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Distributed Kerr-lens mode locking based on spatiotemporal
dissipative solitons in multimode fiber lasers
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We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based
on spatially graded dissipation, leading to distributed Kerr-lens mode locking. Our analysis involves solutions of
a generalized dissipative Gross-Pitaevskii equation. This equation has a broad range of applications in nonlinear
physics, including nonlinear optics, spatiotemporal pattern formation, plasma dynamics, and Bose-Einstein
condensates. We demonstrate that the careful control of dissipative and nondissipative physical mechanisms
results in the self-emergence of stable (2+1)-dimensional dissipative solitons. Achieving such a regime does
not require the presence of any additional dissipative nonlinearities, such as a mode locker in a laser, or inelastic
scattering in a Bose-Einstein condensate. Our method allows for stable energy (or “mass”) harvesting by coherent
localized structures, such as ultrashort laser pulses or Bose-Einstein condensates.
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I. INTRODUCTION

The endeavor of multidimensional pattern formation [1]
bridges nonlinear wave collapse and turbulence phenomena
[2], leading to the formation of highly coherent structures,
such as solitons in nonlinear optics (the so-called “light bul-
lets”) and liquid crystals, Bose-Einstein condensates (BEC),
etc. [3–6]. These coherent and strongly localized structures
could provide unprecedented energy (or mass) condensation,
and lead to establish connections or analogies between micro-
and macroscaled phenomena. The study of multidimensional
solitons introduces a new branch of “mesoscopic” physics,
permitting the study of a broad area of nonlinear phenomena
far from the thermodynamic equilibrium. The main obstacle is
that, in contrast with one-dimensional (1D) soliton solutions
of integrable nonlinear wave equations, higher-dimensional
structures are generally unstable. Two main approaches have
been proposed for the stabilization of a multidimensional soli-
ton, which use either (i) trapping potentials in a nondissipa-
tive system [3,4,7–10], or (ii) localized nonlinear dissipation
[11–14].

Nonlinear optical systems furnish an ideal playground
in this field, by providing a “metaphoric” (or “analogous”)
modeling, big data, and rare events analysis approach [15,16].
Specifically, field trapping is an inherent consequence of spa-
tial mode formation in a laser or in a passive fiber, where non-
linear effects play a decisive role. In a graded-index (GRIN)
multimode fiber (MMF), the effect of spatial mode cleaning,
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or field self-condensation in the lowest-order spatial modes
induced by a nonlinear intermodal interaction was recently
described [5,17–19]. As it was conjectured, spatially profiled
active-ion doping could enhance this effect [20]. Also, the
growth of an effective gain with power (e.g., due to nonlinear
polarization rotation) could result in spatiotemporal mode
locking and self-similar pulse evolution in an MMF laser
[21,22]. As a result, dissipative nonlinearities may produce
coherent, localized, and energy-scalable structures, that is,
dissipative solitons (DSs) [23].

A remarkable breakthrough has been achieved by the de-
velopment of ultrafast fiber and solid-state waveguide lasers,
that allow for avoiding the issues of thermal effects and
environmental sensitivity, while providing high gain, cover-
age of a broad spectral range [24,25], and extremely high
ultrashort-pulse repetition rates [26]. However, the pres-
ence of optical nonlinearities, such as self-phase modulation
(SPM), four-wave mixing, and stimulated Raman scatter-
ing, limit ultrashort-pulse energy harvesting. A breakthrough
approach was invented by introducing solid-state Kerr-lens
mode-locked (KLM) oscillators. These sources exploit the
effect of loss decrease due to spatial mode squeezing through
self-focusing in a nonlinear medium with an aperture [27].
The evolution of KLM technology opens the perspective for
achieving distributed KLM, or DKLM [28,29]. This permits
us to bridge the previously disjointed areas of solid-state and
ultrafast fiber photonics, and provides spatiotemporal self-
mode locking in both fiber and solid-state oscillators.

In this article, we demonstrate that graded dissipation,
provided by loss and gain transverse profiling in a GRIN
fiber, allows for obtaining DKLM in a fiber laser, operating
in either the anomalous or the normal dispersion regime.
The parameters and stability of the resulting spatiotemporal
DSs are investigated both analytically and numerically. The
problem of the self-emergence (or self-starting) of a DS, and
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TABLE I. Normalization parameters for a GRIN Yb-fiber laser
with dispersion compensation, and 10 nm spectral bandwidth. E0 and
P0 correspond to normalization values for energy and peak power,
respectively. The length of the fiber with compensated dispersion is
3 m. The “aperture size” defines the zero level of net gain for |�| =
0.002, and κ = 0.001.

Wavelength 1.06 μm

n0 1.48
n1 0.02 cm−2

n2 3.5 × 10−16 cm2/W
β2 30 fs2/cm
w0 83 μm
Ld 6 cm
T0 = √|β2|Ld 230 fs
E0 = w2

0T0/(k0Ld n2) 128 nJ
P0 = w2

0/(k0Ld n2) 550 kW
τ 0.4
“Aperture size” d = w2

0

√|�|/κ 118 μm

the interdisciplinary outlook for fiber DKLM oscillators are
also discussed. Besides the direct high impact in the field of
photonics, such devices could be considered as a tool for the
“metaphoric” modeling of spatiotemporal pattern and conden-
sate formation in dissipative nonlinear systems, in particular,
in a weakly dissipative BEC [4,30].

II. APPROACHES AND METHODS

As it was pointed out in Refs. [5,16,17,31], the Gross-
Pitaevskii equation, which is the well-known “workhorse”
for trapped BEC modeling [32], is also a well-working ap-
proximation for describing pulse propagation in both single
and multimode fibers. This equation allows for using the
variational approximation (VA) for obtaining a solitonlike
solution in a nondissipative GRIN fiber [7–9,19]. The gen-
erating Lagrangian L for the Gross-Pitaevskii equation with a
quasiparabolic trapping potential can be written as [9]

L = i

2
[a∗∂za − a ∂za

∗] + 1

2
(|∂xa|2 + |∂ya|2)

+ ε

2
|∂t a|2 − ν

2
|a|4 − s

2
(x2 + y2)2m|a|2, (1)

where a(z, t, x, y) is a slowly varying spatiotemporal field
profile (a∗ corresponds to a complex conjugated value), z
is a longitudinal propagation coordinate, normalized to the
diffraction length Ld = β0w

2
0, and the transverse spatial co-

ordinates (x, y) are normalized to w0 = 1/ 4
√

2k0|n1|β0. Here,
β0 = n0(ω0)k0 is a propagation constant, k0 = ω0/c is a
wave number, and n0(ω0) is a refractive index at the carrier
frequency ω0. n1 defines a “curvature” of the transverse
refractive index variation, so that s = +1 or s = −1 corre-
spond, respectively, to an anti- or guiding GRIN fiber with
an m-degree parabolic profile (m � 1 is an integer) [33].
The group-velocity and the group-velocity dispersion (GVD)
parameters are β1 = (dβ/dω)ω=ω0

and β2 = (d2β/dω2)ω=ω0
,

respectively [β = n0(ω)ω/c]. The last parameter defines the
local time t normalization to T0 = √|β2|Ld , so that ε = +1
or ε = −1 corresponds to the anomalous or normal GVD

case, respectively. The instantaneous local field intensity |a|2
is normalized to k0n2Ld (n2 is a nonlinear refractive index,
defining SPM), so that ν = +1 or ν = −1 corresponds to
a self-focusing or defocusing nonlinearity, respectively (see
Table I).

The pulse-width scale (T0 = 230 fs) and the DS width
obtained from calculations (see below), jointly with the value
of the cavity group-delay dispersion (9000 fs2, see Table I),
suggest neglecting the contribution of higher-order dispersion
terms in Eq. (1). However, such a contribution can be impor-
tant, when the DS width approaches 100 fs, and the dispersion
compensation technique leads to a net GVD that approaches
zero [34].

One has to note that the used notions can vary for different
physical models. For instance, the DS energy, phase, and
local time coordinate for an optical system correspond to
the number of bosons (mass), momentum (wave number),
and transverse spatial coordinate, respectively, in the case of
a BEC. Thus, the condensed-matter analog of a DS is the
formation of a BEC phase for ε = 1 (anomalous GVD in
optics or traditional kinetic energy of bosons in BEC). The
interpretation of the ε = −1 case (normal GVD in optics) for
BEC is less straightforward (nevertheless, see Ref. [35] and
the classical analog such as the Talbot effect [36]).

The dissipative generalization of the Gross-Pitaevskii
model based on Eq. (1) consists in the addition of a “force”
Q term in the Euler-Lagrange equations, in agreement with
the Kantorovitch’s method [37],

δ
∫ ∞
−∞ Ldt

δf
− d

dz

δ
∫ ∞
−∞ Ldt

δf
= 2 Re

∫ ∞

−∞
Q

δa

δf
,

Q = −i�a + i τ ∂t,t a − i κ (x2 + y2)2l a, (2)

where � is the difference between loss on the fiber axis
and saturated gain (e.g., a boson exchange rate between a
“basin” and a condensate for BEC [38,39]). This parameter
depends upon the DS energy

∫ ∞
−∞ |a(z, x, y, t ′)|2dt ′, and it

could contribute to the soliton dynamics and stability [20].
A “noninstantaneous” nonlinearity results, e.g., from gain
saturation in a laser, and it can be described in the simplest
form as [40]

−� = g0

1 + 1
Es

∫ ∞
−∞ |a(z, x, y, t ′)|2dt ′ − �, (3)

where g0 is the unsaturated gain, Es is the gain saturation
energy, and � is the loss coefficient on the fiber axis.

Spectral dissipation is described by the τ parameter, which
is inversely proportional to the squared bandwidth of a spec-
tral filter (e.g., a gain medium). This parameter corresponds
to, for instance, the growth of escape velocity from BEC with
the boson kinetic energy.

The κ parameter defines the growth of loss along the
radial coordinate. Such a parameter is determined by graded
gain and loss doping, or by the leaking loss in a fiber laser,
following an l-degree parabolic profile (l � 1 is an integer).

Equations (1) and (2) are the generating functions for the
dissipative generalization of the Gross-Pitaevskii equation,
which is proposed as a model for DKLM in both fiber and
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FIG. 1. Possible realizations of DKLM in an MMF laser: (a) Disjointed structure with a free beam evolving in a highly nonlinear crystal,
leading to enhanced beam overlap with the subsequent fiber for a high-intensity field; (b) tapered fiber with reduced leaking mode losses for
a high-intensity field; (c) MMF or photonic-crystal-fiber (PCF) structure with graded losses, providing a loss decrease due to switching to a
“self-focused” high-intensity mode. The common principle is a loss decrease with intensity.

solid-state lasers,

i
∂a

∂z
= 1

2

(
∂2a

∂x2
+ ∂2a

∂y2

)
+ ε

2

∂2a

∂t2
+ s

2
(x2 + y2)2ma

+ ν|a|2a − i�a + iτ
∂2a

∂t2
− iκ (x2 + y2)2l a. (4)

Under the assumption of cylindrical symmetry and zero
vorticity, the transverse Laplacian in Eq. (4) reads as
[∂2/∂r2 + (1/ r)∂/∂r], where r is a radial coordinate. The
calculations in this work are made under these assumptions
[see Eqs. (5), (6), and (10) below].

Figure 1 demonstrates the proposed implementation of the
general principle of DKLM in a fiber laser. The point is that
the growth of effective gain with intensity in a fiber laser with
graded loss is similar to the action of a soft or hard aperture in
a solid-state Kerr-lens mode-locked laser [27], which provides
mode locking resulting in DS generation.

Figure 1(a) demonstrates the scheme with a bulk nonlinear
crystal integrated into a fiber. In a crystal, there is no mode
confinement, so that diffraction increases the mode mismatch
between “in”- and “out”-fiber sections. The nonlinear beam
squeezing induced by Kerr nonlinearity in a crystal would
provide a better mode matching for higher intensities and
thereby lower leaking losses. In the scheme of Fig. 1(b), the
leaking losses are induced by the tapered fiber section. As
it was previously anticipated, such losses can be reduced by
mode squeezing, caused by the self-focusing effect in a fiber.

Figure 1(c) shows, in our view, the most promising ap-
proach to DKLM in a fiber laser, which preserves the fiber
integrity, and uses the graded refractive index and dissipation
(loss or gain) to provide loss decrease for a more intense field,
owing to the Kerr nonlinearity of the fiber. Such a section can
be easily integrated into an all-fiber laser, based on an MMF
with graded dissipative (active or loss) doping, or a PCF.

III. FUNDAMENTAL MODE DS

Below we will consider the fundamental mode DS [41]
in the framework of the VA for either axially symmetric
parabolic (m = 1) or superparabolic (m = 2) trapping poten-
tials, which approximate the refractive index profile of usual
GRIN fibers [33]. At the same time, the last case is closer
to a fiber with a steplike refractive index profile, and weaker
intermode overlapping. Moreover, we will assume that the

transverse profile of dissipation “traces” the refractive index
one, i.e., l = m.

A. Fundamental mode DS for m = l = 1

In this case, the reduced Lagrangian L̃ required for the VA,
specifically

L̃ =
∫ ∞

−∞

∫ ∞

0

∫ 2π

0
rL dt dr dϑ, (5)

is calculated by using a trial function, which corresponds to a
solitonlike Gaussian mode,

a(z, t, r) = α(z)sech

(
t

T (z)

)

× exp

[
i(φ(z) + ψ (z)t2 + θ (z)r2) − r2

2ρ(z)2

]
.

(6)

Here, the f = (α, T, φ, ψ, θ, ρ) parameters describe the z-
dependent DS amplitude, duration, phase delay (∂zφ could be
interpreted as a DS wave number), chirp, wave-front curvature
(spatial chirp), and beam size, respectively. The variation
δ∗/δf in Eq. (2) is performed over these parameters. r =√

x2 + y2, ϑ , and t are the radial and azimuthal cylindrical
coordinates, and local time, respectively. In this notation,
x = r cos (ϑ ) and y = r sin (ϑ ). The (x, y, t ) coordinates can
be reinterpreted as transverse spatial coordinates (x, y, z), and
the “evolutionary” coordinate z in Eqs. (1) and (4) can be
reinterpreted as a time coordinate T for BEC if ε = 1.

The VA demonstrates the existence of a nondissipative
soliton solution of Eqs. (1) and (4) for ε = 1, ν = 1, s =
−1, i.e., without taking into account dissipative factors in
Eqs. (2) and (4) (that is, � = κ = τ = 0) [8,9]. However, the
Vakhitov-Kolokolov (VK) stability criterion dE/dq > 0 [3],
where E = πα2T ρ2 is a soliton energy, and q = ∂zφ is its
wave number, suggests that such a soliton is stable only above
a certain intensity threshold of α2 > 3.46 (or ≈27 GW/cm2 in
our normalizations), which is hardly realistic for a fiber laser.
Moreover, numerical simulations (see the Appendix) show a
collapselike behavior of such a soliton, in the presence of
spatiotemporal chirp perturbations.

On the other hand, it is natural to conjecture that “self-
emergence” could exist whenever the multidimensional soli-
ton is supported by dissipation. Indeed, the VA-based analysis
demonstrates the existence of chirp-free solitons with nonzero
wave-front curvature in the anomalous GVD regime (ε = 1),
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FIG. 2. Dependence of pulse intensity α2 on the saturated net-
loss parameter � for a chirp-free DS (i.e., with no spectral dissipa-
tion, τ = 0), and anomalous GVD (ε = 1): (i) Antiguiding (s = 1,
orange curve), and (ii) guiding (s = −1, blue curve) GRIN fiber.

for both guiding (s = −1) and antiguiding (s = 1) refractive
index grading. Spatially graded dissipation supports spatial
confinement in both cases, under the condition of the absence
of spectral dissipation [i.e., with τ = 0 in Eq. (4)]. The DS
parameters are

α2 = 3(�4−s�2−κ2)

κ �ν
, T 2 = 2ε

να2
, ρ2 = −�

κ
, θ = �

2
.

(7)

Equations (7) demonstrate that the spatial structure of this type
of DS is formed by the spatially graded confinement of dissi-
pation, with an effective aperture size χ = √|�|/κ . The DS
duration and intensity are inversely related to each other, as it
occurs with (1+1)D nonlinear Schrödinger solitons. However,
at variance with the latter, the DS intensity is determined by
both refractive and dissipative guiding properties of a fiber.
The “deconfinement” (α2 → 0), which occurs for |�| → κ

and s = −1 (see Fig. 2), means that the DS may also exist
when the peak power is reasonably low (depending upon
the net-loss � variation). This situation is of interest for the
self-starting of fiber laser mode locking.

The VK stability criterion dE/dq > 0 [3], where q =
∂zφ = (κ2 + 5s�2 − 5�4)/(4κ�), demonstrates the local
stability (“attracting basin”) of such a DS for saturated

gain parameter values � ∈ {0,−
√√

9 + 20κ2 − 3/10} (see
Fig. 3). However, our numerical analysis (see the Appendix)
shows that this “attracting basin” is extremely narrow, due to
the crucial contribution to DS collapse of both temporal and
spatial chirp perturbations [42]. As a result, such a DS cannot
be self-emerging.

Therefore, one may conjecture that a self-emerging spa-
tiotemporal DS should necessarily be chirped (i.e., ψ 	= 0),
due to the contribution of spectral dissipation, i.e., one has to
set τ 	= 0 in Eq. (4). The solution, in this case, corresponds to

ψ = 120 τ

π2T 2(15 ε + √
15

√
15 ε2 + 128 τ 2)

,

α2 = 3 + 3 s ρ4 − 3 κ2 ρ8

ν ρ2
,

FIG. 3. Dependence of the energy E on the wave number q for
a chirp-free DS (i.e., with τ = 0), anomalous GVD (ε = 1), and
antiguiding (s = 1, orange curve) or guiding (s = −1, blue curve)
GRIN fiber.

θ = −κ ρ2/2,

T 2 =
2ρ2

(
ε + 80τ 2[15ε(π2−9)+(π2+3)

√
225 ε2+1920 τ 2]

π2(15ε+√
225 ε2+1920 τ 2 )

2

)
3 + 3 s ρ4 − 3 κ2 ρ8

. (8)

The resulting equation for the beam-area parameter ρ2,

(12 + π2)τ

3π2
+ � T 2 = 120ετ

π2(
√

15
√

15ε2 + 128τ 2 + 15ε)

+ 2880τ 3

π2(
√

15
√

15ε2 + 128τ 2 + 15ε)
2

− κ ρ2T 2

2
, (9)

has a unique physical solution (see the Appendix). The cor-
responding dependence of the beam area parameter ρ2 on the
graded dissipation parameter κ is shown in Fig. 4, whereas
the relationship between DS temporal width and intensity
is shown in Fig. 5, for the case of normal GVD. A DS is
positively chirped in both the anomalous GVD and in the
normal GVD regimes (ψ > 0), and it exhibits a negative
wave-front curvature (θ < 0).

In the case of the DS described by Eqs. (7), a decrease
of the effective aperture size χ = √|�|/κ results in beam
squeezing, accompanied by a growth of the peak power (see
Fig. 2), whereas for the DS expressed by Eqs. (8) and (9),
decreasing χ (by increasing κ) widens the beam (see Fig. 4).
This means that different mechanisms of DS formation are
in place for the two cases. In the former case, spatial and
temporal mechanisms are only related via the peak power of
the DS, which is defined by the effective beam size. On the
other hand, in the latter case one deals with an interplay be-
tween nondissipative and dissipative mechanisms, as it occurs
in mode-locked lasers operating in either the anomalous GVD
or the normal GVD regime. Dissipative factors may stabilize a
soliton. However, their overdoing leads to soliton degradation.

As it was pointed in Ref. [17], the fundamental mode
approximation is quite precise “on average” for the descrip-
tion of soliton dynamics in a GRIN fiber. Thus, our primary
intention here is to inspect the “attraction basin” of DSs, on
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FIG. 4. Dependence of beam area ∝ρ2 on the graded dissipation parameter κ , for different values of the saturated net-loss parameter �.
Here, the spectral dissipation parameter is (a) τ = 0.1 or (b) τ = 1; ε = −1 (normal GVD), s = −1.

the basis of numerical simulations of the system of ordinary
differential equations describing the DS parameter evolution,
as obtained in the framework of the VA (see the Appendix).

Figure 6 demonstrates the evolution of the DS tem-
poral duration and peak power for two different “seed”
amplitudes α(0), for propagation in the normal GVD
regime (for other parameters, please refer to the cap-
tion of Fig. 6). Other initial conditions formally corre-
spond to a nondissipative soliton solution of Eqs. (1)
and (2) for � = κ = τ = 0: T (0) = √

2|ε|/ν/α(0), ρ(0) =
[ν α(0)2 −

√
ν2α(0)4 − 36s]/6s, ψ (0) = 0, θ (0) = 0 (see the

Appendix). As can be seen in Fig. 6, the pulse width and
intensity both converge to a fixed value after a certain prop-
agation distance. The existence of such convergent solutions
underlies the finding of stability borders, as marked by curves
and scatter symbols in Fig. 7.

As a matter of fact, numerical simulations demonstrate
the existence of a broad attracting basin of stable (2+1)-
dimensional DSs. This indicates the possibility of DS self-

FIG. 5. Dependence of DS temporal width and intensity (inset)
on the grading dissipation parameter κ , for two values of the satu-
rated net loss �. Here, τ = 1, and ε = −1 (normal GVD).

emergence from an arbitrary initial Gaussian small signal with
a given amplitude α0. Figure 7 (curves and scatter points)
shows that spectral dissipation enhances DS stability, and
broadens the “attraction basin,” i.e., the DKLM capability,
which is not possible to achieve in the absence of spectral
dissipation, that is, for τ = 0. The growth of the graded
dissipation index κ reduces the stability region (Fig. 7), and
increases the DS duration (Fig. 5). As one can see from Fig. 7,
the DS stability regions are broader for the case of normal
GVD, and the sensitivity to spectral dissipation is weaker in
this case.

In Fig. 6(b), the solid curve shows the formation of an
initial spike (with a three orders-of-magnitude increase of
intensity with respect to the asymptotic solution obtained at
a large distance). The presence of such “blow-up” dynamics
in the generation of a DS can prevent its formation. Our
calculations demonstrate that this phenomenon is more pro-
nounced in the normal GVD regime, as it was reported for a
DKLM solid-state oscillator [43]. The rescaling of the fiber
laser parameters from Table I to those of a DKLM solid-state
oscillator [44] demonstrates that the theory presented here
bridges both fiber and solid-state waveguide mode-locked
lasers, and explains the DS energy scalability at high levels of
SPM, which is inherent in a fiber laser and artificially created
in a DKLM solid-state oscillator [28,29].

B. Fundamental mode DS for m = l = 2

Let us consider in this section a spatial confinement poten-
tial which is closer to a step-profiled refractive index, which
increases intermodal dispersion and thus decreases nonlinear
mode coupling. In this case, our ansatz function for the VA
has a super-Gaussian profile,

a(z, t, r) = α(z)sech

(
t

T (z)

)

× exp

[
i(φ(z) + ψ (z)t2+θ (z)r4)− r4

4ρ(z)4

]
.

(10)

The nontrivial results for a chirp-free solution (ψ = 0) are the
following: (i) The stability threshold obtained from the VK
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FIG. 6. (a) Dynamics of the evolution of the DS temporal width T and (b) intensity α2 for an initial weak “seed” α(0) = 0.001 (solid
curve) or α(0) = 0.01 (dashed curve). Here, τ = 0.5, χ = 1.22, κ = 0.001, ε = −1 (normal GVD), s = −1, and ν = 1.

stability criterion is almost than twofold lower (α2 > 2.08, or
≈16 GW/cm2 in our normalization) in a nondissipative case
(i.e., � = κ = τ = 0) than that obtained for a paraboliclike
refractive index profile, and (ii) there is no DS in the absence
of spectral dissipation (i.e., with � 	= 0, κ 	= 0, and τ = 0).

In the presence of spectral dissipation (τ 	= 0), the VA
based on the ansatz (10) results in the following expressions
for the DS parameters [45],

α2 = 3

4ν
√

πρ2
[8 + √

πρ6(4
√

2 s − 3
√

π κ2ρ6)],

θ = −1

8

√
π

2
κρ2,

T 2 =
2
√

2πρ2
(

80τ 2((3+π2 )
√

225ε2+1920τ 2+15(π2−9)ε)
π2(

√
225ε2+1920τ 2+15ε)2 + 6ε

)
9(−3πκ2ρ12 + 4

√
2πρ6s + 8)

,

(11)

and ψ corresponds to Eq. (8). The resulting equation for the
beam area parameter ρ2 reads as

2880τ 3T 2

π2(
√

15
√

128τ 2 + 15ε2 + 15ε)2
− κρ4T 2

+ 120τε

π2(
√

15
√

128τ 2 + 15ε2 + 15ε)
= (12 + π2)τ

3π2
+ �T 2

(12)

and has a sole physical solution.
As it could be expected, in this case the beam is spatially

squeezed, when compared with the m = l = 1 case. Here,
spectral dissipation has a different influence with respect to
the case of a parabolic confinement potential. First, for rela-
tively low spectral dissipation (e.g., with τ = 0.1), for m =
l = 2 the DS intensity α2 is lower (higher) in the anomalous
(normal) GVD regime, respectively, when compared with the
case of a parabolic potential. Moreover, the DS intensity
is almost κ independent in the normal dispersion regime.
Second, the DS width for m = l = 2 is substantially lower (in
normal GVD case) than that for m = l = 1, and it remains
almost κ independent.

The stability regions obtained from numerical simulations
based on the VA (see the Appendix) are shown in Fig. 8. As
one could expect, these regions are narrower in terms of the

effective aperture size χ , in comparison with the case of a
parabolic potential. Nevertheless, here the stability regions are
less sensitive to spectral dissipation.

IV. SPATIOTEMPORAL MULTIMODE DYNAMICS

Multimode spatiotemporal beam dynamics beyond the
fundamental-mode approximation and the DS stability board-
ers presented in Fig. 7 can be grasped by means of di-
rect numerical simulations of the dissipative Gross-Pitaevskii
equation (4). We performed a series of numerical simulations
of Eq. (4) by using the finite-element method, implemented
by the COMSOL MULTIPHYSICS software. These simulations
demonstrate the self-starting of DS generation (or DS as
a “global attractor”) for both anomalous and normal GVD
regimes.

In the case of χ → 1, there is a strong Q switching on the
initial stage of mode locking [see Fig. 6(b) and Ref. [43]].
Above the stability boarders presented in Fig. 7, that is, in
the instability regions of the DS solutions, we observed that
higher-order spatial modes develop (see Figs. 9 and 10). As
it was pointed out previously, multimode dynamics provokes
a multipulse generation, and leads to a complex spatiotempo-
ral behavior [4,21,31,46,47]. Figures 9 and 10 illustrate the
scenario of a transition to DS splitting and multiple pulse gen-
eration through the excitation of higher-order spatial modes.
The physics of the underlying process can be commented on
in the following way. An excitation of higher-order spatial
modes causes energy leaking into them, so that single pulse
generation becomes energetically unfavorable. As a result, a
system tends to relax to a state characterized by either the
generation of multiple pulses, or a continuous-wave emission.

Several approaches can be envisaged, in order to suppress
these instabilities. Dynamical gain saturation [see Eq. (3)]
is a key factor for DS stabilization [48], including the spa-
tiotemporal case [5,20,21]. In the framework of the approach
proposed in this work, such a saturation amounts to a “self-
adjusting” of the effective aperture size χ , which permits
us to control mode coupling, depending on DS energy. This
effect could provide a “passive negative feedback” mecha-
nism, thus enhancing the DS stability: Further study is re-
quired to assess its feasibility. Such investigations will have
an interdisciplinary impact, as they may shed light on the

023508-6



DISTRIBUTED KERR-LENS MODE LOCKING BASED ON … PHYSICAL REVIEW A 102, 023508 (2020)

FIG. 7. Dependence of the upper boundaries of DS stability in either the anomalous GVD [(a) ε = 1] or the normal GVD [(b) ε = −1]
dispersion regime, respectively, vs the dimensionless “aperture size” χ = √|�|/κ , for different spectral dissipation parameters τ . The curve
and scatter point plots trace the stability boundaries for different initial field amplitude (α0) values. The large solid magenta circles correspond
to the parameters of multimode simulations presented in Figs. 9 and 10.

role of noninstantaneous nonlinearities in the control of wave
turbulence in out-of-equilibrium nonlinear systems [4,49].

Another approach could be based on the manipulation of
the confining or trapping complex potential, aimed at the
control of the multimode dynamics in an MMF. In particular,
by using step-index-like profiled fibers (see above) one could
decouple the propagation of higher-order modes from the DS
mode. This approach is, in some sense, equivalent to soft and
hard aperture approaches in the KLM of a solid-state oscillator
[27,50]. The decoupling of nondissipative and dissipative po-
tentials [e.g., m 	= l in Eq. (4) that is realized in a tapered fiber
[5]] could attain this goal as well. Both approaches could be
realized in either PCF or standard multicore fiber platforms,
in particular, composed of different materials [4,21,51,52].

Lastly, DS management by the periodic modulation of
laser parameters can affect DS stability substantially [53].
In particular, dissipative and nondissipative sections of the
laser can be physically disjointed, as it takes place in typical

FIG. 8. Dependence of the upper boundaries of the DS stability
for a super-Gaussian spatial confinement profile (i.e., for m = l =
2) in the anomalous GVD dispersion regime (ε = 1) upon the
dimensionless “aperture size” χ = 4

√|�|/κ , for different spectral
dissipation parameters τ . The curve and scatter point plots trace the
stability boundaries for different initial field amplitude (α0) values.

fiber lasers. The confinement potentials can have a periodic
localization, as well [see Figs. 1(a) and 1(b)]. The modulation
of GVD and diffraction, as well as confinement potentials,
can be realized by a spatially periodic modulation of the
refractive index, fiber structure, and doping. For instance, the
z coordinate corresponds to an oscillator transition number
(or a time T for BEC), and the t coordinate corresponds to
a local time, which is associated with the coordinate frame
comoving with a soliton. Thereby, the last is “embedded” into
an oscillator period. For BEC, the temporal coordinate corre-
sponds to a third transverse spatial one. Thus, the longitudinal
refractive index modulation is equivalent to typical active
phase mode locking forming a new confinement potential in
the t dimension (i.e., 3D spatial confinement in BEC). As was
pointed out in Ref. [54], such a phase modulation in the t
dimension is sufficient for the 1D confinement of a DS, even

FIG. 9. Contour plots of the DS intensity illustrate the multimode
spatiotemporal dynamics for ε = 1 (anomalous GVD), χ = 2.24,
τ = 0.1, and κ = 0.001. The coordinates correspond to Eq. (4).
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FIG. 10. Same as in Fig. 9, but for ε = −1 (normal GVD).

in the case of an extremely low “modulation depth,” when
SPM, spectral dissipation, and gain are present. The possible
realization of such full-dimensional confinement in an MMF
laser needs further studies.

V. CONCLUSION

In brief summary, our study demonstrates that exploiting
spatially structured dissipative effects could lead to a desirable
and feasible breakthrough in mastering energy-scalable and
well-controllable spatiotemporal dissipative solitons in a fiber
self-mode-locked laser. The background approach is to utilize
a spatially profiled dissipation (e.g., the excitation of leaking
radiation, by using waveguide arrays, multicore, or multimode
fibers) with the aim of stabilizing the DS, and even provid-
ing a robust mechanism of self-starting spatiotemporal mode
locking. In fact, our concept is closely related to the space-
time spectral duality [55,56] involved in spatiotemporal mode
locking. Such a mechanism of spatiotemporal DS formation
can be considered as a path to achieve energy-scalable DKLM

in large-mode-area solid-state lasers, in MMF lasers, as well
as in photonic lattices.

We anticipate that the nonlinear coupling of spatial modes
in either graded-index or photonic-crystal fibers, supported
by the presence of graded dissipation, could implement the
concept of DKLM in a fiber laser in the regime of multi-
mode self-cleaning. This would provide the means to achieve
highly efficient and stable energy harvesting in an all-fiber
laser, without the need for using any additional mode-locking
mechanisms. In a broader context, we envisage that photonic
devices could provide an efficient tool for metaphorical or
analog modeling [15] of strongly localized coherent (or par-
tially coherent) structures, which spontaneously emerge in
nonlinear nonequilibrium dissipative systems. In particular,
these systems represent a classical analog of a Bose-Einstein
condensate in the weakly dissipative limit.
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APPENDIX

Our analytical approach is based on a variational approx-
imation [Eqs. (1) and (2)] to the Gross-Pitaevskii equation
(4). We have taken into account dissipative factors, which, in
particular, are relevant to describing multidimensional laser
systems and a weakly dissipative Bose-Einstein condensate.
The corresponding algebra is rather cumbersome, and here
we sketch some results, which are closely connected with the
main text of the article (the calculation details can be found in
Refs. [57–59]).

In the nondissipative case (i.e., � = κ = τ = 0), the VA
for the Gaussian ansatz and m = 1 results in the following
dynamical system for the evolution of the multidimensional
soliton parameters,

ψ ′(z) = να(z)2

π2T (z)2
− 2ε

π2T (z)4
+ 2εψ (z)2, θ ′(z) = 1

6

(
−3s + να(z)2

ρ(z)2
+ 12θ (z)2 − 3

ρ(z)4

)
,

φ′(z) = ε

3T (z)2
− 7

12
να(z)2 + 1

ρ(z)2
, α′(z) = α(z)[εψ (z) + 2θ (z)],

ρ ′(z) = −2θ (z)ρ(z), T ′(z) = −2δT (z)ψ (z). (A1)

This system has a unique soliton (i.e., steady-state) solution for the beam area, which is physically relevant, due to the absence
of a minimal threshold on α2,

T 2 = 2ε

ν α2
, ρ2 = ν α2 − √

ν2 α4 − 36s

6s
, (A2)

where the intensity α2 can be treated as a free parameter.
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In the nondissipative case of an m = 2 potential and with the super-Gaussian ansatz, one has

ψ ′(z) =
√

2να(z)2

π2T (z)2
− 2ε

π2T (z)4
+ 2εψ (z)2,

θ ′(z) = − s

2
+ να(z)2

6
√

2ρ(z)4
+ 24

√
2

π
θ (z)2ρ(z)2 − 1√

2πρ(z)6
,

φ′(z) = ε

3T (z)2
− να(z)2

√
2

+ 3 − 16θ (z)2ρ(z)8

√
2πρ(z)2

,

α′(z) = −α(z)

(
−εψ (z) − 8

√
2

π
θ (z)ρ(z)2

)
,

ρ ′(z) = −8

√
2

π
θ (z)ρ(z)3, T ′(z) = −2εT (z)ψ (z). (A3)

The physically relevant steady-state solution of (A3) for the beam area is

ρ2 = −
3

√√
2
√

s3(1458s − √
2πα6ν3) + 54s2

3
√

2 6
√

πs
−

6
√

πα2ν

3
3

√√
2
√

s3(1458s − √
2πα6ν3) + 54s2

. (A4)

For the complex parabolic potential m = l = 1 with nonzero �, κ , and τ parameters [see Eqs. (1), (2), and (4)], the evolution
of the DS parameters obeys

ψ ′(z) = 3να(z)2 − 4(3 + π2)τψ (z)

3π2T (z)2
− 2ε

π2T (z)4
+ 2εψ (z)2,

θ ′(z) = 1

6

(
−3s + να(z)2

ρ(z)2
+ 12θ (z)2 − 3

ρ(z)4

)
,

φ′(z) = ε

3T (z)2
− 7

12
να(z)2 + 1

ρ(z)2
+ 1

9
(3 + π2)τψ (z),

α′(z) = 1

15
α(z)

(
3π2τT (z)2ψ (z)2 − 5

(
12 + π2

)
τ

π2T (z)2
+ 15[−� + εψ (z) + 2θ (z)]

)
,

ρ ′(z) = −ρ(z)[2θ (z) + κρ(z)2],

T ′(z) = −2εT (z)ψ (z) − 16

15
π2τT (z)3ψ (z)2 + 8τ

π2T (z)
. (A5)

These equations define the solutions (7)–(9) and underlie Figs. 2–7.
The system for the m = l = 2 potential and the super-Gaussian ansatz (10),

ψ ′(z) = 3
√

2να(z)2 − 4(3 + π2)τψ (z)

3π2T (z)2
− 2ε

π2T (z)4
+ 2εψ (z)2,

θ ′(z) =
√

πνα(z)2ρ(z)2 + 288θ (z)2ρ(z)8 − 6

6
√

2πρ(z)6
− s

2
,

φ′(z) = ε

3T (z)2
− να(z)2

√
2

+ 3 − 16θ (z)2ρ(z)8

√
2πρ(z)2

+ 1

9
(3 + π2)τψ (z),

α′(z) = 1

15
α(z)

[
3π2τT (z)2ψ (z)2 − 5

(
12 + π2

)
τ

π2T (z)2
− 15

(
� − 8

√
2

π
θ (z)ρ(z)2 − εψ (z)

)]
,

ρ ′(z) = −ρ(z)3

(
8

√
2

π
θ (z) + κρ(z)2

)
,

T ′(z) = −16

15
π2τT (z)3ψ (z)2 + 8τ

π2T (z)
− 2εT (z)ψ (z), (A6)

underlies Eqs. (11) and (12) and Fig. 8.
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One has to note that the solution (8) for the chirp parameter ψ was obtained by using the Muller’s method [60] to avoid a
singularity for τ → 0. Equations (9) and (12) can be reduced to the polynomials relative to the beam area ρ2 of fourth and sixth
order, respectively [57,58].
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