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Lasing in para-Fermi class-B microring resonator arrays
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We demonstrate lasing in arrays of microring resonators with underlying para-Fermi symmetry. The properties
of the algebra allow the analytic prediction of propagation constants and normal modes of an array of passive
resonators that show the optical analog of a zero-energy mode that is its own chiral pair. The rest of the normal
modes in the linear model form chiral pairs that are evenly distributed around the pseudo-zero-energy mode. We
use this information to construct a class-B laser model where even and odd sites are driven with different strength
in a pattern following para-Fermi algebra chirality to demonstrate lasing with enhancement or suppression of the
zero-energy mode. The former leads to lasing in the zero-energy mode for a large set of driving ratios and is
mostly independent of initial field configurations. In contrast, the latter can lead to vanishing fields or lasing with
either steady or strongly fluctuating fields depending on the driving ratios and initial field configurations.
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I. INTRODUCTION

Microfabrication techniques enable the production of cou-
pled optical elements where symmetries or topological prop-
erties produce novel or desirable behavior. This includes the
robust generation of particular protected modes and selec-
tion mechanisms. The introduction of active elements further
enhances the possibilities of these devices, where discrete
symmetries allow for a plethora of effects; for example, mode
protection in systems with charge conjugation symmetry
[1,2], unidirectionality in systems with parity-time reversal
symmetry [3–5], edge states [6–10], and flat bands [11–15]
due to topological effects.

Coupled mode theory provides a tractable framework to
study time evolution or spatial propagation in arrays of cou-
pled elements [16–20]. For example, an array of microring
resonators with the same curvature secures a symmetric,
positive definite mode coupling matrix [20]. Then, a change
in the reference frame, equivalent to adding a common phase
to the fields in the array, can displace the coupled mode
matrix diagonal by an arbitrary real constant. In this sense,
pseudo-zero-energy modes, that is, modes with vanishing
effective propagation constant, are only so in a particular
reference frame. However, when a discrete symmetry is added
to the system, new constraints are added to the coupled mode
matrix and, in consequence, to the spectrum of effective
propagation constants [21–26]. Enforcing Hermitian parity
[1,2] produces a real spectrum composed of pairs of opposite-
sign propagation constants; a pseudo-zero-energy mode may
appear, for example, in nondegenerate, odd-dimensional sys-
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tems. A non-Hermitian parity symmetry [27] produces a
complex spectrum with pairs of opposite-sign propagation
constants; in other words, the system shows effective source
or sink behavior thanks to each chiral pair. In contrast,
charge conjugation [1,2] produces pairs of effective modes
with opposite signs in the real part of their propagation
constants but the same sign in their imaginary parts; this
means identical source or sink behavior in each conjugate
pair. A system with parity-time symmetry [4,5,23,28–31] has
three scenarios: Conserved symmetry with real spectrum,
devil point with dimension-1 collapsed spectrum, and broken
symmetry with imaginary spectrum of complex-conjugate
pairs.

Here, we exploit the symmetry effects of paraparticle
oscillators [32–35]. We focus on arrays of active, nonlinear
microring resonators in a configuration mimicking para-Fermi
oscillators described by odd-dimensional, bisymmetric cou-
pled mode matrices. This approach benefits from the rich
dynamics offered by coupled rate models [36–38]. We briefly
discuss Plyushchay representation of the para-Fermi algebra
(Sec. II) and the optical para-Fermi oscillator (Sec. III) to
show that, in the passive, linear limit, its spectrum yields a
pseudo-zero-energy mode that is its own chiral pair, together
with chiral pairs of normal modes, due to its odd-dimension
and bisymmetry. This informs our proposal of a driving
scheme with different pump rates [39–42] over the nonlinear
array following a pattern prescribed by the parity operator
of the algebra (Sec. IV) to demonstrate either enhancement
or suppression of lasing in the zero-energy mode (Sec. V).
In our case symmetric properties, instead of topology, pro-
duce mode selectivity and, hopefully, further our symmetry
based optical design program [43,44]. We close with our
conclusions.
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II. PARA-FERMI ALGEBRA

A para-Fermi algebra of finite even order admits a repre-
sentation [45]

[Î+, Î−] = 2Î0 �̂, [Î0, Î±] = ±Î±, (1)

reminiscent of the angular momentum algebra su(2) with the
addition of a parity operator �̂ [46,47]. In this representation,
the action of the algebra elements in terms of the 2p + 1
eigenstates of Î0,

Î0|p, n〉 = n|p, n〉, (2)

with n = −p,−p + 1, . . . , p − 1, p, are

Î+|p, n〉 = φ(p, n + 1)|p, n + 1〉, (3)

Î−|p, n〉 = φ(p, n)|p, n − 1〉, (4)

�̂|p, n〉 = (−1)p+n|p, n〉. (5)

The structure function,

φ(p, n) =
√(

p + 1

2

)
+

(
n − 1

2

)
(−1)p+n, (6)

vanishes when the raising (lowering) operator Î+ (Î−) reaches
the upper (lower) extreme of the representation, φ(p, p +
1) = 0 [φ(p,−p) = 0].

Mapping this finite basis into the standard orthonormal
basis for a complex vector space of dimension 2p + 1, we can
introduce a matrix representation for the para-Fermi algebra
operators, where the number and parity operators have diago-
nal form,

[I0]i, j = (p + 1 − i) δi, j, (7)

[�]i, j = (−1)i+1 δi, j, (8)

where i, j = 1, . . . , 2p + 1 and the raising and lowering op-
erator have upper and lower diagonal form,

[I+]i, j = φ(p, p + 1 − i) δi+1, j, (9)

[I−]i, j = φ(p, p + 1 − j) δi+1, j, (10)

in that order.

III. OPTICAL PARA-FERMI OSCILLATOR

We can follow the idea for the optical simulation of para-
Fermi oscillators in arrays of coupled waveguides [35] to
study lasing in an equivalent array of coupled microring res-
onators (Fig. 1). Assuming identical microrings, the coupled
mode matrix describing a linear array under first neighbor
couplings is given in the following:

M = κ

2
(I+ + I−), (11)

where κ is a reference coupling constant controlled by the
separation between nearest neighbors. The eigenvectors and
eigenvalues of this matrix are well known [34,35]. There is an
effective pseudo-zero-energy mode,

M · �m0 = 0 �m0, (12)

FIG. 1. Microring resonator array for the classical simulation of
a para-Fermi oscillator.

and the rest of the normal modes,

M · �m± j = m± j �m± j, m± j = ±κ
√

j, (13)

with j = 1, . . . , p, form chiral pairs,

� · �m+ j = �m− j, (14)

that are evenly distributed around the zero-energy mode which
is its own chiral pair,

� · �m0 = �m0. (15)

Thus, a linear gain-loss model that follows the parity operator
will keep the zero-energy mode as normal mode,

(M + iγ�) · �m0 = iγ �m0, (16)

while mixing each chiral pair,

(M + iγ�) · �q± j = q± j �q± j, (17)

leading to new pairs of eigenvalues and eigenvectors [35],

q± j = ±
√

m2
j − γ 2,

�q± j = N± j[(mj + q± j ) �m j + iγ �m− j], (18)

where j = 1, . . . , p and N± j is a normalization constant. The
eigenmodes of the linear non-Hermitian system, �m0 and �q j ,
have a hierarchy. The zero-energy mode has the strongest
non-Hermitian behavior, with gains (losses) when γ is pos-
itive (negative), as the magnitude of the zero-energy mode
imaginary part is the largest of all the modes. The rest of the
modes have ordered non-Hermitian behavior: That of q±1 is
stronger than that of q±2, and so on because the magnitude of
their imaginary parts fulfills | Im(q±1)| � | Im(q±2)| � · · · �
| Im(q±p)| � 0. These pairs of modes have an ordered se-
quence of critical points. As the magnitude of the Hermiticity
breaking parameter |γ | increases, there is a critical point
on the local manifold after which q±1 become imaginary.
Subsequently, for a larger value of |γ |, q±2 undergoes the
same process, and so on [35]. The fact that the zero-energy
mode has dominant non-Hermitian behavior means that this
mode can either be enhanced or suppressed with respect to the
rest of the modes. We explore this together with a nonlinear
model of coupled class-B microring resonator lasers.

IV. CLASS-B LASER MODEL

In order to take advantage of the linear non-Hermitian
behavior, we extend our model to a coupled array of class-B
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laser microrings (Fig. 1). Here, the state of the ith ring is de-
scribed by its electric field amplitude Ei(t ) and carrier density
normalized to transparency ni(t ) with i = 1, . . . , 2p + 1. The
dynamics of these are governed by the following nonlinear
differential equation set,

i Ėi(t ) = i(1 − iα)

2

{
− 1

τp
+ σ [ni(t ) − 1]

}
Ei(t )

+
2p+1∑
j=1

Mi, j E j (t ), (19)

ṅi(t ) = Ri − ni(t )

τs
− 2[ni(t ) − 1]

τs
|Ei(t )|2, (20)

where the linewidth enhancement factor α, carrier and cavity
lifetimes τs and τp, and differential gain proportionality σ

are constant parameters characterizing the identical rings. An
isolated ring pumped above its threshold rate R(th) = [1 +
1/(σ τp)]/τs displays lasing. At long times, t � τs, τp, the
electric field at the isolated ring reaches a finite value which
may be steady or fluctuating depending on the ring parameters
and initial conditions. In contrast, if the pump rate is below
threshold, the field evolves to zero.

We require driving that follows the parity operator pattern;
that is, even (odd) sites share the same pump rate,

Rm = R(th)

{
1 + 
E for even i,
1 − 
O for odd i,

(21)

where the real, dimensionless parameters 
E ,
O fix even and
odd pump rates. This class-B laser model, with the para-Fermi
oscillator at its core, should provide a behavior similar to
the linear non-Hermitian case where the zero-energy mode is
enhanced (suppressed) with the addition of effective relative
gain at even (odd) sites [35]. In the following, we numerically
explore the two alternatives offered by our nonlinear model.
For zero-energy mode enhancement, we use pump rates above
(below) lasing threshold at even (odd) microrings; that is, pos-
itive dimensionless parameters 
E ,
O > 0 are the nonlinear

analog to having γ > 0 in the linear gain-loss model [48].
We seek zero-energy mode suppression using the opposite
configuration: Pump rates above (below) lasing threshold at
odd (even) microrings providing 
E ,
O < 0 equivalent to
γ < 0 in the linear non-Hermitian model.

V. NUMERICAL ANALYSIS

Our numerical simulation follows the experimental realiza-
tion of topological active arrays [8]. That is, an array of iden-
tical microring resonators with linewidth enhancement factor
α = 3, carrier and cavity lifetimes τs = 4 ns and τp = τs/100,
and differential gain proportionality constant σ = 24/τp. In
order to realize the para-Fermi oscillator, we set a reference
coupling constant to κ = 1011 Hz corresponding to a sepa-
ration of roughly 177 nm between the borders of the rings.
We report two configurations: One with five microrings with
separations d1,2 = d4,5 = 177 nm, d2,3 = d3,4 = 216 nm; an-
other with eleven microrings, d1,2 = d10,11 = 142 nm, d2,3 =
d9,10 = 216 nm, d3,4 = d8,9 = 149 nm, d4,5 = d7,8 = 177 nm,
d5,6 = d6,7 = 160 nm. All these separations are within re-
ported experimental values for arrays of coupled microring
resonators [8,9]. We report the average of a thousand real-
izations considering random normalized initial conditions for
the analysis of mode enhancement or suppression. We explore
zero-energy mode enhancement or suppression and whether
field magnitudes are steady or fluctuating for an average of
50 random normalized initial conditions for a matrix of 1600
points in the phase space defined by the pump rates in even
and odd sites (
E ,
O).

In the zero-energy mode enhancement scheme, even (odd)
rings are driven 5% above (below) threshold; that is, 
E =

O = 0.05. We set the initial carrier densities to zero ni(0) =
0 and generate random normalized initial complex fields
amplitudes without projection into the zero-energy mode of
the linear para-Fermi oscillator. Figure 2 displays the time
evolution of just one numerical experiment. The left column,
Figs. 2(a) to 2(e), shows the time evolution of the absolute

FIG. 2. Time evolution of the absolute values of (a)–(e) localized field amplitudes in a five-ring array in the zero-energy mode enhancement
scheme and (f)–(j) their projections into the normal modes provided by the linear para-Fermi oscillator with (h) being the projection into the
zero-energy mode.
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FIG. 3. Time evolution of the absolute value of the field am-
plitudes projection into the normal modes provided by the linear
para-Fermi oscillator in a five ring array with the zero-energy mode
suppression scheme.

value of the field amplitude at each of the microrings, |Ei(t )|.
The right column, Figs. 2(f) to 2(j), shows the projection
onto the modes of the linear array, | �m j · �E (t )|. As expected
under this setup and initial conditions, the array lases in a
stable mode with a field distribution equivalent to that of the
zero-energy mode of the linear model [Fig. 2(h)].

Figure 3 shows results for the zero-energy mode suppres-
sion scheme, where odd (even) rings are driven 30% above
(below) the threshold rate; that is, 
E = 
O = −0.30. Again,
we set the initial carrier densities to zero ni(0) = 0. The initial
fields have now completely random normalized complex am-
plitudes. Under this setup and initial conditions, the field and
their projections onto the para-Fermi oscillator normal modes
show strong fluctuations. These may arise due to a stable
limit cycle or to unstable behaviors. The zero-energy mode
is clearly suppressed with respect to the rest of the normal
modes [Fig. 3(c)].

In order to conduct a statistical analysis of these schemes,
we calculate the evolution of 1000 different random ini-
tial field configurations with the parameters and conditions
mentioned above. For each random numerical experiment,
we calculate the central value of the projection onto each
normal mode of the para-Fermi oscillator at long times t >

15τs and renormalize the field evolution using this value. We
use these central values to calculate the mean and standard
deviation of a thousand experiments (Fig. 4). The scheme
for zero-energy mode enhancement shows steady fields with
a large zero-energy mode component [Figs. 4(a) and 4(b)].
The suppression scheme provides lasing configurations with
negligible zero-energy mode components that are strongly
fluctuating [Figs. 4(c) and 4(d)]; that is, the field amplitudes
at each microring present fast oscillations as shown in Fig. 3.

FIG. 4. Statistical analysis for zero-energy mode (a)–(b) en-
hancement and (c)–(d) suppression schemes. The dots show the
average absolute value of the long-time fields onto the normal modes
of the para-Fermi oscillator and the bars show the standard deviation
of a thousand random initial samples once they are renormalized.
The left column shows results for an array with five microrings and
the right column for eleven microrings.

In a manner similar to the hierarchical ordering of modes in
the linear non-Hermitian model, lasing in the modes j = ±1
tends to dominate. By running over a large sample of different
normalized initial field configurations with 
E = 
O = 0.05,
we find that initial field configurations of that magnitude lead
to stationary fields in the zero-energy mode; see Figs. 4(a)
and 4(b). Similarly, with 
E = 
O = −0.30, different nor-
malized initial conditions lead to fluctuating fields with zero
projection to the zero-energy mode; see Figs. 4(c) and 4(d).

We can explore the pump rate effect at even and odd
microrings using pump rates, 
E �= 
O. As long as both 
E

and 
O are positive (negative), we remain in the zero-energy
mode enhancement (suppression) scheme. Figure 5 displays
results for (a) enhancement and (b) suppression schemes using
the microring parameters mentioned before. For each pair
of pump rate values (
E ,
O), we use a set of 50 random
normalized complex initial field configurations and calculate

FIG. 5. Pump rate map defined by even and odd site rates,
(
E ,
O ), in that order. Each point is the averaged result of 50
random, normalized initial field configurations for zero-energy mode
(a) enhancement and (b) suppression schemes. Blue (dark) corre-
sponds to steady fields and yellow (light) to fluctuating fields. Fading
to white is proportional to the number of nonlasing vanishing field
occurrences.
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their long-time behavior, t > 15τs. From these results, we
use the standard deviation of the long-time fields at all the
microrings of each sample as measurement of whether
the field magnitudes are steady or fluctuating, and we use
the ratio of initial field configurations that produce nonlasing
vanishing fields as a measure for lasing. The zero-energy
mode enhancement scheme yields steady fields for small
values of (
E ,
O) [blue (dark) regions in Fig. 5(a)]. As the
rates grow, the field magnitudes become strongly fluctuating
[yellow (light) regions in Fig. 5(a)]. The suppression scheme,
shows vanishing fields for small values of (
E ,
O) [white
region in Fig. 5(b)] and mostly fluctuating field magnitudes
[yellow (light) fading to white region] with a small steady
field area [blue (dark) fading to white region in Fig. 5(b)]. This
suggests a complicated phase structure for zero-energy mode
suppression schemes where paths to chaos may be explored.
As the driving changes from zero-energy mode enhancement
[Fig. 5(a)] to suppression [Fig. 5(b)], the dynamics displays a
discontinuity in the sense that, in the former case, the system
evolves towards finite, steady fields. In the latter, the system
evolves towards vanishing fields.

VI. CONCLUSION

We propose arrays of coupled active microrings, each
one a class-B laser, that realize para-Fermi oscillators. This
optical simulation of the para-Fermi algebra allows for a
pseudo-zero-energy mode that is its own chiral pair; that is,
an eigenstate of the parity operator. We use this fact to set

individual microring pump rates according to their position in
the array, following a pattern provided by the parity operator
of the para-Fermi algebra. This driving scheme allows for two
scenarios: Enhancement or suppression of the zero-energy
mode.

Zero-energy mode enhancement shows little sensitivity to
the initial field configuration. At long evolution times t �
τs, τp, even (odd) site pump rates slightly above (below)
threshold produce steady fields. Increasing (decreasing) these
pump rates away from threshold leads to fluctuating fields. In
contrast, the zero-energy mode suppression scheme is highly
sensitive to the initial fields in the microrings. At long evolu-
tion times, even (odd) site pump rates slightly below (above)
threshold produce vanishing fields. As pump rates deviate
from threshold, most of the initial configurations produce
strongly fluctuating fields.

We find it important to note that these phenomena, zero-
energy mode enhancement or suppression, arise as a result
of the algebraic properties and symmetries of the system that
translate into finite odd-dimensional microring arrays instead
of topological effects. Symmetries are a powerful tool to
generate and control protected states or modes in arrays with
a small number of active optical elements.
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