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Resonant energy transfer Rb ns + Rb ns + 2hν → Rb np1/2 + Rb np3/2 in a frozen Rydberg gas
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We have observed the process Rb ns + Rb ns + 2hν → Rb np1/2 + Rb np3/2 from n = 34 to n = 40 in a
frozen gas of Rb Rydberg atoms. It is resonant when the microwave frequency is halfway between the ns → np1/2

and ns → np3/2 frequencies, which range from 57 to 106 GHz. The process cannot occur in isolated atoms,
nor can it occur if the magnetic quantum numbers are unchanged, an implicit assumption of one-dimensional
models. A Floquet-Forster model shows that the coupling between the initial and final states involves the
absorption of two microwave photons and the dipole-dipole interaction, which leads to a coupling proportional
to the product of the density, the microwave field squared, and n∗14, where n∗ is the effective quantum number of
the np3/2 state. We have experimentally verified these dependences. The observed resonances are asymmetric,
with a low-frequency tail, which we attribute to the van der Waals shift of the final np1/2np3/2 state due to its
dipole-dipole interaction with the nearby ns(n + 1)s state. While the van der Waals shift is negligible for most
of the atoms in the Rydberg gas, it is not for the pairs of close atoms which undergo this transition.
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I. INTRODUCTION

Cold Rydberg atoms are of interest for quantum gates and
simulators because of their large electric dipole moments,
which scale as the square of the principal quantum number n
[1–9]. In atomic units, which we use unless specified other-
wise, the dipole-dipole interaction between a pair of Rydberg
atoms is given approximately by Vdd = n4/R3, where R is the
distance between the two atoms, and it is significant even
when the atoms are micrometers apart. The combination of
the long range of the dipole-dipole interaction and the sub-mK
temperature of the cold atoms means that on a timescale
of microseconds atoms at a density of ∼1010 cm−3 move a
negligible fraction of their typical spacing. As a result, an
assembly of cold Rydberg atoms is often termed a frozen
Rydberg gas.

An example of the use of Rydberg atoms for quantum
information is the use of the off-resonant dipole-dipole, or
van der Waals, interaction to produce excitation blockades
[9–12]. The van der Waals interaction is given approximately
by VvdW = n8/�R6, where � is the energy spacing between
the dipole-dipole coupled states. Over a limited range of n
it is often the case that � ∼ n−3, resulting in van der Waals
interactions scaling as n11. A second important example of
the dipole-dipole interaction is Forster-resonant dipole-dipole
energy transfer, potentially useful for simulations [13–16].
Forster resonances are often tuned into resonance using
a static electric field. In many cases the requisite fields
are small due to the large electric dipole moments of the
Rydberg atoms and the near degeneracy of the dipole-dipole
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coupled states. In some cases, though, a small field tunes
nearly degenerate levels away from the Forster resonance, and
alternative methods must be employed. One is to use the AC
Stark shift from a near resonant transition to tune the levels
into resonance [17]. Another approach is to create a Forster
resonance with microwave or radio-frequency (RF) fields by
driving transitions which are allowed in pairs of atoms but
not in isolated atoms [18–23]. Transitions in which pairs of
atoms, molecules, or ions absorb photons have been observed
in condensed-matter systems [24,25], which are analogous to
frozen Rydberg gases. In such cases the interacting absorbers
are close to each other, 1 to 10 nm apart, which compensates
for dipole moments which are orders of magnitude smaller
than those of Rydberg atoms. A related phenomenon in the
gas phase is a radiatively assisted collision, in which a pair of
atoms absorbs a photon while colliding [26,27].

While creating a Forster resonance with an RF field is
photon absorption or emission by the interacting pair of
atoms, it is usually described in the following way. An electric
field, which may be a combination of static and RF fields,
produces a Stark shift of the atomic levels. If an RF field is
present the energies of the atomic levels are modulated, which
leads to sidebands displaced in energy by multiples of the
RF frequency. The sidebands, which can be above and below
the bare energy, can be tuned to create Forster resonances.
In short, the primary effect of the field is to shift the atomic
energies, not to alter the atomic states. A complete, lucid
treatment of this approach has been given by van Ditzhuijzen
et al. [19]. In contrast, creating a Forster resonance with a
microwave field can often be understood as a normally for-
bidden microwave transition which is allowed due to a dipole-
dipole-induced admixture to either the initial or the final state.
Despite the differences in how they may be described, both
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FIG. 1. Energy-level diagram for the two-photon microwave
transition from the ns1/2ns1/2 state to the np1/2np3/2 and np3/2np1/2

states. The solid arrows represent the two microwave photons. The
resonance frequency, midway between the atomic ns1/2 − np1/2 and
ns1/2 − np3/2 frequencies, is detuned from the atomic transitions by
±�, half the fine-structure interval.

RF- and microwave-created Forster resonances are Forster
resonances of Floquet states.

Here we describe an example of a Forster resonance en-
abled by a microwave transition. Specifically, we present a
systematic study of the process [28]

Rb ns + Rb ns + 2h̄ω → Rb np1/2 + Rb np3/2, (1)

which is resonant at the microwave frequency midway be-
tween the ns1/2 − np1/2 and ns1/2 − np3/2 frequencies, as
shown in Fig. 1. This process is very similar to that observed
by Hettich et al., who observed a transition midway between
the absorption frequencies of two terrylene molecules 12 nm
apart in a para-terphenyl crystal at 1.4 K [25]. The frequencies
of the two molecules differ due to the difference in the local
field environments. Essentially the same process as Eq. (1)
was observed by Pedrozo-Penafiel et al. who observed laser
excitation of Na atoms in a dense gas at the frequency midway
between the Na 3s − 3p1/2 and 3s − 3p3/2 transition frequen-
cies [29]. In this case the absorption occurred in the transient
molecules formed during collisions; i.e., it is an example of
a radiatively assisted collision [26]. Although the process of
Eq. (1) appears to be simply a microwave transition, the most
convenient way to describe it is as a Forster resonance of
dressed, or Floquet, states [19,21,23,28].

There are several notable features of the process of Eq. (1)
and Fig. 1. First, it is impossible to observe transitions at
this frequency in isolated atoms or in a pair of noninteracting
atoms. In the latter case the amplitudes via the two interme-
diate states cancel. Only when the dipole-dipole interaction
in the intermediate states is present can the transition occur.
Even then it is not allowed in what we might term a one-
dimensional model, that is, one in which the mj values,
the azimuthal angular momentum quantum numbers, of the
two atoms do not change in the transition. The full three-
dimensional character of the the dipole-dipole interaction
must be taken into account, resulting in a nonzero coupling
between the initial and final states. Finally, the coupling in
the process of Eq. (1) scales very rapidly with n, specifically
as n∗14, where n∗ is the effective quantum number of the
np3/2 state.

TABLE I. Floquet states and energies.

State Energy

ns1/2ns1/2 + ω Wns1/21/2 + ω

ns1/2np1/2 Wns1/2np1/2

np1/2ns1/2 Wnp1/2ns1/2

ns1/2np3/2 Wns1/2np3/2

np3/2ns1/2 Wnp3/2ns1/2

np1/2np3/2 − ω Wnp1/2np1/2 − ω

np3/2np1/2 − ω Wnp3/2np1/2 − ω

This paper is organized as follows. First we present a
description of the process as a Forster resonance of Floquet
levels to show the origin of the n∗14 coupling. We then
describe our experimental approach and present our observa-
tions. Finally, we compare our observations to expectations
based on the Forster Floquet model and show that a van der
Waals interaction is responsible for the asymmetric line shape.

II. FLOQUET DESCRIPTION

The microwave transition shown in Fig. 1 can be described
as a Forster resonance of Floquet states, and we here use a
one-dimensional model to provide a qualitative description of
the process. The Floquet states are states of pairs of atoms
with an integral number of microwave photons added or
subtracted [30]. We consider the relevant, nearly degenerate
Floquet states and Floquet energies given in Table I.

We can add an equal number of microwave photons
to each state with no change in the calculated result, but
the choice of Table I provides the most easily understood
energy-level diagram, as shown by Fig. 2. We add one photon
to the ns1/2ns1/2 state, which we denote ns1/2ns1/2 + ω,
and we subtract one photon from the np1/2np3/2 and
np3/2np1/2 states, which we denote np1/2np3/2 − ω and
np3/2np1/2 − ω. In Fig. 2 the broken lines show the

FIG. 2. Floquet energies for the molecular states of Fig. 1 vs
microwave frequency. One microwave photon has been added to the
ns1/2ns1/2 state and one has been subtracted from the np1/2np3/2 and
np3/2np1/2 states. With the microwave field E = 0, shown by the
broken lines, the levels cross at ω1 and ω3, the atomic resonance
frequencies, and at ω13, the resonance frequency for the ns1/2ns1/2 →
np1/2np3/2/np3/2np1/2 transition. With E �= 0, shown by the solid
lines, there are large avoided crossings at ω1 and ω3. Adding the
dipole-dipole interaction produces a small avoided crossing at ω13.
In the figure the avoided crossing at ω13 is exaggerated.
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Floquet energies vs microwave frequency with a microwave
field amplitude of E = 0. The Floquet energies of the
ns1/2ns1/2 + ω and np1/2np3/2 − ω/np3/2np1/2 − ω states
cross the ns1/2np1/2/np1/2ns1/2 and the ns1/2np3/2/np3/2ns1/2

states at the atomic ns1/2 − np1/2 and ns1/2 − np3/2 resonance
frequencies ω1 and ω3. The ns1/2ns1/2 + ω energy crosses the
np1/2np3/2 − ω/np3/2np1/2 − ω state at ω13, the frequency of
the ns1/2ns1/2 → np1/2np3/2/np3/2np1/2 transition. When the
microwave field is nonzero the atomic ns1/2 − np j couplings
lead to avoided crossings at ω1 and ω3, as shown by the solid
lines of Fig. 2. The curvature of the energy levels indicates the
degree of state mixing produced by the microwave field, and
the nominal ns1/2ns1/2 + ω and np1/2np3/2 − ω/np3/2np1/2 −
ω states acquire admixtures of the ns1/2np j and np jns1/2

states. For reference, in these experiments the np fine-
structure splitting 2� ∼ 2 GHz, and the avoided crossings
at ω1 and ω3 are up to 400 MHz for the microwave fields
used.

In the absence of a dipole-dipole interaction
the ns1/2ns1/2 + ω level crosses the np1/2np3/2 −
ω/np3/2np1/2 − ω level at ω13, but these states are coupled

by the dipole-dipole couplings of the ns1/2np j and np jns1/2

admixtures, resulting in a small, ∼1 − 10 MHz, avoided
crossing at ω13. In Fig. 2 the size of this avoided crossing is
exaggerated.

While the Floquet energy level diagram of Fig. 2 provides
a good qualitative picture, to provide a more quantitative
description we consider a simple model based on the inter-
action of two atoms, A and B, with their internuclear axis
�R inclined at an angle θ with respect to the z axis, the axis
of quantization defined by the linearly polarized microwave
field ẑE sin ωt . Due to the three-dimensional nature of the
dipole-dipole interaction we must take the magnetic quantum
numbers into account. Accordingly, a typical field-free initial
Floquet state is |ns 1

2
1
2
ns 1

2
1
2
〉+1, in which both atoms have

mj = 1/2, and the subscript +1 indicates that one microwave
photon has been added to the molecular state, which is a direct
product of the two atomic states. There are 4 initial states and
16 final states.

In the presence of the microwave field the nominal
ns 1

2
1
2
ns 1

2
1
2
+ ω state has an admixture of nsnp j and np jns

states. Explicitly, it is given in perturbation theory by

|ns 1
2

1
2
ns 1

2
1
2
〉E
+1 = |ns 1

2
1
2
ns 1

2
1
2
〉+1 + z3E

2�
[|np 3

2
1
2
ns 1

2
1
2
〉 + |ns 1

2
1
2
np 3

2
1
2
〉] − z1E

2�
[|np 1

2
1
2
ns 1

2
1
2
〉 + |ns 1

2
1
2
np 1

2
!
2
〉]. (2)

Similarly, in the presence of the microwave field a typical final state is given by

|np 1
2 − 1

2
np 3

2 − 1
2
〉E
−1 = |np 1

2 − 1
2
np 3

2 − 1
2
〉−1 + z1E

2�
|ns 1

2 − 1
2
np 3

2 − 1
2
〉 − z3E

2�
|np 1

2 − 1
2
ns 1

2 − 1
2
〉. (3)

In Eqs. (2) and (3), z j is an atomic dipole matrix element. We need z j and several other matrix elements, which we define as

z1 = 〈ns 1
2

1
2
|z|np 1

2
1
2
〉 = −rn

3
,

z3 = 〈ns 1
2

1
2
|z|np 3

2
1
2
〉 =

√
2rn

3
,

x1 = 〈ns 1
2

1
2
|x|np 1

2
−1
2
〉 = −rn

3
,

x3 = 〈ns 1
2

1
2
|x|np 3

2
−1
2
〉 = rn

3
√

2
,

x33 = 〈ns 1
2

1
2
|x|np 3

2
3
2
〉 = −rn√

6
, (4)

where rn is the radial matrix element 〈ns|r|np〉. The two levels of Eqs. (2) and (3) are coupled by the dipole-dipole interaction
Vdd, given by

Vdd = �rA · �rB

R3
− 3(�rA · �R)(�rB · �R)

R3
, (5)

with �rA and �rB being the internal positions of the Rydberg electrons in atoms A and B.
Introducing the dipole-dipole interaction of Eq. (5) between the two levels of Eqs. (2) and (3) leads to the coupling matrix

element

�(θ ) = 〈ns 1
2

1
2
ns 1

2
1
2
|E+1Vdd|np 3

2 − 1
2
np 1

2 − 1
2
〉E
−1 = −3E2 sin2 θ

4�2R3

[
x2

3z1z3 + x2
1z1z3 + x1x3z2

1 + x1x3z2
3

]
. (6)

The initial state of Eq. (6) is coupled to ten of the possible final states by matrix elements analogous to the one given in Eq. (6).
The �mj = 0 transitions, for example, to |np 1

2
1
2
np 3

2
1
2
〉E
−1, do not occur; the terms analogous to those in the square brackets of

Eq. (6) cancel.
The final states are not coupled to each other, and we make the assumption that they are not coupled to another initial state.

This assumption is reasonable in the present case in which much of the transition probability occurs in the perturbative regime.
With this approach the Hamiltonian matrix for the ten final states coupled to the initial state of Eq. (6) can be written in the
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following form. We show only five of the ten final states since the other five are the same atomic states with the two atoms
interchanged, for example, np 1

2
1
2
np 3

2
3
2

instead of np 3
2

3
2
np 1

2
1
2
. The matrix elements are unchanged. The states of the matrix are, in

order, ns 1
2

1
2
ns 1

2
1
2
, np 3

2
3
2
np 1

2
1
2
, np 3

2 − 1
2
np 1

2
1
2
, np 3

2
3
2
np 1

2 − 1
2
, np 3

2
1
2
np 1

2 − 1
2
, and np 3

2 − 1
2
np 1

2 − 1
2
:

H (θ ) = χ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ 0.015	1 0.044	1 0.030	2 −0.018	1 −0.052	2 · · ·
0.015	1 0 0 0 0 0 · · ·
0.044	1 0 0 0 0 0
0.030	2 0 0 0 0 0

−0.018	1 0 0 0 0 0
−0.052	2 0 0 0 0 0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where δ is the detuning from the two-photon ns1/2ns1/2 −
np1/2np3/2/np3/2np1/2 resonance, 	1 = −3 sin θ cos θ , 	2 =
2 − 3 sin2 θ , and

χ = E2〈ns|r|np〉4

4�2R3
. (8)

At or near resonance only two of the eigenstates of Eq. (7)
contain the initial state, so the initial state is coupled to a
single state, which is a linear superposition of the final basis
states. The eigenvalues of the two coupled states are ±�(θ ),
where �(θ ) is the square root of the sum of the squares
of the of-diagonal elements of row 1 or column 1. For the
Hamiltonian of Eq. (7) �(0), �(π/4), and �(π/2) take the
values −0.170χ , −0.114χ , and −0.085χ , respectively.

We average �(θ ) over θ to obtain

�ns 1
2

1
2

ns 1
2

1
2

= −0.109χ. (9)

The |ns 1
2 − 1

2
ns 1

2 − 1
2
〉E
+1 state obviously has the same value of �.

The ns 1
2 − 1

2
ns 1

2
1
2

and ns 1
2

1
2
ns 1

2 − 1
2

states are also coupled to
ten final states and have the same value of �. Accordingly,
we set

�̄ = 0.109χ. (10)

To an excellent approximation we can represent the radial
matrix element and the detuning �, half the np fine-structure
interval with the n scalings [31]

〈ns|r|np〉 = 1.10n∗2 (11)

and [32]

� = 0.0066n∗−3, (12)

where n∗ is the effective quantum number of the np3/2 state;
n∗ = n − 2.65. Introducing these scalings leads to the n∗14

dependence of �̄. Explicitly,

�̄ = ηn∗14E2

R3
, (13)

where η is the numerical constant; η = 3.66×103. As we shall
show, the transition probability at resonance is proportional to
�̄ and thus to the product ρ0E2, where ρ0 is the Rydberg atom
density at the center of the trap.

III. EXPERIMENTAL APPROACH

As described previously, we use a vapor loaded magneto-
optical trap (MOT) containing 85Rb [33]. The MOT cloud is

located at the center of a four-rod electrode structure used to
provide a field-ionization pulse. The trapping lasers provide
a steady population in the 5p3/2 state, and atoms are excited
from it to an ns Rydberg state by a 480-nm laser pulse. To
generate the 480-nm pulses we begin with a 960-nm single-
mode diode laser. Its output is amplified by a tapered amplifier
followed by two stages of pulsed dye amplification, producing
960-nm pulses ∼10 ns long at a 15-Hz repetition rate. The
960-nm pulses are frequency doubled to produce 480-nm
pulses with a bandwidth of 150 MHz and pulse energies of
10 μJ. The 480-nm beam is focused to a 0.15-mm-diameter
(full width at half maximum, FWHM) spot where it crosses
the MOT.

To detect the Rydberg atoms we field ionize them by apply-
ing a high-voltage pulse to two of the four rods. The resulting
ions are driven to a microchannel plate (MCP) detector, the
output of which is further amplified, with a voltage gain of
25, and sent to gated integrators.

The microwaves are generated using an Agilent E8257D
frequency synthesizer. Its continuous-wave output is formed
into 0.5-μs-long pulses with a General Microwave DM862B
switch. The pulses are used to drive a Millitech AMC-28-
3FH00 active doubler that produces an output in the 26–
40 GHz range which drives either a Pacific Millimeter V2W0
passive doubler or W3W0 passive tripler to produce frequen-
cies from 50 to 110 GHz. There is a precision attenuator after
the passive multiplier followed by a waveguide and a horn.
The entire microwave system is outside the vacuum chamber,
and the microwaves propagate into the chamber through a
4-in.-diameter window.

The timing sequence is as follows. Atoms are excited to
the ns Rydberg state by the 480-nm laser pulse. After a
20-ns delay they are exposed to a 0.5-μs microwave pulse,
followed in 20 ns by a 1-μs rise-time field-ionization pulse.
The amplitude of the field pulse is chosen to provide good
temporal resolution of the signals from the ns and np states.
The np atoms are ionized earlier, at a lower field than the
ns atoms, and we detect them with a 200-ns wide gate. We
detect the total field-ionization signal, from both ns and np
atoms, with a 1500-ns-wide gate. Both signals are recorded
in a computer for later analysis. The trap magnetic field is
not turned off for the Rydberg excitation since we observe
negligible difference between the resonances observed under
otherwise similar conditions with and without field switching.

To compare the observed transition probabilities to a model
we need to know the Rydberg atom density and the microwave
field. To determine the density we have measured the diameter
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(FWHM) of the MOT to be 0.65 mm using a linear array, and
we assume it to have a spherical Gaussian density distribution.
We have measured the 480-nm laser beam diameter (FWHM)
at the MOT to be 0.15 mm using a knife edge, and we assume
it to have a Gaussian intensity distribution. The Rydberg atom
density is thus given by

ρ(x, y, z) = ρ0e
− x2+y2+z2

r2
M e

− x2+y2

r2
L , (14)

where rM = 0.47 mm, rL = 0.075 mm, and ρ0 is the den-
sity at the center of the trap. It is convenient to rewrite
Eq. (14) as [34]

ρ(x, y, z) = ρ0e
− x2+y2

r2
T e

− z2

r2
M , (15)

where 1/r2
T = 1/r2

M + 1/r2
L.

The number of Rydberg atoms N is obtained by integrating
the density over the volume of the trap, yielding

N = ρ0π
3
2 r2

T rM . (16)

N is proportional to the total Rydberg signal detected in the
1500-ns-wide gate, which is calibrated in the following way.
We assign a quantum efficiency of 0.3 to the MCP [35]. We
have measured the MCP gain to be 5×105, and the voltage
gain of the amplifier after the MCP is 25. The sensitivities of
both gated integrators are set so that a 0.1-V average input
yields a 10-V output. Thus a total Rydberg signal Stot of 1 V
from the 1500-ns gate integrator represents 4500 Rydberg
atoms and a peak density of ρ0 = 2.6×108 cm−3, and a 1-V
signal Snp from the 200-ns integrator represents 600 np atoms.
The average transition probability P = Snp

7.5Stot
. We estimate the

uncertainty in the number of atoms to be a factor of 3.
The other important calibration is the microwave field. The

use of a precision attenuator provides an excellent relative
calibration, and to put it on an absolute basis we measure
the width of the nearby, ∼1 GHz away, ns − np1/2 atomic
transition as a function of attenuation. It has a width (FWHM)
given by

�ω = 2〈ns 1
2

1
2
|z|np 1

2
1
2
〉E = 2

3 〈ns|r|np〉E . (17)

We measured the resonance widths from a few MHz at the
lowest microwave powers up to over 100 MHz to calibrate the
attenuators. The microwaves are reflected to some extent by
the four-rod structure and by the chamber walls, leading to an
uneven frequency response. As a consequence, we estimate
the field calibration to have a 20% uncertainty.

IV. OBSERVATIONS

To record the resonances we sweep the microwave fre-
quency across the resonance over many shots of the laser
while recording both the np and the total Rydberg signals.
The sweeps are repeated until an acceptable signal-to-noise
ratio is obtained. In Fig. 3 we show a series of resonances
taken at constant density with different microwave field am-
plitudes. There are several features to note in these data. The
resonances are asymmetric. The high-frequency side is sharp,
corresponding to a half width at half maximum (HWHM) of
5 MHz, and there is an obvious wing on the low-frequency

FIG. 3. Observed 36s36s → 36p1/236p3/2 resonances at con-
stant density and microwave field amplitudes of (a) 282, (b) 316,
(c) 355, (d) 398, and (e) 447 mV/cm. The arrow indicates the
calculated frequency of 87 525.8 MHz.

side extending ∼20 MHz. The resonance occurs at the ex-
pected frequency. The arrow in Fig. 3 at 87 525.8 GHz shows
the frequency of the 36s1/236s1/2 − 36p1/236p3/2 transition
computed using the known quantum defects of the Rb ns and
np states [32]. As shown in Fig. 3, the peak of the resonance is
very close to the computed frequency, which is typical of our
observations. In Table II we present the observed resonance
frequencies and those calculated from the known quantum
defects. Typically the experimental frequency is lower due to
the low-frequency wing. There is a background signal due
to several sources. The separation of the ns and np field-
ionization signals is not perfect. In setting the 200-ns gate our
goal is to capture the entire np signal, and as a result we also
capture a few percent of the ns signal. In addition, black-body
radiation drives atoms from the ns to the np state. Both of
these contributions are linear in the number of Rydberg atoms
excited. There is also a small contribution which is quadratic
in the number of Rydberg atoms excited. Such a dependence
has been observed by Nascimento et al. who observed np
states accompanying high-power 480-nm excitation of Rb
ns states [36]. They attributed the production of np atoms
to AC Stark shifts bringing pairs of ns atoms into Forster
resonance with np(n − 1)p pairs. Our 480-nm powers are 2
orders of magnitude lower, and we observe no sign of power

TABLE II. Frequencies of the ns1/2ns1/2 → np1/2np3/2/

np3/2np1/2 transitions.

n Observed frequency (MHz) Calculated frequency (MHz)

34 105 509.5(25) 105 514.0
35 95 955.6(20) 95 960.1
36 87 524.8(20) 87 525.8
38 73 405.0(20) 73 404.9
39 67 474.7(20) 67 474.0
40 62 165.7(15) 62 165.3
41 57 396.0(20) 57 399.1
42 53 107.8(15) 53 108.0
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FIG. 4. The 40s1/240s1/2−40p1/240p3/2/40p3/240p1/2 resonance
amplitude at constant density vs the microwave field squared, show-
ing the quadratic dependence of the transition probability on the
microwave field.

broadening of the 5p − ns transition, so this process is not
possible. Finally, the background increases slightly with the
microwave field due to the fact that the frequency range of
Fig. 3 is in the wings of the 36s − 36pj transitions.

The sharp increase in the resonance amplitude with
increasing microwave field is not surprising, since the
ns1/2ns1/2 − np1/2np3/2 transition probability at resonance is
expected to exhibit a quadratic dependence on the microwave
field amplitude. To show this dependence explicitly, in Fig. 4
the resonance amplitudes of the 40s1/240s1/2 − 40p1/240p3/2

transition at constant density are plotted vs the square of the
microwave field.

We expect the transition probability to be proportional to
ρ0E2, or NE2, and to test this notion we need to measure
the density dependence of the amplitude of the resonance
signal. One approach is to record series of resonances at
the same microwave fields but different densities. Since the
amplitude of the resonance signal is proportional to the prod-
uct of the number of atoms and the transition probability, it
should depend quadratically on the density, all other param-
eters being equal. To show the quadratic dependence most
clearly, in Fig. 5 we show a plot of the amplitude of the
resonance signal vs the square of the Rydberg atom density
for n = 38. As expected, it exhibits a linear dependence
on the squared density. A second approach, which we have
usually used, is the following. With a fixed microwave field
we change the intensity of the 480-nm light with a neutral
density filter wheel to provide a continuous change in the
number of Rydberg atoms. As the wheel is slowly rotated
over many shots of the laser, we record both the np and total
Rydberg atom signals for the microwave frequency tuned to
the resonance and detuned by ∼40 − 200 MHz. An example
of filter wheel scans is shown in Fig. 6, which is a plot of
the on-resonant and of-resonant signals vs the total signal
for the 38s1/238s1/2 − 38p1/238p3/2/38p3/238p1/2 transition.
The difference between the two curves is the resonant np
signal Snp as a function of the total signal Stot. From each
wheel scan we construct the average transition probability
P = Snp/(7.5Stot ), and we convert Stot into ρ0, the density

FIG. 5. Amplitude of the 38s1/238s1/2 → 38p1/238p3/2/

38p3/238p1/2 resonance signal at a microwave field of 316 mV/cm
vs the squared density at a constant microwave field amplitude.

at the center of the trap. In Fig. 7 we plot P/(n∗14ρ0E2)
vs n. We expect P/(n∗14ρ0E2) to be a constant. Although
there is substantial scatter, which we attribute primarily
to the uncertainty in the microwave field calibration, the
data are certainly consistent with an n-independent value of
4.0×10−31 cm3 (V/cm)−2, as shown by the broken line.

V. DISCUSSION

The data of the previous section allow a comparison of the
magnitudes of the observed signals to those expected from the
Forster Floquet model. Using �̄ of Eq. (13) we can calculate
the transition probability at resonance. If there are two states
coupled by �̄, the population oscillates between the initial
and final states at angular frequency 2�̄. If the microwave
pulse has duration T , at the end of the pulse the transition
probability at resonance P(R) for a pair of atoms spaced by

FIG. 6. The on-resonant (
) and of-resonant (◦) 38p signals at
a microwave field of 199 mV/cm vs the total number of Rydberg
atoms. The difference between the two sets of data is the resonant
signal vs the total number of Rydberg atoms.
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FIG. 7. Plot of P/n∗14ρ0E 2 vs n, showing the n∗14 dependence
of the transition probability. The average of the experimental points,
4.0×10−31 cm V2, is shown by the broken line. The value calculated
from Eq. (30) is shown by the solid line.

R is given by

P(R) = sin2 �̄T . (18)

For a given microwave field E we define the internuclear
spacing RT using

�̄T = ηn∗14E2T

R3
T γ

= π

2
. (19)

In Eq. (19) we have introduced the phenomenalogical con-
stant γ to account for the fact that the observed resonances
are broader than the transform limit of the microwave-pulse
length. There are more elegant ways of introducing the broad-
ening, as shown by Yakshina et al. [21], but the result is
the same.

It is useful to recast Eq. (19) as

R3
T = 2ηn∗14E2T

πγ
. (20)

With our 0.5 −μs-long microwave pulse we expect to observe
resonances with a FWHM = 1 MHz, but we do not observe
such narrow resonances. The typical half width on the high-
frequency side is 5 MHz, five times larger than expected. To
account for this broadening, we set γ = 5. Pairs spaced by
R < RT oscillate back and forth between the initial state and
the final state, with an average transition probability of 1/2.
Pairs separated by R � RT have a transition probability given
by Eq. (18), which we approximate by

P(R) = �̄2T 2. (21)

At a Rydberg density ρ we define the average spacing Rav by

1

ρ
= 4πR3

av

3
, (22)

and the probability of an atom having its nearest neighbor a
distance R away is given approximately by

dN

dR
=

{
3R2

R3
av

, R � Rav,

0, R > Rav.
(23)

The average resonant transition probability for density ρ is
computed using a transition probability of 1/2 for R � RT and
Eq. (18) for R > RT , resulting in

P(ρ) = 1

2

R3
T

R3
av

+
∫ Rav

RT

(
ηn∗14E2

R3γ

)2 T 23R2dR

R3
av

. (24)

Assuming R3
T � R3

ac, we can let the upper limit of the integral
go to infinity, in which case

P(ρ) = 1

2

R3
T

R3
av

+
(

π

2

)2 R3
T

R3
av

. (25)

To a good approximation

P(ρ) = 3R3
T

R3
av

= 8ηn∗14E2T ρ

γ
. (26)

Averaging this transition probability over density yields the
average transition probability

P =
∫ ρ0

0

dN

dρ
P(ρ)dρ. (27)

For the density distribution of Eq. (15), dN/dρ takes the
form [34]

dN

dρ
= πr2

T rM[ln(ρ0/ρ)]1/2, (28)

and the integral of Eq. (27) yields

P = 0.35P(ρ0) = 2.8ηn∗14ρ0E2T

γ
. (29)

With T = 0.5 μs, η = 3.7×103, and γ = 5, we can rewrite
Eq. (29) in laboratory units as

P = 2.4×10−31n∗14ρ0E2, (30)

where ρ0 is expressed in cm−3 and E in V/cm. In Fig. 7
we show the calculated value of P/n∗14ρ0E2 as the solid
line. It is 2/3 the experimental value, well within our density
measurement uncertainty.

An initially surprising aspect of the resonances was their
asymmetry. As shown by Fig. 3 the resonances have low-
frequency wings. With these particular atomic states a low-
frequency wing could be the result of a Stark shift from
a stray electric field. Possible sources of stray fields are
ions, accidental bias voltages on the rods, and the MCP.
Two observations suggest that stray fields are not important.
First, we see a negligible number of ions. Second, and more
important, in doing the microwave attenuator calibration we
see no evidence of Stark shifts or broadening of the ns − np1/2

transitions, even at the lowest microwave powers, where the
resonances are 2–3 MHz wide.

We attribute the wings to the van der Waals interac-
tion of the np1/2np3/2/np3/2np1/2 states with the nearby
ns1/2(n + 1)s1/2 state. For atoms spaced by the characteristic
spacing of atoms in the trap this van der Waals interaction
is negligible, ∼10 kHz, and for this reason, we initially dis-
counted it. However, for the few percent of the atoms which
undergo the transition, the characteristic spacing is much
smaller, ∼RT , leading to an observable van der Waals shift.

We can estimate the van der Waals shift starting from
Eqs. (26) and (29). If we assume a transition probability of
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FIG. 8. The 38s1/238s1/2−38p1/238p3/2/38p3/238p1/2 resonance
observed at constant density and microwave fields of (a) 141, (b) 177,
and (c) 251 mV/cm. At low field the transition can only occur for
closely spaced atoms, leading to a resonance dominated by the van
der Waals shift. As the microwave field is raised, atoms separated
by larger distances, with smaller van der Waals shifts, undergo the
transition, leading to a much sharper peak at the calculated frequency
of 73 404.9 MHz, as shown by the arrow.

3%, R3
T = 0.03R3

av,0, where Rav,0 is the average spacing at the
center of the trap, the van der Waals shift is almost 3 orders
of magnitude larger than for a pair of atoms at the trap’s
characteristic spacing of Rav. If we use n = 39 as an example,
the dipole-dipole coupling between the 39p1/239p3/2 and
39s1/240s1/2 states is approximately given by

Vdd = 〈39p|r|39s〉〈39p|r|40s〉
R3

T

. (31)

For a 3% transition probability at the maximum trap density
the resulting dipole-dipole coupling is 78 MHz, leading to a
3-MHz van der Waals shift. The shifts implicit in the low-
frequency wings are larger than this estimate, but we have not
taken into account the atoms closer together than RT .

The line shape has a definite microwave field dependence.
At low microwave fields the low-frequency wing is more

pronounced, which can be seen in the set of resonances shown
in Fig. 4. This property is more apparent in Fig. 8, a set of
38s1/238s1/2 − 38p1/238p3/2/38p3/238p1/2 resonances taken
at a constant density and three different microwave fields. At
low microwave field there is not a prominent peak at the un-
shifted 38s1/238s1/2 − 38p1/238p3/2/38p3/238p1/2 frequency.
However, as the microwave field is raised, a pronounced peak
appears at the unshifted 38s1/238s1/2 − 38p1/238p3/2 fre-
quency. This development is consistent with our expectation
based on the coupling given by Eq. (13). If the atomic density
is fixed, as in Fig. 8, since R3

T has a quadratic dependence
on the microwave field, increasing E increases R3

T , rapidly
reducing the van der Waals shift, which in turn leads to a sharp
feature at the 38s1/238s1/2 − 38p1/238p3/2/38p3/238p1/2

frequency.

VI. CONCLUSION

We have presented a systematic study of the process
Rb ns1/2 + Rb ns1/2 + 2h̄ω → Rb np1/2 + Rb np3/2. It is a
process which depends critically on the three-dimensional
nature of the dipole-dipole interaction. In addition, the n14 de-
pendence of the transition probability is, to our knowledge, the
highest of any two-body process. Processes involving more
than two atoms can, of course, have a higher n dependence.
Finally, these measurements underscore the fact that when the
observed signal is due only to the few most closely spaced
atoms, interactions such as the van der Waals interaction,
which are negligible for most of the atoms in the trap, become
important.
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