between electric
and magnetic dipoles. Instead, it results from contributions of
higher multipoles yielding an enhancement of scattering along
the z axis bisecting the directions of incidence which can be
understood only within the full Mie theory as it takes place at
larger radii.

As expected, the dipolar approximation fails to describe the
behavior of the optical force on SiO2 microspheres in the size
range shown in Figs. 2(e) and 2(f). Since its refractive index
is lower than in the case of silicon, very small SiO2 spheres
behave as induced electric dipoles with a negligible magnetic
dipole contribution. As a consequence, the exact optical force
is mostly positive in the range shown in Figs. 2(e) and 2(f)
(except for a negligible pulling effect near R ∼ 320 nm for TE
polarization). In short, OPF is not found in the case of very
small SiO2 beads as the scattering angular distribution resem-
bles the electric dipole (Rayleigh) distribution and hence does
not favor the forward direction.

To circumvent this issue we put forward the strategy of
doping the SiO2 spheres with gold spherical inclusions (radius
a) in order to excite electric and magnetic dipoles simultane-
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FIG. 3. Normalized optical force as a function of sphere radius
for (a) homogeneous SiO2 microspheres and (b) composite SiO2

microspheres with gold inclusions (filling fraction f = 0.18). The
incident plane waves are either TE (dashed lines) or TM (solid
lines) polarized. The half angle between the incidence directions is
� = 85◦. The inset shows the real (dashed line) and imaginary (solid
line) parts of the composite effective permittivity εemg as a function
of the filling fraction.

ously. We assume a � λ and then model this system as an ef-
fectively homogeneous medium with the help of the extended
Maxwell-Garnet theory [46,47]. The effective refractive index
of the composite sphere neff = √

εemgμemg is obtained from
the effective relative permittivity and permeability:

εemg = εh
x3

i + 3i f ai
1

x3
i − 3

2 i f ai
1

, (24)

μemg = x3
i + 3i f bi

1

x3
i − 3

2 i f bi
1

, (25)

where f denotes the volume filling fraction. The dipolar Mie
coefficients of the inclusions ai

1 and bi
1 are derived from the

corresponding size parameter xi = nSiO2ωa/c and from the
value εAu = −48.45 + 3.6i for the gold relative permittivity
at λ0 = 1064 nm [48].

In Fig. 3, we plot the optical force as a function of sphere
radius R for TE (dashed) and TM (solid) polarizations. We
take � = 85◦ as the half angle between the two beams. The
results for homogeneous SiO2 spheres ( f = 0) are shown in
Fig. 3(a), whereas the force on composite spheres with gold
inclusions ( f = 0.18) is shown in Fig. 3(b). Measurable OPF

Filling Fraction 

R
ad

iu
s (

m
)

(b)

R
ad

iu
s (

m
)

Filling Fraction 

(a)

FIG. 4. Optical pulling force on a composite microsphere as a
function of radius and filling fraction. For clarity, only regions in
the parameter space leading to pulling forces are shown. (a) TE and
(b) TM polarization. The half angle between the incidence directions
is fixed at � = 85◦.

on homogeneous SiO2 spheres can be obtained for relatively
large radii in the case of TE polarization, while the force is
always positive for TM. Such a striking difference between
the two cases shows that the relative phase between the scat-
tered fields produced by each plane-wave component strongly
depends on the incident polarization. Thus, the condition for
constructive interference near the forward direction can be
controlled by the incident polarization.

The scenario is drastically changed when one considers the
SiO2 host sphere with gold inclusions, as shown in Fig. 3(b).
Indeed, the presence of gold inclusions not only allows for
OPF for both TE and TM polarizations but also increases its
magnitude by about one order of magnitude. At specific size
ranges and depending on the polarization, the fields scattered
by the inclusions interfere constructively (destructively) near
the forward (backward) direction, then leading to a strong
pulling effect. The resulting optical forces for TE and TM
polarizations oscillate nearly out of phase as a function of the
radius, as shown in Fig. 3(b). Thus, the size intervals allowing
for OPF using TE beams is approximately the complement
of the intervals allowing for OPF using TM beams. Such a
feature indicates the possibility of a polarization-controlled
particle sorting according to particle size.

Adding metallic inclusions also allows us to extend the
range of optical pulling towards smaller sizes. Indeed, the
effective permittivity εemg increases with the filling fraction
f , as shown in the inset of Fig. 3(b). Moreover, the inclusions
also lead to an effective permeability μemg slightly different
from the one according to Eq. (25). In line with the discussion
in Sec. II, both effects enhance the magnetic dipole contribu-
tion, which is essential for achieving OPF on small particles.

The occurrence of OPF on small particles is better visu-
alized in the density plot of the OPF versus sphere radius
and filling fraction shown in Figs. 4(a) and 4(b) for TE
and TM polarizations, respectively. Colored areas indicate
optical pulling forces, whereas the regions corresponding to
optical pushing forces are left blank for clarity. The overall
disposition of the colored regions indicate that the conditions
for OPF become more selective for bigger particles as a larger
number of multipoles contribute to scattering. Indeed, in this
case a fine tuning of the material parameters is required to
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achieve the simultaneous interferometric conditions involving
all multipoles contributing to the scattering force component
(19).

In the case of TE polarization, the colored areas appear as
a pattern of stripes illustrating how the size intervals allowing
for OPF depend on the filling fraction. Within a given stripe,
the magnitude of the OPF is initially enhanced as f in-
creases from zero (homogeneous case). Stripes corresponding
to larger radii (upper part) are increasingly more inclined
and tend to shrink as the filling fraction increases. Both
features are related to light absorption by the microsphere.
The inset of Fig. 3(b) shows that Im(εeff ) increases sharply as
a function of f . As the penetration depth δ = λ0/[4π Im(neff )]
decreases approaching the sphere diameter 2R, the fraction
of absorbed light increases, which is clearly detrimental to
the pulling effect. For very small spheres, R � δ, absorption
is still negligible, and then the widths of the lower stripes
in Fig. 4(a) are approximately uniform. On the other hand,
the stripes corresponding to larger radii are more affected by
absorption, as expected. They shrink and eventually disappear
as f and, consequently, Im(neff ) increase. Also, the inclination
of the stripes shows that the reduction of the penetration depth
δ is compensated by a sharp decrease in the radii, allowing for
pulling to keep the ratio R/δ approximately unchanged.

The overall picture is similar in the case of TM polarization
shown in Fig. 4(b). However, the pulling regions are more
scarce, and very small filling fractions are excluded in this
case.

IV. CONCLUSION

We have developed a theoretical framework to calculate the
optical pulling force on a microsphere illuminated by a super-
position of plane waves. Due to the rotational symmetry of
the scatterer, Mie scattering of plane waves propagating along
arbitrary directions can be connected with the more standard
case of axial propagation by employing Wigner rotation ma-

trices and Debye potentials. We have derived an explicit result
for the optical force as a partial-wave series when considering
the example involving two linearly polarized plane waves.
However, it is straightforward to extend our approach to
multiple plane waves with arbitrary polarizations. The case of
circular polarization might be particularly interesting given its
possible application to enantioselective manipulation of chiral
particles.

Our results show that TE-polarized waves can pull low-
and high-refractive-index particles alike. In the former case,
the technique is limited to larger sizes, involving higher
multipoles beyond the electric and magnetic dipoles. On the
other hand, TM-polarized waves allow for OPF only on high-
refractive-index particles. We have shown that the use of a
metamaterial platform not only leads to an order of magni-
tude increase in the pulling force but also allows us to pull
smaller particles, thus extending the technique into the dipolar
regime. As a specific example, we have considered a low-
index dielectric sphere doped with plasmonic inclusions. The
strong enhancement in the pulling force is achieved for small
values of the filling fraction to avoid the detrimental effect of
absorption. In this configuration, the size ranges which allow
for pulling for each orthogonal polarization are approximately
complementary. Such a feature could be applied to implement
a polarization-controlled particle sorting using OPF.
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