
PHYSICAL REVIEW A 102, 023334 (2020)

Quantum backflow for many-particle systems

Maximilien Barbier
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB),

Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium

(Received 29 May 2020; accepted 10 August 2020; published 31 August 2020)

Quantum backflow is the classically forbidden effect pertaining to the fact that a particle with a positive
momentum may exhibit a negative probability current at some space-time point. We investigate how this
peculiar phenomenon extends to many-particle systems. We give a general formulation of quantum backflow for
systems formed of N free nonrelativistic structureless particles, either identical or distinguishable. Restricting
our attention to bosonic systems where the N identical bosons are in the same one-particle state allows us in
particular to analytically show that the maximum achievable amount of quantum backflow in this case becomes
arbitrarily small for large values of N .
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I. INTRODUCTION

The quantum nature of matter challenges our classical
intuition through counterintuitive effects such as diffraction,
tunneling, or entanglement. Another classically forbidden
phenomenon is quantum backflow [1–18]. The latter stems
from the possibility, for a quantum particle following a one-
dimensional motion along the x axis, that the probability
current at position x0 takes negative values over some time
interval even though the particle has a positive momentum. In
other words, the probability of finding the particle at positions
−∞ < x < x0 may increase over a certain time interval, even
though the particle moves in the direction of increasing x.

This peculiar effect has first been noted in the context
of quantum arrival times [19]. Its first in-depth study was
then performed by Bracken and Melloy [1]. In particular,
they provided the first evidence of the occurrence of quantum
backflow for normalizable wave functions in the case of a free
particle. Furthermore, they showed that the magnitude of this
effect is limited by a nontrivial upper bound now commonly
referred to as the Bracken-Melloy constant. The latter hence
quantifies the maximum increase of the probability of finding
the particle at positions −∞ < x < x0 that is achievable with
positive-momentum states. To date, no analytical expression
of this constant has been found but numerical estimations have
been obtained [1,4,5] with increasing accuracy.

A noteworthy feature of the Bracken-Melloy constant is
that it has been shown [1] to be a dimensionless quantity that
is independent of the duration of the backflow phenomenon,
of the mass m of the particle, as well as of the (reduced)
Planck constant h̄. Therefore, quantum backflow stands as
an intrinsically quantum effect that is apparently independent
of h̄. This surprising aspect motivated further investigations
in order to better understand the fundamental nature of this
peculiar phenomenon [5,6,8,10,11]. In particular, the classical
limit of quantum backflow remains to be fully comprehended,
as the naive classical limit h̄ → 0 clearly cannot be readily
taken [8].

While quantum backflow was originally considered in the
case of a nonrelativistic free particle, it has ever since been
extended to a broad class of other quantum systems. Indeed,
it has been shown to occur for a particle in linear [3] as
well as short-range potentials [12] or for a relativistic free
particle [2,14]. Furthermore, effects akin to quantum backflow
have been demonstrated for a nonrelativistic electron in a
constant magnetic field [7], the decay of a quasistable sys-
tem [15], or for a dissipative system [17]. In addition, a deep
connection between quantum backflow and more general clas-
sically forbidden phenomena has been put forward [13,16]. It
is also worth stressing that backflow can emerge in other wave
phenomena such as in optics [6]. Optical backflow has thus
been observed very recently [20]. While a practical scheme
based on Bose-Einstein condensates has been proposed [9],
an experimental evidence of backflow on a quantum system
still remains to be performed.

Quantum backflow in the context of the time-dependent
Schrödinger equation has, to the best of our knowledge, been
studied exclusively for single-particle systems. Only very
recently has backflow been analyzed for a dissipative system
of two identical quantum particles coupled to an environ-
ment [18].

Therefore, in this work we propose to study the problem
of quantum backflow for many-particle systems governed by
the time-dependent Schrödinger equation. Our aim is thus
twofold. On the one hand, we give the general formulation
of quantum backflow for a system formed of N identical
particles, either bosons or fermions. This formulation can be
easily extended to the case of distinguishable particles. On the
other hand, we approach the question of the classical limit of
this phenomenon not from the naive limit h̄ → 0 but rather
from the limit N → ∞ of a large system. To be more explicit,
we show that, in the particular case of N bosons in the same
one-particle state, quantum backflow vanishes in the latter
limit.

This paper is structured as follows. We begin in Sec. II
with a brief review of single-particle quantum backflow. This
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allows us to recall how the latter is quantitatively defined, as
well as to fix some notations. We then turn our attention to
many-particle quantum backflow in Sec. III. Here we give
a general formulation of the problem, and illustrate some of
the features of backflow in the case of an N-boson system.
Concluding remarks are finally discussed in Sec. IV.

II. SINGLE-PARTICLE QUANTUM BACKFLOW

In this section we recall some standard results about the
phenomenon of quantum backflow for a single particle. We
begin by fixing notations that are used throughout this paper.
We consider a nonrelativistic structureless quantum particle of
mass m that follows a free one-dimensional motion along the
x axis. The dynamical state |ψ (1)(t )〉 of the system at some
time t � 0 is, in the position representation, described by a
wave function ψ (1)(x, t ) ≡ 〈x|ψ (1)(t )〉 that obeys the free-
particle time-dependent Schrödinger equation

ih̄
∂

∂t
ψ (1)(x, t ) = − h̄2

2m

∂2

∂x2
ψ (1)(x, t ). (1)

This wave function characterizes a probability density
|ψ (1)(x, t )|2 that is required to satisfy the normalization
property ∫

R
dx|ψ (1)(x, t )|2 = 1. (2)

The latter can be for instance rewritten as∫ x0

−∞
dx|ψ (1)(x, t )|2 +

∫ ∞

x0

dx|ψ (1)(x, t )|2 = 1, (3)

with x0 an arbitrary real number. The first (second) term on
the left-hand side of (3) merely corresponds to the probability
of finding the particle in the position interval −∞ < x < x0

(x0 < x < ∞) at time t .
It is worth noting that for a free particle no particular posi-

tion x0 is privileged. Therefore, without any loss of generality
we take for simplicity x0 = 0 in the sequel. Introducing the
notation

R± ≡ {x ∈ R | sgn(x) = ±1}, (4)

with sgn(x) ≡ x/|x| the sign function, we hence define the
probabilities

P (1)
1 (t ) ≡

∫
R−

dx|ψ (1)(x, t )|2 (5)

and

P (1)
0 (t ) ≡

∫
R+

dx|ψ (1)(x, t )|2 (6)

of finding the particle at negative and positive, respectively,
positions at time t . By construction, the latter correspond
to mutually exclusive events and satisfy the normalization
condition

P (1)
1 (t ) + P (1)

0 (t ) = 1, (7)

as a direct consequence of (3) for x0 = 0.

In addition to the probability density |ψ (1)(x, t )|2, one can
also consider the probability current J (1)(x, t ) defined by

J (1)(x, t ) ≡ −i
h̄

2m

[
ψ (1)∗ (x, t )

∂

∂x
ψ (1)(x, t )

− ψ (1)(x, t )
∂

∂x
ψ (1)∗ (x, t )

]
, (8)

where z∗ denotes the complex conjugate of the complex
number z. The probability density and current satisfy the
conservation equation

∂

∂t
|ψ (1)(x, t )|2 + ∂

∂x
J (1)(x, t ) = 0 (9)

as a direct consequence of the Schrödinger equation (1).
Differentiating (5) with respect to time and using (9) hence
shows, also using (7), that

dP (1)
1

dt
= −J (1)(0, t ) = −dP (1)

0

dt
, (10)

where we used the fact that limx→±∞ J (1)(x, t ) = 0. Indeed,
the wave function itself must vanish at infinity, which ensures
that the probability of finding the particle at infinity vanishes
at any finite time t . It is worth stressing that (10) is peculiar
to the one-dimensional motion of a single particle, as the
conservation equation takes the particularly simple form (9)
in this case. Such a simple relation between time derivatives
of the probabilities and the current cannot be established for
a many-particle system, as is seen in more details in Sec. III
below.

After this reminder of the quantum-mechanical description
of a free particle, we now give in Sec. II A a short outline of
single-particle quantum backflow. An explicit example that is
known to give rise to backflow is then reviewed in Sec. II B to
illustrate this peculiar quantum effect.

A. Quantum backflow

The phenomenon of quantum backflow is rooted in the
existence of states ψ (1)(x, t ) that make the probability P (1)

1 (t )
increase over some time interval even though the particle has
a positive momentum. Such a behavior is clearly impossible
from the classical-mechanical point of view. Indeed, if a clas-
sical free particle has a positive (though uncertain) velocity,
the probability of finding it on the negative x axis can be
shown to be a monotonically decreasing function of time [1].

The idea of a quantum particle with a positive momentum
can be made precise by writing the Fourier transform of the
wave function ψ (1)(x, t ), which is thus required to contain
only positive components of the momentum p. That is, the
particle is assumed to be prepared in the initial state

ψ (1)(x, 0) = 1√
2π h̄

∫
R+

d p eixp/h̄φ(1)(p), (11)

where the functions ψ (1)(x, 0) and φ(1)(p) both satisfy the
normalization condition∫

R
dx|ψ (1)(x, 0)|2 =

∫
R+

d p|φ(1)(p)|2 = 1. (12)

It is worth noting that the restriction of the momentum integral
to R+ is ensured by the fact that φ(1)(p) = 0 for any p < 0.
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This stems from the particular initial state (11) considered
here. Indeed, the normalized wave function ψ (1)(x, 0) must
admit a decomposition on the basis formed by the eigen-
vectors of the free-particle Hamiltonian, i.e., precisely the
plane waves with both positive and negative momenta. To
consider a linear superposition (11) of plane waves with only
positive momenta implies that the coefficients of the plane
waves with negative momenta all vanish; i.e., φ(1)(p) = 0 for
any p < 0.

Now, an important consequence of considering a free par-
ticle is that the wave function ψ (1)(x, t ) that evolves from the
initial state (11) is of the form

ψ (1)(x, t ) = 1√
2π h̄

∫
R+

d p e−ip2t/2mh̄ eixp/h̄φ(1)(p), (13)

as can be easily shown from the Schrödinger equation (1). We
emphasize that the integration range in (13) is again R+, as in
the initial state (11). This can be understood from the absence,
for a free particle, of a potential that can induce negative
momenta, e.g., through the reflection on a barrier. Therefore,
expression (13) of the wave function ψ (1)(x, t ) is the quantum
translation of the particle having, with probability 1, a positive
momentum at any time t � 0.

We now consider the probability P (1)
1 (t ), as defined by (5),

of finding the particle on the negative x axis at time t for a state
of the form (13). We introduce the change �1 of P (1)

1 over
a fixed (though arbitrary) time interval 0 � t � T for some
T > 0, which is defined by

�1 ≡ P (1)
1 (T ) − P (1)

1 (0). (14)

The latter allows to quantitatively study the phenomenon of
quantum backflow, which then arises from positive values
of �1 [1]. Indeed, to have �1 > 0 means that the probability
P (1)

1 has increased between the times t = 0 and t = T . Note
that �1 can, in view of the normalization condition (7), be
alternatively written as

�1 = P (1)
0 (0) − P (1)

0 (T ). (15)

Quantum backflow can thus be equivalently viewed as arising
from the decrease of the probability P (1)

0 of finding the particle
on the positive real axis between the times t = 0 and t = T .

It is worth noting that (14) can be written in the form

�1 =
∫ T

0
dt

dP (1)
1

dt
. (16)

Substituting (10) into (16) hence allows to express �1 in terms
of the probability current J (1) and

�1 = −
∫ T

0
dt J (1)(0, t ). (17)

This shows that quantum backflow, i.e., to have �1 > 0, can
only occur if the current J (1)(0, t ) takes negative values at
some times 0 � t � T . Here again, we emphasize that the
relation (17) is peculiar to the one-dimensional motion of
a single particle. In the many-particle case, one must rather
extend the original definition (14) of �1, as is discussed in
Sec. III below.

It is clear from the definition (14) of �1 as the difference
of two probabilities that the latter takes values between −1
and 1. Interestingly, it has been found [1] that �1 actually
admits an upper bound �1,max that is much stricter than 1.
While no exact expression of �1,max has been obtained to date,
numerical investigations have led to the estimate [1,4,5]

�1,max ≈ 0.0384517. (18)

This is the so-called Bracken-Melloy constant. It quantifies
the maximum amount of quantum backflow, that is, the maxi-
mum increase of the probability of finding the particle on the
negative real axis over an arbitrary time interval 0 � t � T for
a positive-momentum state of the form (13).

As we indicated above in the Introduction, a surprising
feature of the Bracken-Melloy constant �1,max is that it proves
to be independent of the time parameter T , as well as of the
mass m and of the (reduced) Planck constant h̄. This arises
from the combined facts that no dimensionless quantity can be
constructed from T , m, and h̄, and that no natural length scale
is associated to a free particle. This led to the interpretation of
the maximum backflow (18) as a purely quantum effect that is
independent of Planck’s constant [1].

This observation hence raises the question of the classical
limit of quantum backflow, as the naive classical limit h̄ → 0
cannot be readily taken. As is discussed in Ref. [8], a possible
approach is to consider realistic measurements of the position
of the particle at times t = 0 and t = T modeled by quasipro-
jectors rather than by projectors. This allows to introduce a
length scale in the problem, which represents the precision of
the position measurement. The resulting maximum backflow
then depends on h̄, and can thus be studied in the naive
classical limit h̄ → 0 where it is seen to vanish. As we discuss
in Sec. III below, to consider an N-particle system allows us
to approach the question of the classical limit of quantum
backflow from a different point of view. In this case, the
classical limit can be viewed as the limit of a very large
number of particles, i.e., N → ∞.

Various analytical examples of wave functions of the
form (13) that give rise to quantum backflow have been stud-
ied [1,8,10]. We now recall one such wave function, which
we use again in Sec. III below to illustrate some features
of the phenomenon of quantum backflow in the case of a
many-particle system.

B. An explicit backflow state

In this section we consider a particular example of wave
function of the form (13) that has been previously discussed
in Ref. [1] in order to explicitly demonstrate the occurrence of
quantum backflow for a single free particle.

This example stems from choosing a particular initial
momentum wave function φ(1)(p) in (13), namely, φ(1)(p) =
φ̃(p) with φ̃(p) given by the superposition of exponentials

φ̃(p) ≡
{

0 if p < 0
18√
35α3

p
(
e−p/α − 1

6 e−p/2α
)

if p > 0,
(19)
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where α is a positive constant that has the dimension of a momentum. Note that the function φ̃(p) is continuous at p = 0.
Substituting (19) into (13) then expresses the resulting wave function

ψ (1)(x, t ) = ψ̃

(
αx

h̄
,
α2t

mh̄

)
≡ 1√

2π h̄

∫
R+

d p e−ip2t/2mh̄ eixp/h̄ φ̃(p) (20)

as a Gaussian integral that can be computed analytically (see, e.g., Refs. [21,22]), eventually yielding

ψ̃ (x′, t ′) = −18

√
α

70π h̄

(
5i

6t ′ +
√

π

4t ′3 (i − 1)

{
(x′ + i) exp

[
i

2t ′ (x′ + i)2

]
erfc

[
− (1 + i)(x′ + i)√

4t ′

]
− 2x′ + i

12
exp

[
i

8t ′ (2x′ + i)2

]
erfc

[
− (1 + i)(2x′ + i)√

16t ′

]})
, (21)

with

erfc(z) = 1 − erf (z) = 2√
π

∫ ∞

z
dy e−y2

(22)

the complementary error function, and where the dimension-
less quantities x′ and t ′ are related to the position x and the
time t through

x′ ≡ αx

h̄
and t ′ ≡ α2t

mh̄
. (23)

We emphasize that, while the wave function ψ̃ depends on the
dimensionless variables x′ and t ′, it has the same dimension as
ψ (1) (namely, the inverse square root of a length).

The behavior of the wave function ψ̃ (x′, t ′) close to t ′ = 0
can be obtained from (21) by noting that as t ′ → 0 the mod-
ulus of the arguments of the complementary error functions
diverges. For t ′ � 1 we can thus substitute the well-known
asymptotic expansion (see, e.g., Ref. [22])

erfc(z) ∼ e−z2

√
πz

∑
k

(−1)k (2k − 1)!!

(2z2)k
, (24)

with (2k − 1)!! ≡ (2k − 1)(2k − 3) × · · · × 3 the double fac-
torial, into (21) to get

ψ̃ (x′, t ′) ∼ 18

√
α

70π h̄

⎧⎨⎩ 1

(1 − ix′)2
− 2

3

1

(1 − 2ix′)2
+

∑
k�2

(−it ′)k−1(2k − 1)!!

[
1

(1 − ix′)2k
− 1

6

(
1

1 − 2ix′

)2k
]⎫⎬⎭ (25)

in the vicinity of t ′ = 0. Setting t ′ = 0 into (25) readily yields
the initial state ψ̃ (x′, 0).

One can then compute the corresponding probability cur-
rent J (1)(x, t ) = J̃ (x′, t ′), which in view of the definition (8)
is given by

J̃ (x′, t ′) = −i
α

2m

[
ψ̃∗ ∂ψ̃

∂x′ − ψ̃
∂ψ̃∗

∂x′

]
, (26)

where we used (23). Substituting the expression (25) of ψ̃ for
t ′ = 0 into (26) and setting x′ = 0 into the resulting expression
of J̃ hence yields [1]

J̃ (0, 0) = − 36α2

35πmh̄
, (27)

which is clearly negative.
Furthermore, the probabilities P (1)

0,1(t ) = P̃ (1)
0,1(t ′) are here

obtained by merely substituting ψ (1) = ψ̃ into the defini-
tions (5) and (6) and we have, again using (23),

P̃ (1)
1 (t ′) = h̄

α

∫
R−

dx′|ψ̃ (x′, t ′)|2 (28)

and

P̃ (1)
0 (t ′) = h̄

α

∫
R+

dx′|ψ̃ (x′, t ′)|2. (29)

Combining (10) with (23) and (27) then readily yields [1]

dP̃ (1)
1

dt ′

∣∣∣∣∣
t ′=0

= − dP̃ (1)
0

dt ′

∣∣∣∣∣
t ′=0

= 36

35π
> 0. (30)

Therefore, the probability of finding the particle described
by the wave function (20) on the negative real axis initially
increases, even though the particle has a positive momentum.
This indeed demonstrates the occurrence of the phenomenon
of quantum backflow.

A numerical analysis shows [1] that the derivative
dP̃ (1)

1 /dt ′ remains positive for times t ′ ranging between zero
and t ′ = t ′

1 ≈ 0.021. This means that the probability of finding
the particle on the negative real axis increases by a maximum
amount �̃1,max here given by

�̃1,max = P̃ (1)
1 (t ′

1) − P̃ (1)
1 (0), (31)

which can be numerically evaluated to

�̃1,max ≈ 0.0043, (32)

that is approximately 11% of the maximum achievable back-
flow quantified by the Bracken-Melloy constant (18).

We recalled in this section some standard results about
quantum backflow for a single particle. In particular, we
saw that it can be adequately quantified by the probability
change �1 defined by (14). Since the latter admits the upper
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bound (18), there is a fundamental limit to the maximum
amount of backflow for a single particle. We now discuss how
quantum backflow extends to many-particle systems.

III. MANY-PARTICLE QUANTUM BACKFLOW

In this section we study the phenomenon of quantum
backflow in the case of a many-particle system. Our main aim
is to investigate the behavior of the former with respect to the
number N of particles.

To this end, we propose in Sec. III A a general formu-
lation of the problem. We then restrict our attention to the
particular case of a system formed of N bosons that are all
in the same one-particle state. As is seen in Sec. III B, this
assumption allows us to express the quantities of interest in
terms of the underlying single-particle ones. We can thus build
upon the physical intuition gained from the single-particle
case, and we show in Sec. III C that quantum backflow van-
ishes for a large number N of bosons. These conclusions are
then illustrated in Sec. III D by means of the explicit example
that we discussed in the previous section.

A. General formulation

We consider a system of N identical nonrelativistic struc-
tureless quantum particles of mass m, with N � 1. The par-
ticles are assumed to propagate freely in one dimension.
For compactness we introduce the N-component vector x
defined by

x ≡ (x1, . . . , xN ), (33)

hence representing the position vector of the N-particle sys-
tem. Differential elements in N-dimensional integrals are then
merely denoted by dx ≡ dx1 · · · dxN .

The dynamical state |ψ (N )(t )〉 of the system at some time
t � 0 is thus, in the position representation, described by a
wave function ψ (N )(x, t ) ≡ 〈x|ψ (N )(t )〉 that obeys the free
N-particle time-dependent Schrödinger equation

ih̄
∂

∂t
ψ (N )(x, t ) = − h̄2

2m

N∑
j=1

∂2

∂x2
j

ψ (N )(x, t ). (34)

The resulting probability density |ψ (N )(x, t )|2 is assumed to
be normalized, i.e.,∫

RN

dx|ψ (N )(x, t )|2 = 1. (35)

The wave function ψ (N ) also characterizes a probability cur-
rent J (N )(x, t ), which is now a vector quantity, defined by

J (N )(x, t ) ≡ −i
h̄

2m

[
ψ (N )∗ (x, t )∇ψ (N )(x, t )

−ψ (N )(x, t )∇ψ (N )∗ (x, t )
]

(36)

in terms of the gradient operator

∇ ≡
N∑

j=1

x̂ j
∂

∂x j
, (37)

where the vectors x̂1, . . . , x̂N form an orthonormal basis of
RN , i.e., x̂ j · x̂k = δ jk with δ jk the Kronecker delta. The
probability density and the current still satisfy a conservation
equation, here given by

∂

∂t
|ψ (N )(x, t )|2 + ∇ · J (N )(x, t ) = 0, (38)

as a direct consequence of the Schrödinger equation (34).
Similarly to the single-particle case, we again assume that

the particles are initially prepared with positive momenta.
The N-particle wave function ψ (N ) can thus be written in the
form (13), that is here

ψ (N )(x, t ) = 1

(2π h̄)N/2

∫
(R+ )N

d p eix·p/h̄e−ip2t/2mh̄ φ(N )(p),

(39)

with the N-component vector

p ≡ (p1, . . . , pN ) (40)

representing the momentum of the N-particle system, and
where the differential element is merely d p ≡ d p1 · · · d pN .
We readily recover the single-particle wave function (13)
upon setting N = 1 into (39). The N-particle momen-
tum wave function φ(N ) is thus itself normalized in view
of (35), i.e.,

∫
(R+ )N

d p|φ(N )(p)|2 = 1. (41)

Now, inspired by the single-particle probabilities P (1)
1 and

P (1)
0 defined by (5) and (6), we introduce the probabilities

P (N )
j (t ), for j = 0, . . . , N , of finding j of the N particles on

the negative real axis, and thus the remaining N − j particles
on the positive real axis, at time t . Since these probabilities
refer to mutually exclusive events, we must have the normal-
ization condition

N∑
j=0

P (N )
j (t ) = 1 (42)

023334-5



MAXIMILIEN BARBIER PHYSICAL REVIEW A 102, 023334 (2020)

for any t � 0. The expression of these probabilities can, e.g., be obtained from (35) by successively splitting each integral over
R as one integral over R− and one over R+, hence yielding

1 =
∫
RN−1

dx1 · · · dxN−1

∫
R−

dxN |ψ (N )|2 +
∫
RN−1

dx1 · · · dxN−1

∫
R+

dxN |ψ (N )|2

=
∫
RN−2

dx1 · · · dxN−2

∫
R−

dxN−1

∫
R−

dxN |ψ (N )|2 +
∫
RN−2

dx1 · · · dxN−2

∫
R+

dxN−1

∫
R−

dxN |ψ (N )|2

+
∫
RN−2

dx1 · · · dxN−2

∫
R−

dxN−1

∫
R+

dxN |ψ (N )|2 +
∫
RN−2

dx1 · · · dxN−2

∫
R+

dxN−1

∫
R+

dxN |ψ (N )|2

= · · · =
N∑

j=0

P (N )
j (t ),

where P (N )
j is thus given by

P (N )
j (t ) =

N∑
k1=1

N∑
k2 = 1
k2 > k1

· · ·
N∑

k j = 1
k j > k j−1

∫
R+

dx1 · · ·
∫
R+

dxk1−1

∫
R−

dxk1

∫
R+

dxk1+1 · · ·

×
∫
R+

dxkj−1

∫
R−

dxkj

∫
R+

dxkj+1 · · ·
∫
R+

dxN |ψ (N )(x, t )|2. (43)

This definition remains valid for j = 0 if we agree that in this
case the integration domain is merely (R+)N .

In addition to P (N )
j , we also define the probability

P (N )
− (t ) by

P (N )
− (t ) ≡

N∑
j=1

P (N )
j (t ). (44)

Since the probabilities P (N )
j refer to mutually exclusive events,

P (N )
− (t ) hence corresponds to the probability of finding at least

one particle on the negative real axis at time t . In the single-
particle case, it merely corresponds to the probability P (1)

1 ,
i.e., P (1)

− = P (1)
1 , as can be readily seen upon setting N = 1

into (44). It is also worth noting that combining (44) with the
normalization condition (42) immediately shows that P (N )

− can
be alternatively written as

P (N )
− (t ) = 1 − P (N )

0 (t ). (45)

This form highlights the fact that P (N )
− and P (N )

0 refer to com-
plementary events, namely, to find or not to find, respectively,
a particle on the negative real axis.

Finally, we introduce the quantity �N that generalizes its
single-particle counterpart �1 defined by (14). We recall that
the latter characterizes the change of the probability P (1)

1 , i.e.,
P (1)

− , of finding the particle on the negative real axis over a
fixed but arbitrary time interval 0 � t � T , for some T > 0.
Therefore, we propose to define the quantity �N by

�N ≡ P (N )
− (T ) − P (N )

− (0), (46)

which immediately gives back the definition (14) of �1 for
N = 1. Note that (46) can also be equivalently written as

�N = P (N )
0 (0) − P (N )

0 (T ) (47)

in view of (45).

We believe that the quantity �N defined by (46) or, equiv-
alently, by (47) is the natural quantifier of quantum backflow
for an N-particle system. Indeed, remember that for a single
particle with a positive momentum backflow arises from the
nonclassical fact that the probability of finding the particle on
the positive real axis may decrease over the time interval 0 �
t � T . The equivalent for a system of N particles with positive
momenta must thus be that the probability P (N )

0 of finding all
particles on the positive real axis possibly decreases between
the times t = 0 and t = T . Such a decrease of P (N )

0 can
be viewed as resulting from having at least one of the N
particles traveling backwards from an initial positive position
to a negative one, which precisely corresponds to the physical
intuition that underlies the idea of backflow. Similarly to the
single-particle case, the occurrence of quantum backflow for
an N-particle system is thus embedded into the positive values
of the quantity �N .

It is here worth emphasizing that the simple relation (10)
between the time derivatives of P (1)

1 and P (1)
0 and the current

J (1) cannot be extended to an N-particle system. Indeed,
setting, e.g., j = 0 into (43), differentiating with respect to
time and using the conservation equation (38) yields

dP (N )
0

dt
= −

∫
(R+)N

dx ∇ · J (N )(x, t ). (48)

While ∇J (1)(x, t ) can be easily integrated with respect to the
position x, this is not the case of ∇ · J (N )(x, t ) for N > 1.
By extension, this also precludes a simple relation of the
form (17) [which was a direct consequence of (10)] between
the probability change �N and the current J (N ).

The above formulation applies to a general system formed
of N identical free particles, the latter being either bosons
or fermions. It can also be straightforwardly extended to the
case of distinguishable particles with different masses mj , j =
1, . . . , N . We now discuss how the problem can be simplified
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in the case of N bosons that are all in the same one-particle
state.

B. Bosonic system

From now on we assume that the N-particle system con-
sists of N identical bosons that are all in the same one-particle
state ψ (1)(x, t ). Therefore, the N-particle wave function ψ (N )

can be written as the mere product state

ψ (N )(x, t ) =
N∏

j=1

ψ (1)(x j, t ), (49)

while the corresponding initial momentum wave function φ(N )

reads

φ(N )(p) =
N∏

j=1

φ(1)(p j ), (50)

as can be seen upon substituting expression (13) of ψ (1)

into (49) and comparing the resulting expression of ψ (N ) to
its Fourier transform (39). The normalization conditions (35)
and (41) are then direct consequences of their single-particle
counterparts (2) and (12), respectively.

To focus on the simple product states (49) certainly reduces
the space of N-particle states that we consider. Such an
assumption is, however, well justified in view of experiments
based on cold atoms or Bose-Einstein condensates (see, e.g.,
Ref. [23] as a general reference). Indeed, suppose that a
Bose-Einstein condensate is prepared at a sufficiently low
temperature and that the bosons can be treated as independent;
i.e., particle-particle interactions are neglected. Then the state
of the condensed bosons can be, to a good approximation
(the lower the temperature, the better the approximation),
described by a pure state that is precisely of the form (49).
In such a case, the initial one-particle state ψ (1)(x, 0) corre-
sponds to the ground state of the single-particle Hamiltonian
that is used to trap the bosons.

In addition to being practically relevant, the product
state (49) allows to greatly simplify our formulation of many-
particle quantum backflow. Indeed, substituting first (49) into
the definition (43) allows to factorize the N-particle probabil-
ity P (N )

j as

P (N )
j (t ) =

[∫
R−

dx|ψ (1)(x, t )|2
] j [∫

R+
dx|ψ (1)(x, t )|2

]N− j

×
N∑

k1=1

N∑
k2 = 1
k2 > k1

· · ·
N∑

k j = 1
k j > k j−1

1. (51)

The nested sum on the right-hand side of (51) can be
evaluated as follows. Consider the set S (N ) ≡ {1, . . . , N} of N
elements. To compute the sum in (51) is thus equivalent to de-
termining the total number of subsets {k1, . . . , k j} containing
j elements of the set S (N ). We recall that all elements of a set
are by construction distinct (see, e.g., Ref. [24]), so we must
have k j′ �= k j′′ . This is precisely ensured by the fact that the
summation indices k1, . . . , k j in (51) are required to satisfy
k2 > k1, . . . , k j > k j−1. Since the total number of subsets
containing j elements of a set of N elements is known [24]

to merely be the binomial coefficient
(N

j

) ≡ N!/ j!(N − j)!,
we have

N∑
k1=1

N∑
k2 = 1
k2 > k1

· · ·
N∑

k j = 1
k j > k j−1

1 =
(

N

j

)
. (52)

Therefore, substituting (52) into (51) and recognizing the
definitions (5) and (6) of the single-particle probabilities P (1)

1

and P (1)
0 , respectively, shows that P (N )

j can be written in the
form

P (N )
j (t ) =

(
N

j

)[
P (1)

1 (t )
] j[P (1)

0 (t )
]N− j

, (53)

for any j = 0, . . . , N . Setting in particular j = 0 into (53)
yields

P (N )
0 (t ) = [

P (1)
0 (t )

]N
, (54)

so that we get for the probability P (N )
− , after substituting (54)

into (45),

P (N )
− (t ) = 1 − [

P (1)
0 (t )

]N
. (55)

Furthermore, substituting (54) into (47) yields for the proba-
bility change �N

�N = [
P (1)

0 (0)
]N − [

P (1)
0 (T )

]N
. (56)

It is worth noting that the form (55) ensures that the general
structure of P (N )

− is the same as that of P (1)
− , for any N � 2.

Indeed, differentiating (55) with respect to the time t yields

dP (N )
−

dt
= −N

[
P (1)

0 (t )
]N−1 dP (1)

0

dt
,

that is, since dP (1)
0 /dt = −dP (1)

1 /dt and P (1)
− = P (1)

1 by con-
struction,

dP (N )
−

dt
= N

[
P (1)

0 (t )
]N−1 dP (1)

−
dt

. (57)

Now, the probability P (1)
0 (t ) is positive and generally nonzero

at finite times t � 0. Actually, if P (1)
0 (t ) = 0 at some time t ,

then no backflow can occur at immediate subsequent times
since in such a case the probability P (1)

0 cannot decrease. We
can thus readily see in (57) that the maxima and minima of
P (N )

− precisely correspond to those of P (1)
− , for any N � 2.

The factorized form (56) of �N , which we emphasize
stems from the expression (49) of the N-particle wave func-
tion ψ (N ) as a product state, can then be adequately used
to study the dependence of the phenomenon of quantum
backflow with respect to the number N of bosons, as we now
discuss.

C. Quantum backflow in the limit N → ∞
Being a probability, P (1)

0 (t ) takes values between zero and
1 at any time t . Since the expression (56) of �N involves the
difference of N th powers of P (1)

0 , it should be clear that �N

becomes arbitrarily small as N increases if P (1)
0 (0),P (1)

0 (T ) �=
1. In order to make this precise and derive quantitative bounds
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for �N , we first factorize (56) by the single-particle probabil-
ity change �1 = P (1)

0 (0) − P (1)
0 (T ) and we have

�N =
{

N−1∑
k=0

[
P (1)

0 (0)
]k[P (1)

0 (T )
]N−1−k

}
�1. (58)

Note that to have P (1)
0 (0) = P (1)

0 (T ) = 0 readily yields �N =
�1 = 0 in view of (56). Therefore, it is clear in (58) that �N

is strictly positive if and only if �1 is. In other words, the
N-particle product state ψ (N ) given by (49) gives rise to the
phenomenon of quantum backflow if and only if the single-
particle state ψ (1) does.

Now, suppose that backflow occurs for the single-particle
state ψ (1); i.e., we have �1 > 0 and thus in view of (56) for
N = 1

P (1)
0 (T ) < P (1)

0 (0). (59)

We hence have as a direct consequence of (59) that

N−1∑
k=0

[
P (1)

0 (0)
]k[P (1)

0 (T )
]N−1−k

< N
[
P (1)

0 (0)
]N−1

, (60)

which we emphasize is valid for any N � 2. Combining (58)
with (59) and (60) hence yields the following inequality
satisfied by �N :

0 < �N < aN �1, (61)

where we introduced the quantity aN defined by

aN ≡ N
[
P (1)

0 (0)
]N−1

. (62)

Note that aN only depends on N and on the initial proba-
bility P (1)

0 (0), and is thus in particular independent of the
duration T .

We now assume that

P (1)
0 (0) < 1, (63)

even though P (1)
0 (0) can be arbitrarily close to 1. We then

rewrite the quantity (62) in the form

aN = 1

P (1)
0 (0)

N exp
{ − ∣∣ln[

P (1)
0 (0)

]∣∣N}
. (64)

We emphasize that to divide by or to take the logarithm
of P (1)

0 (0) is ensured by the fact that P (1)
0 (0) �= 0. Indeed,

to have P (1)
0 (0) = 0 would contradict the hypothesis (59) of

the presence of backflow, as it would then yield a negative
probability P (1)

0 (T ). Now, the assumption (63) ensures that
the logarithm in (64) does not vanish. We hence get in the
limit N → ∞

lim
N→∞

aN = 0. (65)

Finally, taking the limit N → ∞ in (61) readily yields, in view
of (65) and using the squeeze theorem,

lim
N→∞

�N = 0, (66)

as anticipated.
Our analysis hence shows that, in the case of N bosons

in the same one-particle state, increasing the number N of

bosons makes the maximum achievable backflow �N,max be-
come arbitrarily small. That is, we analytically showed that
the phenomenon of quantum backflow vanishes in the limit
N → ∞ for this class of many-particle systems. We believe
that this provides an alternative insight regarding the classical
limit of the fundamentally quantum phenomenon of backflow,
whose magnitude is thus seen to decrease when the system
reaches a sufficiently large size. This strongly suggests that
to observe this phenomenon on a macroscopic system is
basically impossible.

To conclude this section, we briefly discuss the accuracy
of inequality (61). We first note that the lower bound in (61)
can be easily refined. Indeed, as is recalled in Sec. II above,
the single-particle probability change �1 is bounded by the
Bracken-Melloy constant (18). We hence have �1 � �1,max,
that is in view of (56) for N = 1

P (1)
0 (T ) � P (1)

0 (0) − �1,max, (67)

and thus
N−1∑
k=0

[
P (1)

0 (0)
]k[P (1)

0 (T )
]N−1−k � bN , (68)

where the quantity bN is defined by

bN ≡
N−1∑
k=0

[
P (1)

0 (0)
]k[P (1)

0 (0) − �1,max
]N−1−k

. (69)

Similarly to aN , bN only depends on N and P (1)
0 (0), and is

independent of T . Combining (58) with (68) then shows, also
using (61), that �N satisfies the inequality

bN �1 � �N < aN �1. (70)

We again emphasize that the latter is valid for any N � 2 [for
N = 1, all three terms of (70) are identical and equal to �1].

Note that in view of its definition (69) the quantity bN is by
construction an expansion in powers of �1,max, and we have
with (62)

bN = aN − N (N − 1)

2

[
P (1)

0 (0)
]N−2

�1,max + · · · . (71)

Since the Bracken-Melloy constant takes the relatively small
numerical value �1,max ≈ 0.0384517 [see (18)], we hence
generally have bN ≈ aN . The bounds in inequality (70) are
thus expected to be rather tight in general. In particular,
only in those cases where P (1)

0 (0) < �1,max may the quantity
bN defined by (69) be negative, hence making the original
inequality (61) possibly stronger than the refined one (70).

Our conclusions are valid for an arbitrary product
state (49), as long as condition (63) is satisfied. We now
illustrate them on an explicit example.

D. Explicit example

We conclude this paper by illustrating some of the above-
discussed features of N-boson quantum backflow on the ex-
plicit example outlined in Sec. II B. That is, we assume that
the single-particle state is ψ (1)(x, t ) = ψ̃ (x′, t ′) with ψ̃ given
by (21) and the dimensionless variables x′ and t ′ defined
by (23). The N-boson wave function (49) in this case hence
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FIG. 1. Probability P̃ (N )
− as a function of the dimensionless time

parameter t ′ [defined by (23)] for different numbers N of bosons,
from N = 1 (solid black pluses) to N = 6 (open green triangles).

reads

ψ (N )(x, t ) =
N∏

j=1

ψ̃

(
αx j

h̄
,
α2t

mh̄

)
, (72)

while the one-particle probabilities P (1)
0,1(t ) = P̃ (1)

0,1(t ′) are
given by (28) and (29). It is worth noting that the initial
one-particle probabilities can be shown to be equal and we
hence have here

P̃ (1)
1 (0) = P̃ (1)

0 (0) = 1
2 . (73)

Substituting (28) and (29) into (54) and (55) then readily
yields the corresponding expressions of the N-particle prob-
abilities P̃ (N )

0 (t ′) and P̃ (N )
− (t ′), respectively.

Figure 1 shows the probability P̃ (N )
− as a function of the

dimensionless time parameter t ′ [related to the physical time
t through (23)] for different numbers N of bosons. The black
curve with solid pluses corresponds to N = 1 and illustrates
the known fact [1], recalled in Sec. II B above, that the
derivative dP̃ (1)

1 /dt ′ remains positive for t ′ ranging between
zero and t ′

1 ≈ 0.021. Indeed, we can readily check that P̃ (1)
− ,

i.e., merely P̃ (1)
1 in view of (44), reaches a maximum at

t ′ = t ′
1. The dashed black vertical line located at t ′ = 0.021

then highlights the fact that the probabilities P̃ (N )
− for N � 2

are also maximum at the same time t ′ = t ′
1 (as we explicitly

checked on the numerical data). This is an illustration of the
particular structure of P̃ (N )

− as a function of t ′ that is embedded
in (57).

As is clear in Fig. 1, the probability P̃ (N )
− (t ′) increases with

N at any fixed time t ′. This can be expected as P̃ (N )
− is by

construction the probability of finding at least one boson on
the negative real axis. To increase the number N of bosons
hence also increases the number of events that contribute to
this probability. However, we emphasize that this increase
of P̃ (N )

− with N does not mean that quantum backflow itself
increases with N as well. Indeed, the latter is characterized by
the increase of P̃ (N )

− over a certain time interval at fixed N .

020110

N

0

0.0015

0.0030

0.0043

Δ
N

,m
ax

FIG. 2. Maximum increase �̃N,max, given by (74), of the proba-
bility P̃ (N )

− as a function of the number N of bosons.

In the present case the probabilities P̃ (N )
− are increasing

functions from t ′ = 0 to t ′ = t ′
1, and decreasing functions

for t ′ > t ′
1. Therefore, the corresponding maximum backflow

�̃N,max is here merely given by

�̃N,max = P̃ (N )
− (t ′

1) − P̃ (N )
− (0), (74)

and is thus by construction strictly positive for any N � 1.
The behavior of the latter quantity with respect to the number
N of bosons is illustrated in Fig. 2 by the black circles. First,
we find for N = 1 a value �̃1,max ≈ 0.00425, in agreement
with the value (32) originally obtained in Ref. [1]. It is then
worth noting that assumption (63) is clearly satisfied in the
present case since P̃ (1)

0 (0) = 1/2 in view of (73). Therefore,
the conclusions obtained in Sec. III C above apply, so that
�̃N,max must vanish in the limit N → ∞. This is indeed
strongly suggested by Fig. 2, as we can readily check that
�̃N,max reaches a value as small as �̃20,max ≈ 1.5 × 10−7, i.e.,
�̃20,max ≈ 3.53 × 10−5 �̃1,max, for N = 20.

Furthermore, the general inequality (70) here reads for
�̃N,max

b̃N �̃1,max � �̃N,max < ãN �̃1,max, (75)

which we recall is valid for any N � 2 and where the quanti-
ties ãN and b̃N are obtained upon replacing P (1)

0 (0) by P̃ (1)
0 (0)

into the definitions (62) and (69) of aN and bN , respectively;
that is with the expression (73) of P̃ (1)

0 (0)

ãN = N

2N−1
(76)

and

b̃N =
N−1∑
k=0

1

2k

(
1

2
− �1,max

)N−1−k

. (77)

We recall that the (approximate) value of the Bracken-Melloy
constant �1,max involved in (77) is given by (18).
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FIG. 3. Relative differences D̃<
N (solid black stars) and D̃>

N (solid
red diamonds), respectively defined by (78) and (79), as functions of
the number N of bosons.

Now, in order to quantitatively investigate the accuracy
of inequality (75) (i.e., the tightness of the correspond-
ing bounds), we also introduce the quantities D̃<

N and D̃>
N

defined by

D̃<
N ≡ �̃N,max − b̃N�̃1,max

�̃N,max
(78)

and

D̃>
N ≡ ãN�̃1,max − �̃N,max

�̃N,max
. (79)

The latter are thus nothing but the relative differences between
(i) the quantity of interest �̃N,max and its corresponding lower
bound in (75) (for D̃<

N ) and (ii) the corresponding upper
bound and �̃N,max (for D̃>

N ). It is worth pointing out that
these differences are nontrivial only for N � 2 (as they are,
by construction, identically zero for N = 1). They are in
addition positive in view of definition (74) of �̃N,max and
inequality (75).

The relative differences (78) and (79), respectively de-
picted by the solid black stars and the solid red diamonds,
are plotted in Fig. 3 with respect to the number N of bosons.
A first observation is that both these differences seem to
(linearly) increase with N , by roughly one order of magni-
tude between N = 2 and N = 20, for the particular example
considered here. That is, while each individual term in the
inequality (75) is seen to approach zero for increasing values
of N , the relative accuracy of the lower and upper bounds
in (75) decreases with N . In addition, it is also worth noting
that the upper bound in inequality (75) is significantly tighter
than the corresponding lower bound. It is indeed clear from
Fig. 3 that the relative difference D̃>

N is lower than D̃<
N by

roughly half an order of magnitude.

IV. CONCLUSION

In this paper we investigated how the phenomenon of
quantum backflow extends to many-particle systems. We con-
sidered a system formed of N � 1 identical nonrelativistic
structureless free particles. Our formulation of many-particle
quantum backflow is then based on the change �N [defined
by (46) or equivalently (47)] of the probability P (N )

− [defined
by (44)] of finding at least one particle on the negative real
axis over a fixed but arbitrary time interval 0 � t � T , for
some T > 0. Similarly to the single-particle case, backflow
occurs whenever �N > 0.

We then saw how our general formulation of many-
particle quantum backflow, valid for either bosons or fermions
as well as for distinguishable particles, greatly simplifies
in the particular case of a system composed of N iden-
tical bosons that are all in the same one-particle state.
The N-particle wave function ψ (N ) can thus be written as
the mere product state (49). We showed in this case that
the maximum achievable backflow �N,max becomes arbi-
trarily small as the number N of bosons increases, which
is the outcome of Eq. (66). We emphasize that this re-
sult is exact and did not require any numerical analysis.
This alternative approach to the classical limit of quantum
backflow hence seems to confirm our physical intuition that
this intrinsically quantum phenomenon vanishes for a large
system.

Many-particle quantum backflow spans a vastly uncharted
territory, as the current understanding of this effect has been
entirely built on single-particle systems. We hence believe
that our study opens up various prospects for further research.
For instance, while we showed with (66) that �N vanishes,
for an N-boson system in the product state (49), in the limit
N → ∞, nothing a priori precludes the fact that the maximum
backflow �N,max may actually increase over some finite range
of values of N . It would thus be interesting to investigate
whether or not this is the case by explicitly computing �N,max,
e.g., for the lowest values of N . This could in particular allow
to refine the general inequality (70) that we obtained here by
providing a better estimation of the corresponding least upper
bound. Another prospect for deepening our understanding of
many-particle quantum backflow would be to consider more
general N-particle wave functions than the product state (49).
Indeed, our assumption of a system formed of N bosons in the
same one-particle state, though practically relevant, restricts
the space of positive-momentum states of the form (39) that
we consider. The precise impact of the nature, bosonic or
fermionic, of the particles on quantum backflow is yet an other
potentially promising avenue. We hope that our work can pave
the way towards a closer investigation of these, among other,
aspects.
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