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Pairing in SU(6) × SU(2) one-dimensional fermionic clusters

M. C. Gordillo
Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Seville, Spain

(Received 25 June 2020; accepted 10 August 2020; published 31 August 2020)

We present diffusion Monte Carlo calculations on the behavior of a mixture of 173Yb and 171Yb fermionic
isotopes in a one-dimensional environment. The interaction parameters between species were modeled by δ

potentials, whose strengths were taken from their experimental scattering lengths and varied by changing the
transversal confinement. This implies a repulsive interaction for the 173Yb-173Yb pair, a strong attractive one for
the 173Yb-171Yb set, and a weak attraction between 171Yb-171Yb atoms. Those arrangements were described by
a corrected geminal multiplied by the appropriate set of Jastrow functions. We found that, for the same number
of strong attractive pairs, the width of the cluster decreases when the number of fermionic species increases, the
narrower cluster being the one that includes a mixture of six 173Yb species and two 171Yb spin types.
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I. INTRODUCTION

The majority of experiments on ultracold fermions deal
with alkali atoms, such as 6Li and 40K [1]. Since we can find
those fermions in two different spin states, all those systems
have SU(2) symmetry. However, the nuclear and electronic
structures of alkali-earth metal atoms, like 87Sr, allow them
to populate up to 10 spin states [2,3]. A similar behavior
is experimentally found in 173Yb, with up to six different
spin values [4–6]. Moreover, the ytterbium isotope family
is quite complex, with seven components: two fermions and
five bosons [7]. This allows a wide range of mixtures, such
as the experimentally realized SU(6) × SU(2) [two kinds
of fermions, 173Yb with SU(6) symmetry and 171Yb with
SU(2) one] [8,9], or the one including 173Yb atoms and two
different types of bosons (170Yb or 174Yb) [10]. Most of the
experimental data for those systems deal with their behavior
when loaded in optical lattices. In this work, however, we will
study harmonically confined (quasi)-one-dimensional (1D)
arrangements, similar to the ones considered experimentally
in Ref. [4]. The main difference will be that, instead of
taking into account exclusively 173Yb fermions interacting
repulsively, we will consider 1D mixtures of fermions that not
only repel but attract each other.

In consonance with all of the above, the modelization of
SU(N) arrangements is usually done only for atoms loaded
in optical lattices, and by means of discrete Hamiltonians,
especially the Hubbard model [2,11–14]. However, some
descriptions of 1D harmonically confined continuous models
are available in the literature [15–18], all of them consider-
ing only repulsive interspecies interactions. The continuous
Hamiltonian that can be used to describe those systems is

H =
Np∑
i=1

[−h̄2

2m
∇2

i + 1

2
mω2x2

i + Vext(xi )

]

+ g1D(α, β )
N∑

α=1

N∑
β>α

Nα∑
i=1

Nβ∑
j=1

δ(xα
i − xβ

j ). (1)

Here, N is the number of spin species, and Np is the total
number of particles. Even though we considered mixtures of
173Yb and 171Yb, we judged their masses to be similar enough
to assign them the same value, m. σ = √

h̄/mω is the so-called
oscillator length, in this case in the longitudinal direction, i.e.,
the one parallel to the 1D coordinate along which the atoms
are allowed to move. As is customary, this will be our unit of
length, and it was calculated from the experimental ω value
given in Ref. [4] (ω = 2π × 80 Hz). The interaction strength
between particles was modeled by δ functions depending on
the pair of species, (α, β), considered via their respective g1D

parameters, with g1D(α, β ) = −2h̄2/ma1D(α, β ). g1D(α, β ) is
positive for repulsive interactions and negative for attractive
ones. Here, a1D(α, β ) is the one-dimensional scattering length
of the pair, which can be obtained from its three-dimensional
experimental counterpart, a3D(α, β ), using [19]

a1D(α, β ) = − σ 2
⊥

2a3D(α, β )

(
1 − A

a3D(α, β )

σ⊥

)
, (2)

with A = 1.0326. σ⊥ is another oscillator length, in this case
in the direction perpendicular to the one in which the Yb
atoms are allowed to move. This means that, for the same
values of a3D, we can have different values of a1D by changing
the value of ω⊥, which experimentally is in the range of kHz
[4,10]. The a3D(α, β ) values are 10.55 nm (173Yb-173Yb),
−0.15 nm (171Yb-171Yb), and −30.6 nm (171Yb-173Yb) [7],
with the minus signs standing for attractive interactions. The
g1D values for the different pairs, calculated using Eq. (2),
are shown in Fig. 1 as a function of ω⊥. One can easily
see that while g1D for the 171Yb-171Yb pair is very weakly
attractive for the entire range of confinements considered, the
171Yb-173Yb parameter is always strongly attractive, while the
one for the 173Yb-173Yb pair is repulsive.

II. METHOD

We solved the Schrödinger equation derived from the
Hamiltonian in Eq. (1) using the fixed-node diffusion Monte
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FIG. 1. Values of the g1D parameters for the different pairs of Yb
isotopes as a function of confinement, represented by the harmonic
oscillation perpendicular frequency, ω⊥.

Carlo (FN-DMC) method. This technique allows us to obtain
stochastically the exact ground-state energy of a system of
fermions when the positions of the nodes of the exact many-
body wave function that describes them are known [20].
Fortunately, this condition is fulfilled in strictly 1D systems,
since we can have nodal points only when two particles of
the same species are at the same position [21]. For the DMC
algorithm to work, we need an initial approximation of the
real many-body function of the system. This is called the trial
function, and for an arrangement of repulsively interacting
173Yb particles belonging to different spin states it can be
written as [15–17]

�
(
x1, . . . , xNp

) =
N∏

α=1

Dα

Nα∏
i

Nβ∏
j

ψ
(
xα

i − xβ
j

)
, (3)

where the Slater determinant Dα , for atoms belonging to the α

spin species, contains the lowest Nα eigenvectors correspond-
ing to a noninteracting version of the Hamiltonian in Eq. (1).
In this particular case, this means the one-body harmonic-
oscillator functions that can be found in any textbook. It
is well known that when this happens, Dα can be given
as a product of Gaussian functions and a Van der Monde
determinant [22]:

Dα = C

(∏
i

exp
[ − x2

i /2
])⎛

⎝ ∏
1< j<l<Nα

(xl − x j )

⎞
⎠, (4)

with C the proper normalization constant. ψ (xα
i − xβ

j ) is
the so-called Jastrow function, which takes into account the
correlations between particles not belonging to the same spin
species. In 1D systems, that Jastrow function is usually taken
as the solution of the homogeneous Hamiltonian in Eq. (1)
for two particles [23,24], and it is different for repulsive and
attractive δ interactions.

In the first case, we took the short-range solution given in
Ref. [24], used in previous works [17,18,24–28]:

ψ
(
xα

i − xβ
j

)=
{

cos
(
k
[∣∣xα

i − xβ
j

∣∣ − Rm
])

,
∣∣xα

i − xβ
j

∣∣ < Rm,

1,
∣∣xα

i − xβ
j

∣∣ � Rm.

(5)

Here, Rm is the only variationally optimized parameter, found
to be 10σ for all the systems considered in this work. Once
that parameter was fixed, k could be obtained by numerically
solving the transcendental equation:

ka1D(α, β ) tan(kRm) = 1 (6)

for each value of a1D(α, β ) [24].
On the other hand, the interaction could be attractive, and

then the homogeneous solution of the Hamiltonian of Eq. (1)
for two particles [29], used as a Jastrow function, is [23,24]

φ
(∣∣xα

i − xβ
j

∣∣) = exp

[
−|g1D(α, β )|

2

∣∣xα
i − xβ

j

∣∣]. (7)

This function does not depend on any adjustable parameters.
For a system that includes exclusively repulsive interac-

tions, it is very easy to see that Eq. (3) is equivalent to

�(x1, . . . , xNp ) = D
Nα∏
i

Nβ∏
j

ψ
(
xα

i − xβ
j

)
(
xα

i − xβ
j

) , (8)

with D a Slater determinant including all Np one-body func-
tions. On the other hand, it is well known that a trial function
of the form given by Eq. (3) does not work properly when
the particles making up the system attract each other. In the
case in which we have only two kinds of fermions, the trial
function has the form of a geminal [30–32]:

�
(
x1, . . . , xNp

) = A
[
φ(r11′ )φ(r22′ ) · · · φ(

rNp/2,N ′
p/2

)]
, (9)

where A is an antisymmetric operator, and φ(ri j′ ) is a pair
function depending on the distance between two particles with
different spins, ri j′ = |xi − x j′ |, which in our case is the same
as the one given by Eq. (7).

In this work, instead of having only two different sets of
particles, we consider mixtures of 173Yb and 171Yb atoms with
the particularity that not all the particles in the N173 subset are
indistinguishable, rather they belong to up to six different spin
types. The same can be said of the 171Yb ensemble, composed
of up to two different kinds of particles that attract each other.
With that in mind, a naive form for the trial function could be

�
(
x1, . . . , xNp

) =
∏

i

exp
[ − x2

i /2
] Nα∏

i

Nβ∏
j

ψ
(
xα

i − xβ
j

)
×A

[
φ(r11′ )φ(r22′ ) · · · φ(

rN173,N171′
)]

, (10)

in which α and β stand for different species within the
173Yb and 171Yb subsets. The strongly attractive (173Yb-
171Yb) cross-interaction is taken into account by using the
geminal, in which every element of the determinant depends
on the distance, r, between a 173Yb atom and a 171Yb one. The
trial function in Eq. (10) is antisymmetric only with respect
to the interchange of particles belonging to species with the
same spin. The introduction of the Jastrow terms forbids that
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antisymmetric character when the atoms are distinguishable.
However, it can only provide an upper bound to the energy
of the real system, since its geminal part has nodes when
(xα

i − xβ
j ) = 0, i.e., when atoms belonging to the same set

(173Yb or 171Yb) but with different spins are on top of each
other, which it is not necessarily realistic.

To correct that, we have to look at the geminal structure. If
we consider two consecutive rows describing the interaction
of two distinguishable atoms at coordinates xi and x j in
the 173Yb subset with all the 171Yb particles (at coordinates
x1′ , x2′ , . . . , xN171′ ), we have∣∣∣∣exp (−|g1D|ri1′/2) · · · exp

(−|g1D|ri,N171′ /2
)

exp(−|g1D|r j1′/2) · · · exp
(−|g1D|r j,N171′ /2

) ∣∣∣∣.
When xi → x j , we can write

φ(rik′ ) = exp (−|g1D||xi − xk′ |/2)

= exp(−|g1D||x j + � − xk′ |/2) (11)

with � = xi − x j → 0. Expanding to first order in �, we have

φ(rik′ ) = φ(r jk′ ) − g1D
exp(−|g1D|r jk′/2)(x j − xk′ )�

2r jk′
. (12)

Bearing in mind the properties of the determinants, we can
see that the origin of the spurious node at xi − x j → 0 is the
dependence of all the elements of the geminal row, which
includes the i atom, on �. This can be corrected by dividing
the trial function by, in this case, xi − x j . We can repeat this
procedure for any pair of distinguishable atoms in the 173Yb
and 171Yb ensembles. This means using a trial function similar
to that of Eq. (8), but changing the Slater determinant by a
geminal, i.e.,

�
(
x1, . . . , xNp

) = A
[
φ(r11′ )φ(r22′ ) · · · φ(

rN6,N2

)]
×

∏
i

exp[−x2
i /2]

Nα∏
i

Nβ∏
j

ψ
(
xα

i − xβ
j

)
(
xα

i − xβ
j

) ,

(13)

this being the trial function used in the DMC calculations
reported in this work. If instead of a system with the same total
number of 173Yb and 171Yb atoms (that we term a balanced
system) we have an imbalanced one, then we will follow the
prescription of Ref. [29] and change the geminal in Eq. (13)
by a determinant including as many rows (or columns) of
pairing functions as the number of particles in the minority
component, and with the remaining rows filled by standard
one-particle harmonic-oscillator functions.

To avoid biases in the energies obtained by DMC, extra
care was used to avoid spurious correlations. In particular,
any energy value given is the average of three independent
DMC calculations, with an error bar corresponding to those
three values, and not to the statistical fluctuations typical
of a DMC calculation. To decorrelate further, each of those
three values was an average that was obtained considering the
energies obtained every 200 Monte Carlo steps. This means
that in a typical 106 step simulation (after thermalization),
only 5000 values were used to calculate the energy. The other
possible sources of bias were the DMC time step and the
number of walkers [33]. To avoid the first, we extrapolated the
values of the energy to the limit �τ → 0, using the quadratic
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FIG. 2. Total energy of a system with 18 173Yb atoms with SU(6)
symmetry and a single 171Yb impurity for two different perpendicular
confinements and as a function of the DMC time step, �τ . Upper
curve, ω⊥ = 2π × 20 kHz; lower curve, ω⊥ = 2π × 25 kHz. The
values of the energies and error bars are the result of averaging three
independent configurations for each value of �τ . All data correspond
to 1000 walkers. Fits correspond to least-squares fits to the form
e(�τ ) = a(�τ )2 + e0.

dependence corresponding to the propagator used [34]. Two
examples of this procedure are given in Fig. 2. Those cor-
respond to 30.0 ± 0.7 h̄ω (upper curve) and 20.2 ± 0.7 h̄ω,
very close to the values corresponding to the smallest time
step used, 0.5 × 10−6 (h̄ω)−1 (29.7 ± 1.5 and 19.8 ± 1.5 h̄ω,
respectively). The small differences between the results corre-
sponding to �τ = 0.5 × 10−6 (h̄ω)−1 and the extrapolations
to �τ → 0, which are nevertheless larger than the error bars
(in the range 1–2 h̄ω for all energy values), make it safe to use
the latter instead of the former as estimations of the energy.

On the other hand, once the appropriate decorrelation has
been done following the procedure outlined above, it can be
shown that the influence of the number of walkers, Nw, on the
results is basically negligible. A couple of examples of this are
given in Fig. 3. The energy values obtained by extrapolating to
the limit Nw → ∞ are e∞ = 37.2 ± 0.1 h̄ω for �τ = 2.5 ×
10−6 (h̄ω)−1 (upper curve) in Fig. 3, and e∞ = 30.3 ± 0.1 h̄ω

for �τ = 0.5 × 10−6 (h̄ω)−1 (lower curve in the same figure).
Both numbers are well within the error bars of the energies
corresponding to Nw = 1000. This is in consonance with the
results of Ref. [33] for a system of bosons. There, it is stated
that, at least for clusters of the size of those considered in
this work, there is not an appreciable energy bias due to this
cause, and that at least part of the problem in larger clusters
could be the correlation between walkers. For uncorrelated
configurations, the energy should depend inversely on that
number, which is exactly what we see in Fig. 3. For that
reason, we used 1000 walkers for most of our calculations.

III. RESULTS

Keeping all of that in mind, we studied first the behavior of
a single attractive impurity inside a 19-particle cluster made
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FIG. 3. Same as in the previous figure, but as a function of the
number of walkers, Nw , for a perpendicular confinement equal to
ω⊥ = 2π × 20 kHz. Upper curve, �τ = 2.5 × 10−6 (h̄ω)−1; lower
curve, �τ = 0.5 × 10−6 (h̄ω)−1. The lines correspond to least-
squares fits to the form e(Nw ) = a/Nw + e∞.

up of 18 173Yb atoms. The results are depicted in Figs. 4
and 5. In the first one, we can see the evolution of the
total energy of the cluster, in units of h̄ω, as a function of
the 173Yb-171Yb interaction parameter, g1D(173, 171). This
can be connected to the perpendicular confinement frequency
via Fig. 1. As a reference, the experimental value of the
perpendicular constraint frequency given in Ref. [4] is ω⊥ =
2π × 25 kHz, which corresponds to g1D(173, 171) = −13.5
h̄ωσ . The 173Yb atoms can have all the same spin and SU(1)
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FIG. 4. Total energy of a system with 18 173Yb atoms and a single
171Yb impurity as a function of the 173Yb-171Yb interaction parame-
ter. The 173Yb atoms could have all the same spin [SU(1)], belong to
two or three different spin sets [SU(2) and SU(3), respectively], or
are distributed in six sets of three atoms each [SU(6)]. The error bars
are of the size of the symbols and are not shown for simplicity.
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FIG. 5. Density profiles for the same systems as in the previ-
ous figure. Upper panel, a 171Yb impurity embedded in different
173Yb arrangements with the same perpendicular confinement (ω⊥ =
2π × 25 kHz). Lower panel, SU(6) + impurity profiles for different
confining perpendicular frequencies.

symmetry, or be distributed in N sets, with N in the range 2–6,
and SU(N) symmetries.

We can see that in the limit g1D(α, β ) → 0, the energies
of the different clusters converge to their corresponding non-
interacting limits, given by [N (Np/N )2 + 1] h̄ω/2, with N
the number of 173Yb types of spins. For all SU(N) cases,
those energies also increase with the interaction parameter,
approaching the same value for strong confinements. This is
probably due to the related increase in the repulsive 173Yb-
173Yb interaction, which blurs the difference between a strong
repulsive interaction and that derived from the Pauli exclusion
principle [22], making equivalent SU(N) and SU(1) systems
with the same number of particles [17]. The density pro-
files given in Fig. 5 are the standard ones for systems with
impurities: that minority component is located at the center
of the cluster, with minor variations due to the particular
arrangement considered. For instance, we can see that, for the
same confinement frequency, the fewer the 173Yb components,
the wider their distribution. This is simply due to Pauli’s
repulsion, and it has to do with the fact that a couple of
particles with the same spin cannot be at the same position,
something not forbidden to two 173Yb atoms belonging to
different species. On the other hand, the influence of the
perpendicular confinement in the arrangement of the majority
component is very minor, as can be seen in the lower panel
of Fig. 5.

023335-4



PAIRING IN SU(6) × SU(2) … PHYSICAL REVIEW A 102, 023335 (2020)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

−3 −2 −1  0  1  2  3

D
en

si
ty

 (u
ni

ts
 o

f σ
−1

)

x (units of σ)

12+12
2x6+12
12+6x2

2x6+6x2

FIG. 6. Density profiles for a series of clusters including Np = 24
particles, and for an (ω⊥ = 2π × 25 kHz). Symbols correspond to a
profile that is the sum of all the 12 173Yb atoms, and lines to the
12 171Yb ones. The label n173 × m173 + n171 × m171 means m173 sets
of n173

173Yb with SU(m173) symmetry and m171 sets of n171
171Yb

spins with SU(m171) symmetry.

With the help of Fig. 6, we can see that the influence of the
internal structure on the density profiles of clusters including
12 173Yb atoms and 12 171Yb ones is larger. In the definition
given above, those are balanced systems, something that can
be seen due to the fact that the distribution of one isotope
perfectly matches that of the other. The density profile of
an arrangement with 12 equal-spin 173Yb and 12 equal-spin
171Yb atoms (labeled 12+12 in Fig. 6) is the wider of all
the ones considered. This is in consonance with what we saw
in the previous figure: the application of Pauli’s principle for
both sets of 12 atoms forbids two atoms of the same isotope
from sharing the same spot, spreading the atoms further. If
we go to systems with the same number of 171Yb atoms, but
with six sets of two 173Yb different spins (2 × 6 + 12), the
previous restriction is released, producing thinner clusters.
This trend explains the evolution of the profiles when they
include two sets of six 171Yb atoms: in this case, there
are many pairs for which Pauli’s exclusion principle does
not apply anymore, allowing instead two 171Yb atoms with
different spins to weakly attract each other, concentrating in
a smaller region. We can see also that the main driver of the
collapsing of the density profile is the consideration of SU(2)
symmetry in the 171Yb atom set. The repulsive nature of the
173Yb-173Yb interaction masks in part the effect of the Pauli
exclusion avoidance. On the other hand, the effect of varying
the confinement in the profile of balanced clusters is, as in
the impurity case, quite minor. In Fig. 7, we can see that an
increase in ω⊥ makes the profiles slightly wider. The reason
could be that, according to the results displayed in Fig. 1,
the confinement increases the 173Yb-173Yb repulsion, and this
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FIG. 7. Same as in the previous figure, but for different confine-
ment frequencies.

balances and slightly outweighs the corresponding increase in
the 173Yb-171Yb attraction.

IV. CONCLUSIONS

Summarizing, we can say that the main factor determining
the structure of clusters of the same size and made up of differ-
ent kinds of fermions is Pauli’s exclusion principle. The larger
the number of different species, the smaller is the number of
atom pairs that cannot be on top of each other, and the thinner
are the clusters, with minor effects due to the magnitude of the
perpendicular confinement. This effect increases appreciably
when the interaction between spins belonging to different
species is attractive instead of repulsive.
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